1932

Abstract

The CARIACO (Carbon Retention in a Colored Ocean) Ocean Time-Series Program station, located at 10.50°N, 64.66°W, observed biogeochemical and ecological processes in the Cariaco Basin of the southwestern Caribbean Sea from November 1995 to January 2017. The program completed 232 monthly core cruises, 40 sediment trap deployment cruises, and 40 microbiogeochemical process cruises. Upwelling along the southern Caribbean Sea occurs from approximately November to August. High biological productivity (320–628 g C m−2 y−1) leads to large vertical fluxes of particulate organic matter, but only approximately 9–10 g C m−2 y−1 fall to the bottom sediments (∼1–3% of primary production). A diverse community of heterotrophic and chemoautotrophic microorganisms, viruses, and protozoa thrives within the oxic–anoxic interface. A decrease in upwelling intensity from approximately 2003 to 2013 and the simultaneous overfishing of sardines in the region led to diminished phytoplankton bloom intensities, increased phytoplankton diversity, and increased zooplankton densities. The deepest waters of the Cariaco Basin exhibited long-term positive trends in temperature, salinity, hydrogen sulfide, ammonia, phosphate, methane, and silica. Earthquakes and coastal flooding also resulted in the delivery of sediment to the seafloor. The program's legacy includes climate-quality data from suboxic and anoxic habitats and lasting relationships between international researchers.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-010318-095150
2019-01-03
2024-06-21
Loading full text...

Full text loading...

/deliver/fulltext/marine/11/1/annurev-marine-010318-095150.html?itemId=/content/journals/10.1146/annurev-marine-010318-095150&mimeType=html&fmt=ahah

Literature Cited

  1. Alexander MA, Kilbourne KH, Nye JA 2014. Climate variability during warm and cold phases of the Atlantic Multidecadal Oscillation (AMO) 1871–2008. J. Mar. Syst. 133:14–26
    [Google Scholar]
  2. Alvera-Azcárate A, Barth A, Weisberg RH 2008. A nested model of the Cariaco Basin (Venezuela): description of the basin's interior hydrography and interactions with the open ocean. Ocean Dyn 59:97–120
    [Google Scholar]
  3. Astor YM, Guzmán LI, Troccoli L, Lorenzoni L, Muller-Karger FE 2014. Síntesis de las tendencias de los parámetros oceanográficos y ópticos en la estación serie de tiempo CARIACO (enero 1996–diciembre 2013). Mem. Fund. La Salle Cienc. Nat. 74:81–101
    [Google Scholar]
  4. Astor YM, Lorenzoni L, Guzmán LI, Fuentes G, Muller-Karger FE et al. 2017. Distribution and variability of the dissolved inorganic carbon system in the Cariaco Basin, Venezuela. Mar. Chem. 195:15–26
    [Google Scholar]
  5. Astor YM, Lorenzoni L, Scranton MI 2013.a Handbook of Methods for the Analysis of Oceanographic Parameters at the CARIACO Time Series Station Caracas, Venezuela: Fund. La Salle Cienc. Nat https://www.oceanbestpractices.net/handle/11329/384
    [Google Scholar]
  6. Astor YM, Lorenzoni L, Thunell RC, Varela R, Muller-Karger FE et al. 2013.b Interannual variability in sea surface temperature and fCO2 changes in the Cariaco Basin. Deep-Sea Res. II 93:33–43
    [Google Scholar]
  7. Astor YM, Muller-Karger FE, Scranton MI 2003. Seasonal and interannual variation in the hydrography of the Cariaco Basin: implications for basin ventilation. Cont. Shelf Res. 23:125–44
    [Google Scholar]
  8. Astor YM, Scranton MI, Guzmán LI, Thunell RC, Muller-Karger FE et al. 2006. Seasonal variability in the hydrological and chemical structure of the suboxic waters at the CARIACO time-series station. Gayana 70:Suppl. 11–5
    [Google Scholar]
  9. Astor YM, Scranton MI, Muller-Karger FE, Bohrer R, García J 2005. Seasonal and interannual fCO2 variability in a tropical coastal upwelling system. Mar. Chem. 97:245–61
    [Google Scholar]
