1932

Abstract

The CO uptake by the Southern Ocean (<35°S) varies substantially on all timescales and is a major determinant of the variations of the global ocean carbon sink. Particularly strong are the decadal changes characterized by a weakening period of the Southern Ocean carbon sink in the 1990s and a rebound after 2000. The weakening in the 1990s resulted primarily from a southward shift of the westerlies that enhanced the upwelling and outgassing of respired (i.e., natural) CO. The concurrent reduction in the storage rate of anthropogenic CO in the mode and intermediate waters south of 35°S suggests that this shift also decreased the uptake of anthropogenic CO. The rebound and the subsequent strong, decade-long reinvigoration of the carbon sink appear to have been driven by cooling in the Pacific Ocean, enhanced stratification in the Atlantic and Indian Ocean sectors, and a reduced overturning. Current-generation ocean models generally do not reproduce these variations and are poorly skilled at making decadal predictions in this region.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-121916-063407
2019-01-03
2024-05-22
Loading full text...

Full text loading...

/deliver/fulltext/marine/11/1/annurev-marine-121916-063407.html?itemId=/content/journals/10.1146/annurev-marine-121916-063407&mimeType=html&fmt=ahah

Literature Cited

  1. Anav A, Friedlingstein P, Kidston M, Bopp L, Ciais P et al. 2013. Evaluating the land and ocean components of the global carbon cycle in the CMIP5 Earth system models. J. Clim. 26:6801–43
    [Google Scholar]
  2. Bakker DCE, Pfeil B, Landa CS, Metzl N, O'Brien KM et al. 2016. A multi-decade record of high-quality CO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT). Earth Syst. Sci. Data 8:383–413
    [Google Scholar]
  3. Bakker DCE, Pfeil B, Landa CS, Metzl N, O'Brien KM et al. 2017. Surface Ocean CO2 Atlas Database Version 5 (SOCATv5) (NCEI accession 0163180) Data Set Version 2.2 Natl. Cent. Environ. Inf., Natl. Ocean. Atmos. Adm. Silver Spring, MD: https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:0163180
  4. Bopp L, Lévy M, Resplandy L, Sallée JB 2015. Pathways of anthropogenic carbon subduction in the global ocean. Geophys. Res. Lett. 42:6416–23
    [Google Scholar]
  5. Boyd PW, Watson AJ, Law CS, Abraham ER, Trull T et al. 2000. A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature 407:695–702
    [Google Scholar]
  6. Broecker WS, Peng TH 1974. Gas exchange rates between air and sea. Tellus 26:21–35
    [Google Scholar]
  7. Buitenhuis ET, Rivkin RB, Séailley S, Le Quéré C 2010. Biogeochemical fluxes through microzooplankton. Glob. Biogeochem. Cycles 24:GB4015
    [Google Scholar]
  8. Butterworth BJ, Miller SD 2016. Air-sea exchange of carbon dioxide in the Southern Ocean and Antarctic marginal ice zone. Geophys. Res. Lett. 43:7223–30
    [Google Scholar]
  9. Caldeira K, Duffy PB 2000. The role of the Southern Ocean in uptake and storage of anthropogenic carbon dioxide. Science 287:620–22
    [Google Scholar]
  10. Carter BR, Feely RA, Mecking S, Cross JN, Macdonald AM et al. 2017. Two decades of Pacific anthropogenic carbon storage and ocean acidification along Global Ocean Ship-based Hydrographic Investigations Program sections P16 and P02. Glob. Biogeochem. Cycles 31:306–27
    [Google Scholar]
  11. Cerrone D, Fusco G, Simmonds I, Aulicino G, Budillon G 2017. Dominant covarying climate signals in the Southern Ocean and Antarctic sea ice influence during the last three decades. J. Clim. 30:3055–72
    [Google Scholar]