  10. Audemard FA 2007. Revised seismic history of the El Pilar fault, northeastern Venezuela, from the Cariaco 1997 earthquake and recent preliminary paleoseismic results. J. Seismol. 11:311–26
    [Google Scholar]
  11. Bacon MP, Brewer PG, Spencer DW, Murray JW, Goddard J 1980. Lead-210, polonium-210, manganese and iron in the Cariaco Trench. Deep-Sea Res. A 27:119–35
    [Google Scholar]
  12. Ballester A, Margalef R 1965. Produccion primaria. Mem. Soc. Cienc. Nat. La Salle 25:209–21
    [Google Scholar]
  13. Bates NR, Astor YM, Church MJ, Dore JE, Gonzalez-Davila M et al. 2014. Changing ocean chemistry: a time-series view of ocean uptake of anthropogenic CO2 and ocean acidification. Oceanography 27:1126–41
    [Google Scholar]
  14. Benitez-Nelson CR, O'Neill LP, Kolowith L, Pellechia P, Thunell RC 2004. Phosphonates and particulate organic phosphorus cycling in an anoxic marine basin. Limnol. Oceanogr. 49:1593–604
    [Google Scholar]
  15. Benitez-Nelson CR, O'Neill LP, Styles RM, Thunell RC, Astor YM 2007. Inorganic and organic sinking particulate phosphorus fluxes across the oxic/anoxic water column of Cariaco Basin, Venezuela. Mar. Chem. 105:90–100
    [Google Scholar]
  16. Black D, Thunell RC, Wejnert K, Astor YM 2011. Carbon isotope composition of Caribbean Sea surface waters: response to the uptake of anthropogenic CO2. Geophys. Res. Lett. 38:L16609
    [Google Scholar]
  17. Calvert S, Piper D, Thunell R, Astor Y 2015. Elemental settling and burial fluxes in the Cariaco Basin. Mar. Chem. 177:607–29
    [Google Scholar]
  18. Carstensen J 2014. Need for monitoring and maintaining sustainable marine ecosystem. Front. Mar. Sci. 11:33
    [Google Scholar]
  19. Cernadas-Martín S, Suter EA, Scranton MI, Astor YM, Taylor GT 2017. Aerobic and anaerobic ammonium oxidizers in the Cariaco Basin: distributions of major taxa and nitrogen species across the redoxcline. Aquat. Microb. Ecol. 79:31–48
    [Google Scholar]
  20. Church MJ, Lomas MW, Muller-Karger FE 2013. Sea change: charting the course for biogeochemical ocean time series research in a new millennium. Deep-Sea Res. II 93:2–15
    [Google Scholar]
  21. Curl H 1960. Primary production measurements in the north coastal waters of South America. Deep-Sea Res 7:183–89
    [Google Scholar]
  22. Douglas NK, Byrne RH 2017. Achieving accurate spectrophotometric pH measurements using unpurified meta-cresol purple. Mar. Chem. 190:66–72
    [Google Scholar]
  23. Edgcomb V, Orsi W, Bunge J, Jeon S, Christen R et al. 2011.a Protistan microbial observatory in the Cariaco Basin, Caribbean. I. Pyrosequencing versus Sanger insights into species richness. J. Int. Soc. Microb. Ecol. 5:1344–56
    [Google Scholar]
  24. Edgcomb V, Orsi W, Taylor GT, Vdacny P, Taylor C et al. 2011.b Accessing marine protists from the anoxic Cariaco Basin. J. Int. Soc. Microb. Ecol. 5:1237–41
    [Google Scholar]
  25. Enfield DB, Mayer DA 1997. Tropical Atlantic sea surface variability and its relation to El Niño-Southern Oscillation. J. Geophys. Res. 102:929–45
    [Google Scholar]
  26. Enfield DB, Mestas-Nuñez AM, Trimble PJ 2001. The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett. 28:2077–80
    [Google Scholar]
  27. Fanning KA 1992. Nutrient provinces in the sea: concentration ratios, reaction rate ratios, and ideal covariation. J. Geophys. Res. 97:5693–712
    [Google Scholar]
  28. Fanning KA, Pilson MEQ 1972. A model for the anoxic zone of the Cariaco Trench. Deep-Sea Res. Oceanogr. Abstr. 19:847–63
    [Google Scholar]
  29. Gibson K, Thunell R, Tappa E, Peterson L, McConnell M 2015. The influence of rapid, millennial-scale climate change on nitrogen isotope dynamics of the Cariaco Basin during Marine Isotope Stage 3. Paleoceanography 30:253–68
    [Google Scholar]
  30. Giménez BCE, Baloa Pérez R, Cárdenas JJ 2015. Claves para entender la situación pesquera y acuícola de Venezuela (años 1998; 2004 y 2013–2014); propuestas derivadas. COFA Convivencia Pesquera May–June 11–19 https://issuu.com/cofa-fundatun/docs/cofa_2015_may_jun_issuu
    [Google Scholar]
  31. Goñi MA, Aceves HL, Benitez-Nelson B, Tappa E, Thunell RC et al. 2009. Oceanographic and climatologic controls on the compositions and fluxes of biogenic materials in the water column and sediments of the Cariaco Basin over the late Holocene. Deep-Sea Res. I 56:614–40
    [Google Scholar]
  32. Goñi MA, Aceves HL, Thunell RC, Tappa E, Black D et al. 2003. Biogenic fluxes in the Cariaco Basin: a combined study of sinking particulates and underlying sediments. Deep-Sea Res. I 50:781–807
    [Google Scholar]
  33. Goñi MA, Thunell R, Woodworth M, Muller-Karger FE 2006. Changes in wind driven upwelling during the last three centuries: interocean teleconnections. Geophys. Res. Lett. 33:L15604
    [Google Scholar]
  34. Henehan MJ, Foster GL, Rae JWB, Prentice KC, Erez J et al. 2015. Evaluating the utility of B/Ca ratios in planktic foraminifera as a proxy for the carbonate system: a case study of Globigerinoides ruber. Geochem. Geophys. Geosyst 16:1052–69
    [Google Scholar]
  35. Henson S, Beaulieu C, Lampitt R 2016. Observing climate change trends in ocean biogeochemistry: when and where. Glob. Change Biol. 22:1561–71
    [Google Scholar]
  36. Ho T-Y, Taylor GT, Astor YM, Varela R, Muller-Karger FE et al. 2004. Vertical and temporal variability of redox zonation in the water column of the Cariaco Basin: implications for organic carbon oxidation pathways. Mar. Chem. 86:89–104
    [Google Scholar]
  37. Hughen KA, Overpeck JT, Peterson LC, Trumbore SE 1996. Rapid climate changes in the tropical Atlantic region during the last deglaciation. Nature 380:51–54
    [Google Scholar]
  38. Huq MF 2003. Review of the fishery biology of sardine (Sardinella aurita Valenciennes, 1847) in eastern Venezuela. The Sardine (Sardinella aurita), Its Environment and Exploitation in Eastern Venezuela P Freón, J Mendoza 331–56 Paris: IRD
    [Google Scholar]
  39. Irwin AJ, Finkel ZV, Muller-Karger FE, Troccoli L 2015. Phytoplankton adapt to changing ocean environments. PNAS 112:5762–66
    [Google Scholar]
  40. Jiang P, Chen C, Liu X 2016. Time series prediction for evolutions of complex systems: a deep learning approach. 2016 IEEE International Conference on Control and Robotics Engineering (ICCRE) New York: IEEE https://doi.org/10.1109/ICCRE.2016.7476150
    [Crossref] [Google Scholar]
  41. Johnson K, Key R, Millero F, Sabine C, Wallace D et al. 2003. Carbon dioxide, hydrographic, and chemical data obtained during the R/V Knorr cruises in the North Atlantic Ocean on WOCE sections AR24 (November 2–December 5, 1996) and A24, A20, and A22 (May 30–September 3, 1997) Rep. ORNL/CDIAC-143, NDP-082 Carbon Dioxide Inf. Anal. Cent., Oak Ridge Natl. Lab., US Dep. Energy Oak Ridge, TN:
    [Google Scholar]
  42. Kerr RA 2000. A North Atlantic climate pacemaker for the centuries. Science 288:1984–85
    [Google Scholar]
  43. Li XN, Taylor GT, Astor YM, Scranton MI 2008. Relationship of sulfur speciation to hydrographic conditions and chemoautotrophic production in the Cariaco Basin. Mar. Chem. 112:53–64
    [Google Scholar]
  44. Li XN, Taylor GT, Astor YM, Varela R, Scranton MI 2012.a Conundrum between chemoautotrophic production and oxidant and reductant supply: case study from the Cariaco Basin. Deep-Sea Res. I 61:1–10
    [Google Scholar]
  45. Li XN, Taylor GT, Astor YM, Varela R, Scranton MI 2012.b Response to comment on “The conundrum between chemoautotrophic production and reductant and oxidant supply: a case study from the Cariaco basin. Deep-Sea Res. I 70:106–8
    [Google Scholar]
  46. Lidz L, Charm WB, Ball MM, Valdes S 1969. Marine basins off the coast of Venezuela. Bull. Mar. Sci. 19:1–17
    [Google Scholar]