  12. Clement D, Gruber N 2018. The eMLR(C*) method to determine decadal changes in the global ocean storage of anthropogenic CO2. Glob. Biogeochem. Cycles. 32:654–79
    [Google Scholar]
  13. DeVries T 2014. The oceanic anthropogenic CO2 sink: storage, air-sea fluxes, and transports over the industrial era. Glob. Biogeochem. Cycles 28:631–47
    [Google Scholar]
  14. DeVries T, Holzer M, Primeau F 2017. Recent increase in oceanic carbon uptake driven by weaker upper-ocean overturning. Nature 542:215–18
    [Google Scholar]
  15. Doney SC, Lima I, Feely RA, Glover DM, Lindsay K et al. 2009. Mechanisms governing interannual variability in upper-ocean inorganic carbon system and air–sea CO2 fluxes: physical climate and atmospheric dust. Deep-Sea Res. II 56:640–55
    [Google Scholar]
  16. Fay AR, McKinley GA 2013. Global trends in surface ocean pCO2 from in situ data. Glob. Biogeochem. Cycles 27:541–57
    [Google Scholar]
  17. Fay AR, McKinley GA, Lovenduski NS 2014. Southern Ocean carbon trends: sensitivity to methods. Geophys. Res. Lett. 41:6833–40
    [Google Scholar]
  18. Ferster BS, Subrahmanyam B, Macdonald AM 2018. Confirmation of ENSO-Southern Ocean teleconnections using satellite-derived SST. Remote Sens 10:331
    [Google Scholar]
  19. Fogt RL, Bromwich DH 2006. Decadal variability of the ENSO teleconnection to the high latitude South Pacific governed by coupling with the Southern Annular Mode. J. Clim. 19:979–97
    [Google Scholar]
  20. Friis K, Körtzinger A, Pätsch J, Wallace DWR 2005. On the temporal increase of anthropogenic CO2 in the subpolar North Atlantic. Deep-Sea Res. I 52:681–98
    [Google Scholar]
  21. Frölicher TL, Sarmiento JL, Paynter DJ, Dunne JP, Krasting JP, Winton M 2015. Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 models. J. Clim. 28:862–86
    [Google Scholar]
  22. Gammon RH, Cline J, Wisegarver D 1982. Chlorofluoromethanes in the northeast Pacific Ocean: measured vertical distributions and application as transient tracers of upper ocean mixing. J. Geophys. Res. 87:9441–54
    [Google Scholar]
  23. Gillett NP, Thompson DWJ 2003. Simulation of recent southern hemisphere climate change. Science 302:273–75
    [Google Scholar]
  24. Gloor M, Gruber N, Sarmiento JL, Sabine CL, Feely RA, Roedenbeck C 2003. A first estimate of present and pre-industrial air-sea CO2 flux patterns based on ocean interior carbon measurements and models. Geophys. Res. Lett. 30:10–14
    [Google Scholar]
  25. GO-SHIP (Glob. Ocean Ship-Based Hydrogr. Investig. Program). 2017. GO-SHIP reference sections. GO-SHIP http://www.go-ship.org/RefSecs/goship_ref_secs.html
  26. Graven HD, Gruber N, Key R, Khatiwala S, Giraud X 2012. Changing controls on oceanic radiocarbon: new insights on shallow-to-deep ocean exchange and anthropogenic CO2 uptake. J. Geophys. Res. 117:C10005
    [Google Scholar]
  27. Gray AR, Johnson KS, Bushinsky SM, Riser SC, Russell JL et al. 2018. Autonomous biogeochemical floats detect significant carbon dioxide outgassing in the high-latitude Southern Ocean. Geophys. Res. Lett. 45:9049–57
    [Google Scholar]
  28. Gregor L, Kok S, Monteiro PMS 2018. Interannual drivers of the seasonal cycle of CO2 in the Southern Ocean. Biogeosciences 15:2361–78
    [Google Scholar]
  29. Gruber N 1998. Anthropogenic CO2 in the Atlantic Ocean. Glob. Biogeochem. Cycles 12:165–91
    [Google Scholar]
  30. Gruber N, Clement D, Feely RA, van Heuven S, Hoppema M et al. 2018. The oceanic sink for anthropogenic CO2 since the mid-1990s. Science In review
  31. Gruber N, Doney SC 2009. Ocean biogeochemistry and ecology, modeling of. Encyclopedia of Ocean Sciences 2 JH Steele, KK Turekian, SA Thorpe 89–104 San Diego, CA: Academic. , 2nd ed..