  47. Lin X, Scranton MI, Chistoserdov AY, Varela R, Taylor GT 2008. Spatiotemporal dynamics of bacterial populations in the anoxic Cariaco Basin. Limnol. Oceanogr. 53:37–51
    [Google Scholar]
  48. Lin X, Scranton MI, Varela R, Chistoserdov AY, Taylor GT 2007. Compositional responses of bacterial communities to redox gradients and grazing in the anoxic Cariaco Basin. Aquat. Microb. Ecol. 47:57–72
    [Google Scholar]
  49. Lin X, Wakeham SG, Putman IF, Astor YM, Scranton MI et al. 2006. Comparison of vertical distributions of prokaryotic assemblages in the anoxic Cariaco Basin and Black Sea by use of fluorescence in situ hybridization. Appl. Environ. Microbiol. 72:2679–90
    [Google Scholar]
  50. Lorenzoni L 2005. The influence of local rivers on the eastern Cariaco Basin, Venezuela MS Thesis Univ. South Fla. St. Petersburg:
    [Google Scholar]
  51. Lorenzoni L, Benitez-Nelson CR, Thunell RC, Hollander D, Varela R et al. 2012. Potential role of event-driven sediment transport on sediment accumulation in the Cariaco Basin, Venezuela. Mar. Geol. 307–10:105–10
    [Google Scholar]
  52. Lorenzoni L, Hu C, Varela R, Arias G, Guzman LI et al. 2011. Bio-optical characteristics of Cariaco Basin (Caribbean Sea) waters. Cont. Shelf Res. 31:582–93
    [Google Scholar]
  53. Lorenzoni L, O'Brien TD, Isensee K, Benway H, Muller-Karger FE et al. 2017. Global overview. What Are Marine Ecological Time Series Telling Us About the Ocean? A Status Report TD O'Brien, L Lorenzoni, K Isensee, L Valdés 171–90 IOC Tech. Ser. 129 Paris: IOC-UNESCO
    [Google Scholar]
  54. Lorenzoni L, Taylor GT, Thunell RC, Benitez-Nelson CR, Hansell DA et al. 2013. Spatial and seasonal variability in dissolved organic matter in the Cariaco Basin, Venezuela. J. Geophys. Res. 118:951–62
    [Google Scholar]
  55. Lorenzoni L, Thunell RC, Benitez-Nelson CR, Hollander D, Martinez N et al. 2009. The importance of subsurface nepheloid layers in transport and delivery of sediments to the eastern Cariaco Basin, Venezuela. Deep-Sea Res. I 56:2249–62
    [Google Scholar]
  56. Margalef R 1965. Composición y distribución del fitoplancton. Mem. Soc. Cienc. Nat. La Salle 25:141–205
    [Google Scholar]
  57. Margalef R, Cervigon F, Yepez G 1960. Exploración preliminar de las características hidrográficas y de la distriución del fitoplancton en el área de la Isla Margarita (Venezuela). Mem. Soc. Cienc. Nat. La Salle 20:211–21
    [Google Scholar]
  58. Marshall B, Thunell RC, Henehan M, Astor YM, Wejnert K 2013. Planktonic foraminiferal area density as a proxy for carbonate ion concentration: a calibration study using the Cariaco Basin ocean time series. Paleoceanography 28:363–76
    [Google Scholar]
  59. Marshall BJ, Thunell RC, Spero HJ, Henehan MJ, Lorenzoni L et al. 2015. Morphometric and stable isotopic differentiation in Orbulina universa morphotypes from the Cariaco Basin, Venezuela. Mar. Micropaleontol. 120:46–64
    [Google Scholar]
  60. McCarthy GD, Smeed DA, Johns WE, Frajka-Williams E, Moat BI et al. 2015. Measuring the Atlantic Meridional Overturning Circulation at 26°N. Prog. Oceanogr. 130:91–111
    [Google Scholar]
  61. McConnell M, Thunell RC, Lorenzoni L, Astor YM, Wright J et al. 2009. Seasonal variability in the salinity and oxygen isotopic composition of seawater from the Cariaco Basin, Venezuela: implications for paleosalinity reconstructions. Geochem. Geophys. Geosyst. 10:Q06019
    [Google Scholar]
  62. McKinley GA, Pilcher DJ, Fay AR, Lindsay K, Long MC, Lovenduski NS 2016. Timescales for detection of trends in the ocean carbon sink. Nature 530:469–72
    [Google Scholar]
  63. McParland E, Benitez-Nelson CR, Taylor GT, Rollings A, Lorenzoni L 2015. Cycling of suspended particulate phosphorus in the redoxcline of the Cariaco Basin. Mar. Chem. 176:64–74
    [Google Scholar]
  64. Montes E, Muller-Karger FE, Cianca A, Lomas MW, Lorenzoni L et al. 2016. Decadal variability in the oxygen inventory of North Atlantic subtropical underwater captured by sustained, long-term oceanographic time series observations. Glob. Biogeochem. Cycles 30:460–78
    [Google Scholar]
  65. Montes E, Muller-Karger FE, Thunell RC, Hollander D, Astor YM et al. 2012. Vertical fluxes of particulate biogenic material through the euphotic and twilight zones in the Cariaco Basin, Venezuela. Deep-Sea Res. I 67:73–84
    [Google Scholar]
  66. Montes E, Thunell RC, Muller-Karger FE, Tappa E, Lorenzoni L et al. 2013. Sources of δ15N variability in sinking particulate nitrogen in the Cariaco Basin, Venezuela. Deep-Sea Res. II 93:96–107
    [Google Scholar]
  67. Morris I, Smith AE, Glover HE 1981. Products of photosynthesis in phytoplankton off the Orinoco River and in the Caribbean Sea. Limnol. Oceanogr. 26:1034–44
    [Google Scholar]
  68. Mouw CB, Barnett A, McKinley GA, Gloege L, Pilcher D 2016.a Global ocean particulate organic carbon flux merged with satellite parameters. Earth Syst. Sci. Data 8:531–41
    [Google Scholar]
  69. Mouw CB, Barnett A, McKinley GA, Gloege L, Pilcher D 2016.b Phytoplankton size impact on export flux in the global ocean. Glob. Biogeochem. Cycles 30:1542–62
    [Google Scholar]
  70. Muller-Karger FE, Aparicio-Castro R 1994. Mesoscale processes affecting phytoplankton abundance in the Southern Caribbean Sea. Cont. Shelf Res. 14:199–221
    [Google Scholar]
  71. Muller-Karger FE, Kavanaugh MT, Montes E, Balch WM, Breitbart M et al. 2014. A framework for a marine biodiversity observing network within changing continental shelf seascapes. Oceanography 27:218–23
    [Google Scholar]
  72. Muller-Karger FE, McClain CR, Fisher TR, Esaias WE, Varela R 1989. Pigment distribution in the Caribbean Sea: observations from space. Prog. Oceanogr. 23:23–69
    [Google Scholar]
  73. Muller-Karger FE, Varela R, Thunell RC, Astor YM, Zhang H et al. 2004. Processes of coastal upwelling and carbon flux in the Cariaco Basin. Deep-Sea Res. II 51:927–943
    [Google Scholar]
  74. Muller-Karger FE, Varela R, Thunell RC, Luerssen R, Hu C et al. 2005. The importance of continental margins in the global carbon cycle. Geophys. Res. Lett. 32:L01602
    [Google Scholar]
  75. Muller-Karger FE, Varela R, Thunell RC, Scranton MI, Bohrer R et al. 2000. Sediment record linked to surface processes in the Cariaco Basin. Eos Trans. AGU 81:529534–35
    [Google Scholar]
  76. Muller-Karger FE, Varela R, Thunell RC, Scranton MI, Bohrer R et al. 2001. Annual cycle of primary production in the Cariaco Basin: response to upwelling and implications for vertical export. J. Geophys. Res. 106:4527–42
    [Google Scholar]
  77. Muller-Karger FE, Varela R, Thunell RC, Scranton MI, Taylor GT et al. 2010. The Cariaco Basin: CARIACO oceanographic time series. Carbon and Nutrient Fluxes in Continental Margins: A Global Synthesis KK Liu, L Atkinson, R Quiñones, L Talaue-McManus 454–63 Berlin: Springer
    [Google Scholar]
  78. Mutshinda CM, Troccoli-Ghinaglia L, Finkel ZV, Muller-Karger FE, Irwin AJ 2013. Environmental control of the dominant phytoplankton in the Cariaco Basin: a hierarchical Bayesian approach. Mar. Biol. Res. 9:247–61
    [Google Scholar]
  79. Neuer S, Benway HM, Bates N, Carlson CA, Church M et al. 2017. Monitoring ocean change in the 21st century. Eos 98: https://doi.org/10.1029/2017EO080045
    [Crossref] [Google Scholar]
  80. Nye JA, Baker MR, Bell R, Kenny A, Kilbourne KH et al. 2014. Ecosystem effects of the Atlantic Multidecadal Oscillation. J. Mar. Syst. 133:103–16
    [Google Scholar]
  81. O'Reilly JE, Maritorena S, Siegel DA, O'Brien MC, Toole D et al. 2000. Ocean color chlorophyll a algorithms for SeaWiFS, OC2, and OC4: version 4. SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3 SB Hooker, ER Firestone 9–23 SeaWiFS Postlaunch Tech. Rep. Ser. Vol. 11 Greenbelt, MD: NASA Goddard Space Flight Cent.