    [Google Scholar]
  32. Gruber N, Gloor M, Mikaloff Fletcher SE, Doney SC, Dutkiewicz S et al. 2009. Oceanic sources, sinks, and transport of atmospheric CO2. Glob. Biogeochem. Cycles 23:GB1005
    [Google Scholar]
  33. Gruber N, Sarmiento JL 2002. Large-scale biogeochemical/physical interactions in elemental cycles. The Sea 12 Biological-Physical Interactions in the Oceans AR Robinson, JJ McCarthy, BJ Rothschild 337–99 New York: Wiley & Sons
    [Google Scholar]
  34. Gruber N, Sarmiento JL, Stocker TF 1996. An improved method for detecting anthropogenic CO2 in the oceans. Glob. Biogeochem. Cycles 10:809–37
    [Google Scholar]
  35. Hauck J, Köhler P, Wolf-Gladrow D, Völker C 2016. Iron fertilisation and century-scale effects of open ocean dissolution of olivine in a simulated CO2 removal experiment. Environ. Res. Lett. 11:24007
    [Google Scholar]
  36. Hauck J, Völker C, Wolf-Gladrow DA, Laufkötter C, Vogt M et al. 2015. On the Southern Ocean CO2 uptake and the role of the biological carbon pump in the 21st century. Glob. Biogeochem. Cycles 29:1451–70
    [Google Scholar]
  37. Haumann FA, Gruber N, Münnich M, Frenger I, Kern S 2016. Sea-ice transport driving Southern Ocean salinity and its recent trends. Nature 537:89–92
    [Google Scholar]
  38. Hoppema M, Roether W, Bellerby RGJ, de Baar HJW 2001. Direct measurements reveal insignificant storage of anthropogenic CO2 in the Abyssal Weddell Sea. Geophys. Res. Lett. 28:1747–50
    [Google Scholar]
  39. Ilyina T, Six KD, Segschneider J, Maier-Reimer E, Li H, Núñez-Riboni I 2013. Global ocean biogeochemistry model HAMOCC: model architecture and performance as component of the MPI-Earth system model in different CMIP5 experimental realizations. J. Adv. Model. Earth Syst. 5:287–315
    [Google Scholar]
  40. Ito T, Woloszyn M, Mazloff M 2010. Anthropogenic carbon dioxide transport in the Southern Ocean driven by Ekman flow. Nature 463:80–83
    [Google Scholar]
  41. Iudicone D, Rodgers KB, Plancherel Y, Aumont O, Ito T et al. 2016. The formation of the ocean's anthropogenic carbon reservoir. Sci. Rep. 6:35473
    [Google Scholar]
  42. Jiang C, Gille ST, Sprintall J, Sweeney C 2014. Drake passage oceanic pCO2: evaluating CMIP5 coupled carbon–climate models using in situ observations. J. Clim. 27:76–100
    [Google Scholar]
  43. Johnson GC, Bryden HL 1989. On the size of the Antarctic Circumpolar Current. Deep-Sea Res. A 36:39–53
    [Google Scholar]
  44. Karoly DJ 1989. Southern Hemisphere circulation features associated with El Niño-Southern Oscillation events. J. Clim. 2:1239–52
    [Google Scholar]
  45. Kay JE, Deser C, Phillips A, Mai A, Hannay C et al. 2015. The Community Earth System Model (CESM) large ensemble project: a community resource for studying climate change in the presence of internal climate variability. Bull. Am. Meteorol. Soc. 96:1333–49
    [Google Scholar]
  46. Kessler A, Tjiputra J 2016. The Southern Ocean as a constraint to reduce uncertainty in future ocean carbon sinks. Earth Syst. Dyn. 7:295–312
    [Google Scholar]
  47. Key RM, Kozyr A, Sabine CL, Lee K, Wanninkhof R et al. 2004. A global ocean carbon climatology: results from Global Data Analysis Project (GLODAP). Glob. Biogeochem. Cycles 18:GB4031
    [Google Scholar]
  48. Khatiwala S, Primeau F, Hall T 2009. Reconstruction of the history of anthropogenic CO2 concentrations in the ocean. Nature 462:346–49
    [Google Scholar]
  49. Khatiwala S, Tanhua T, Mikaloff Fletcher SE, Gerber M, Doney SC et al. 2013. Global ocean storage of anthropogenic carbon. Biogeosciences 10:2169–91
    [Google Scholar]
  50. Kouketsu S, Murata A 2014. Detecting decadal scale increases in anthropogenic CO2 in the ocean. Geophys. Res. Lett. 41:4594–600