    [Google Scholar]
  82. Orsi W, Edgcomb V, Faria J, Foissner W, Fowle WH et al. 2012.a Class Cariacotrichea, a novel ciliate taxon from the anoxic Cariaco Basin, Venezuela. Int. J. Syst. Evol. Microbiol. 62:1425–33
    [Google Scholar]
  83. Orsi W, Edgcomb V, Jeon S, Leslin C, Bunge J et al. 2011. Protistan microbial observatory in the Cariaco Basin, Caribbean. II. Habitat specialization. J. Int. Soc. Microb. Ecol. 5:1357–73
    [Google Scholar]
  84. Orsi W, Song Y, Hallam S, Edgcomb V 2012.b Effect of oxygen minimum zone formation on communities of marine protists. J. Int. Soc. Microb. Ecol. 6:1586–601
    [Google Scholar]
  85. Peloquin J, Swan C, Gruber N, Vogt M, Claustre H et al. 2013. The MAREDAT global database of high performance liquid chromatography marine pigment measurements. Earth Syst. Sci. Data 5:109–23
    [Google Scholar]
  86. Percy D, Li XN, Taylor GT, Astor YM, Scranton MI 2007. Controls on iron, manganese and intermediate oxidation state sulfur compounds in the Cariaco Basin. Mar. Chem. 111:47–62
    [Google Scholar]
  87. Peterson LC, Haug GH 2006. Variability in the mean latitude of the Atlantic Intertropical Convergence Zone as recorded by riverine input of sediments to the Cariaco Basin (Venezuela). Palaeogeogr. Palaeoclimatol. Palaeoecol. 234:97–113
    [Google Scholar]
  88. Peterson LC, Overpeck JT, Kipp NG, Imbrie J 1991. A high-resolution late quaternary upwelling record from the anoxic Cariaco Basin, Venezuela. Paleoceanography 6:99–119
    [Google Scholar]
  89. Pinckney JL, Benitez-Nelson CR, Thunell RC, Muller-Karger FE, Troccoli L et al. 2015. Phytoplankton community structure and depth distribution changes in the Cariaco Basin between 1996 and 2010. Deep-Sea Res. I 101:27–37
    [Google Scholar]
  90. Qu T, Zhang L, Schneider N 2016. North Atlantic subtropical underwater and its year-to-year variability in annual subduction rate during the Argo period. J. Phys. Oceanogr. 46:1901–16
    [Google Scholar]
  91. Rasse R, Pérez T, Giuliante A, Donoso L 2018. Total dissolved atmospheric nitrogen deposition in the anoxic Cariaco Basin. Atmos. Environ. 179:118–31
    [Google Scholar]
  92. Redfield AC, Ketchum BH, Richards FA 1963. The influence of organisms in the composition of sea water. The Sea 2 MN Hill 26–77 New York: Wiley Intersci.
    [Google Scholar]
  93. Reeburgh WS, Scranton MI, Ward BB 1991. Decadal changes in Black Sea and Cariaco Trench methane distributions. Eos Trans. AGU 72:Suppl.36 (Abstr.)
    [Google Scholar]
  94. Revels BN, Zhang R, Adkins JF, John SG 2015. Fractionation of iron isotopes during leaching of natural particles by acidic and circumneutral leaches and development of an optimal leach for marine particulate iron isotopes. Geochim. Cosmochim. Acta 166:92–104
    [Google Scholar]
  95. Richards FA 1975. The Cariaco Basin (Trench). Oceanogr. Mar. Biol. 13:11–67
    [Google Scholar]
  96. Richards FA, Vaccaro RF 1956. The Cariaco Trench, an anaerobic basin in the Caribbean Sea. Deep-Sea Res 3:214–28
    [Google Scholar]
  97. Rodriguez-Mora M, Scranton MI, Taylor GT, Chistoserdov A 2015. The dynamics of the bacterial diversity in the redox transition and anoxic zones of the Cariaco Basin assessed by massively parallel tag sequencing. FEMS Microbiol. Ecol. 91:fiv088
    [Google Scholar]
  98. Romero O, Thunell RC, Astor YM, Varela R 2009. Seasonal and interannual dynamics in diatom production in the Cariaco Basin, Venezuela. Deep-Sea Res. I 56:571–81
    [Google Scholar]
  99. Rueda-Roa DT, Ezer T, Muller-Karger FE 2018. Description and mechanisms of the mid-year upwelling in the southern Caribbean Sea from remote sensing and local data. J. Mar. Sci. Eng. 6:36
    [Google Scholar]
  100. Rueda-Roa DT, Mendoza J, Muller-Karger FE, Cardenas JJ, Achuri A et al. 2017. Spatial variability of Spanish sardine (Sardinella aurita) abundance as related to the upwelling cycle off the southeastern Caribbean Sea. PLOS ONE 12:e0179984
    [Google Scholar]
  101. Rueda-Roa DT, Muller-Karger FE 2013. The southern Caribbean upwelling system: sea surface temperature, wind forcing and chlorophyll concentration patterns. Deep-Sea Res. I 78:102–14
    [Google Scholar]
  102. Scranton MI 1988. Temporal variations in the methane content of the Cariaco Trench. Deep-Sea Res. A 35:1511–23
    [Google Scholar]
  103. Scranton MI, Astor YM, Bohrer R, Ho T-Y, Muller-Karger FE 2001. Controls on temporal variability of the geochemistry of the deep Cariaco Basin. Deep-Sea Res. I 48:1605–25
    [Google Scholar]
  104. Scranton MI, Astor YM, Percy D, Li XN, Lin X et al. 2006.a Biogeoquímica de la zona subóxica y anóxica en la Fosa de Cariaco. Gayana 70:Suppl.83–86
    [Google Scholar]
  105. Scranton MI, McIntyre M, Taylor GT, Muller-Karger FE, Fanning KA et al. 2006.b Temporal variability in the nutrient chemistry of the Cariaco Basin. Past and Present Water Column Anoxia LN Neretin 139–60 Dordrecht, Neth.: Springer
    [Google Scholar]
  106. Scranton MI, Sayles FL, Bacon MP, Brewer PG 1987. Temporal changes in the hydrography and chemistry of the Cariaco Trench. Deep-Sea Res. A 34:945–63
    [Google Scholar]
  107. Scranton MI, Taylor GT, Benitez-Nelson CR, Muller-Karger FM, Fanning KA et al. 2014. Interannual and subdecadal variability in the nutrient geochemistry of the Cariaco Basin. Oceanography 27:1148–59
    [Google Scholar]
  108. Smoak JM, Benitez-Nelson CR, Moore WS, Thunell RC, Astor YM et al. 2004. Radionuclide fluxes and particle scavenging in Cariaco Basin. Cont. Shelf Res. 24:1451–63
    [Google Scholar]
  109. Spencer DW, Brewer PG 1972. The distribution of some chemical elements between dissolved and particulate phases in the ocean Rep. C00-3566-3 At. Energy Comm. Washington, DC:
    [Google Scholar]
  110. Suter EA, Pachiadaki M, Taylor GT, Astor YM, Edgcomb VP 2018. Free‐living chemoautotrophic and particle‐attached heterotrophic prokaryotes dominate microbial assemblages along a pelagic redox gradient. Environ. Microbiol. 20:693–712
    [Google Scholar]
  111. Talarmin A, Lomas MW, Bozec Y, Savoye N, Frigstad H et al. 2016. Seasonal and long-term changes in elemental concentrations and ratios of marine particulate organic matter. Glob. Biogeochem. Cycles 30:1699–711
    [Google Scholar]
  112. Tanhua T, Orr JC, Lorenzoni L, Hansson L 2015. Monitoring ocean carbon and ocean acidification. World Meteorol. Organ. Bull. 64:148–51
    [Google Scholar]
  113. Taylor GT, Hein C, Iabichella M 2003. Temporal variations in viral distributions in the anoxic Cariaco Basin. Aquat. Microb. Ecol. 30:103–16
    [Google Scholar]
  114. Taylor GT, Iabichella M, Ho T, Scranton MI, Thunell RC et al. 2001. Chemoautotrophy in the redox transition zone of the Cariaco Basin: a significant midwater source of organic carbon production. Limnol. Oceanogr. 46:148–63
    [Google Scholar]
  115. Taylor GT, Iabichella-Armas M, Varela R, Muller-Karger FE, Lin X et al. 2006. Microbial ecology of the Cariaco Basin's oxic-anoxic interface: the U.S.-Venezuela CARIACO Time Series Program. Past and Present Water Column Anoxia LN Neretin 473–99 Dordrecht, Neth.: Springer
    [Google Scholar]
  116. Taylor GT, Muller-Karger FE, Thunell RC, Scranton MI, Astor YM et al. 2012. Ecosystem responses in the southern Caribbean Sea to global climate change. PNAS 109:19315–20
    [Google Scholar]
  117. Taylor GT, Suter EA, Pachiadaki MG, Astor YM, Edgcomb VP et al. 2018. Temporal shifts in dominant sulfur-oxidizing chemoautotrophic populations across the Cariaco Basin's redoxcline. Deep-Sea Res. II. In press. https://doi.org/10.1016/j.dsr2.2017.11.016
    [Crossref] [Google Scholar]
  118. Tedesco K, Thunell RC 2003.a High resolution tropical climate record for the last 6,000 years. Geophys. Res. Lett. 30:1891
    [Google Scholar]
  119. Tedesco K, Thunell RC 2003.b Seasonal and interannual variations in planktonic foraminiferal flux and assemblage composition in the Cariaco Basin, Venezuela. J. Foraminifer. Res. 33:192–210
    [Google Scholar]
  120. Tedesco K, Thunell RC, Astor YM, Muller-Karger FE 2007. The oxygen isotope composition of planktonic foraminifera from the Cariaco Basin, Venezuela: seasonal and interannual variations. Mar. Micropaleontol. 62:180–93
    [Google Scholar]
  121. Thunell RC, Benitez-Nelson CR, Muller-Karger FE, Lorenzoni L, Fanning KA et al. 2008. Si cycle in the Cariaco Basin, Venezuela: seasonal variability in silicate availability and the Si:C:N composition of sinking particles. Glob. Biogeochem. Cycles 22:GB4001
    [Google Scholar]
  122. Thunell RC, Benitez-Nelson CR, Varela R, Astor YM, Muller-Karger FE 2007. Particulate organic carbon fluxes along upwelling-dominated continental margins: rates and mechanisms. Glob. Biochem. Cycles 21:GB1022
    [Google Scholar]
  123. Thunell RC, Sigman DM, Muller-Karger FE, Astor YM, Varela R 2004. Nitrogen isotope dynamics of the Cariaco Basin, Venezuela. Glob. Biochem. Cycles 18:GB3001
    [Google Scholar]
  124. Thunell RC, Tappa E, Varela R, Llano M, Astor YM et al. 1999. Increased marine sediment suspension and fluxes following an earthquake. Nature 398:233–36
    [Google Scholar]
  125. Thunell RC, Varela R, Llano M, Collister J, Muller-Karger FE et al. 2000. Organic carbon flux in an anoxic water column: sediment trap results from the Cariaco Basin. Limnol. Oceanogr. 45:300–8
    [Google Scholar]
  126. Turich C, Schouten S, Thunell RC, Varela R, Astor YM, Wakeham SG 2013. Comparison of TEX86 and temperature proxies in sinking particles in the Cariaco Basin. Deep-Sea Res. I 78:115–33
    [Google Scholar]
  127. Virmani JI, Weisberg RH 2009. Fish effects on ocean current observations in the Cariaco Basin. J. Geophys. Res. Oceans 114:C03028
    [Google Scholar]
  128. Wakeham SG, Turich C, Schubotz F, Podlaska A, Li XN et al. 2012. Biomarkers, chemistry and microbiology show chemoautotrophy in a multilayer chemocline in the Cariaco Basin. Deep-Sea Res. I 63:133–56
    [Google Scholar]
  129. Wakeham SG, Turich C, Taylor GT, Podlaska A, Scranton MI et al. 2010. Mid-chain methoxylated fatty acids within the chemocline of the Cariaco Basin: a chemoautotrophic source. Org. Chem. 41:498–512
    [Google Scholar]
  130. Walsh JJ 1996. Nitrogen fixation within a tropical upwelling ecosystem: evidence for a Redfield budget of carbon/nitrogen cycling by the total plankton community. J. Geophys. Res. 101:20607–16
    [Google Scholar]
  131. Walsh JJ, Dieterle DA, Muller-Karger FE, Bohrer R, Bissett WP et al. 1999. Simulation of carbon/nitrogen cycling during spring upwelling in the Cariaco Basin. J. Geophys. Res. 104:7807–25
    [Google Scholar]
  132. Wejnert K, Thunell RC, Astor YM 2013. Comparison of species-specific oxygen isotope paleotemperature equations: sensitivity analysis using planktonic foramifera from the Cariaco Basin, Venezuela. Mar. Micropaleontol. 101:76–88
    [Google Scholar]
  133. Yarincik K, Murray R, Peterson L 2000. Climatically sensitive eolian and hemipelagic deposition in the Cariaco Basin, Venezuela, over the past 580,000 years: results from Al/Ti and K/Al. Paleoceanography 15:210–28
    [Google Scholar]
  134. Zhang JZ, Millero FJ 1993. The chemistry of the anoxic waters in the Cariaco Trench. Deep-Sea Res. I 40:1023–41
    [Google Scholar]
/content/journals/10.1146/annurev-marine-010318-095150
Loading
/content/journals/10.1146/annurev-marine-010318-095150
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error