    [Google Scholar]
  51. Lachkar Z, Orr JC, Dutay JC 2009. Seasonal and mesoscale variability of oceanic transport of anthropogenic CO2. Biogeosciences 6:2509–23
    [Google Scholar]
  52. Landschützer P, Gruber N, Bakker DCE 2016. Decadal variations and trends of the global ocean carbon sink. Glob. Biogeochem. Cycles 30:1396–417
    [Google Scholar]
  53. Landschützer P, Gruber N, Bakker DCE, Schuster U, Nakaoka S et al. 2013. A neural network-based estimate of the seasonal to inter-annual variability of the Atlantic Ocean carbon sink. Biogeosciences 10:7793–815
    [Google Scholar]
  54. Landschützer P, Gruber N, Bakker DCE, Stemmler I, Six KD 2018. Strengthening seasonal marine CO2 variations due to increasing atmospheric CO2. Nat. Clim. Change 8:146–50
    [Google Scholar]
  55. Landschützer P, Gruber N, Haumann FA, Rödenbeck C, Bakker DCE et al. 2015. The reinvigoration of the Southern Ocean carbon sink. Science 349:1221–24
    [Google Scholar]
  56. Laufkötter C, Gruber N 2018. Will marine productivity wane. Science 359:1103–4
    [Google Scholar]
  57. Law RM, Ziehn T, Matear RJ, Lenton A, Chamberlain MA et al. 2017. The carbon cycle in the Australian Community Climate and Earth System Simulator (ACCESS-ESM1) – part 1: model description and pre-industrial simulation. Geosci. Model Dev. 10:2567–90
    [Google Scholar]
  58. Le Quéré C, Andrew RM, Friedlingstein P, Sitch S, Pongratz J et al. 2018. Global carbon budget 2017. Earth Syst. Sci. Data 10:405–48
    [Google Scholar]
  59. Le Quéré C, Rodenbeck C, Buitenhuis ET, Conway TJ, Langenfelds R et al. 2007. Saturation of the Southern Ocean CO2 sink due to recent climate change. Science 316:1735–38
    [Google Scholar]
  60. Lee K, Choi SD, Park GH, Wanninkhof R, Peng TH et al. 2003. An updated anthropogenic CO2 inventory in the Atlantic Ocean. Glob. Biogeochem. Cycles 17:1116
    [Google Scholar]
  61. Lenton A, Matear RJ 2007. Role of the Southern Annular Mode (SAM) in Southern Ocean CO2 uptake. Glob. Biogeochem. Cycles 21:GB2016
    [Google Scholar]
  62. Lenton A, Tilbrook B, Law RM, Bakker D, Doney SC et al. 2013. Sea–air CO2 fluxes in the Southern Ocean for the period 1990–2009. Biogeosciences 10:4037–54
    [Google Scholar]
  63. Li H, Ilyina T 2018. Current and future decadal trends in the oceanic carbon uptake are dominated by internal variability. Geophys. Res. Lett. 45:916–25
    [Google Scholar]
  64. Li H, Ilyina T, Müller WA, Sienz F 2016. Decadal predictions of the North Atlantic CO2 uptake. Nat. Commun. 7:11076
    [Google Scholar]
  65. Lovenduski NS, Gruber N 2005. Impact of the Southern Annular Mode on Southern Ocean circulation and biology. Geophys. Res. Lett. 32:L11603
    [Google Scholar]
  66. Lovenduski NS, Gruber N, Doney SC 2008. Toward a mechanistic understanding of the decadal trends in the Southern Ocean carbon sink. Glob. Biogeochem. Cycles 22:GB3016
    [Google Scholar]
  67. Lovenduski NS, Gruber N, Doney SC, Lima ID 2007. Enhanced CO2 outgassing in the Southern Ocean from a positive phase of the Southern Annular Mode. Glob. Biogeochem. Cycles 21:GB2026
    [Google Scholar]
  68. Lovenduski NS, Ito T 2009. The future evolution of the Southern Ocean CO2 sink. J. Mar. Res. 67:597–617
    [Google Scholar]
  69. Lovenduski NS, McKinley GA, Fay AR, Lindsay K, Long MC 2016. Partitioning uncertainty in ocean carbon uptake projections: internal variability, emission scenario, and model structure. Glob. Biogeochem. Cycles 30:1276–87
    [Google Scholar]
  70. Majkut JD, Carter BR, Frolicher TL, Dufour CO, Rodgers KB, Sarmiento JL 2014. An observing system simulation for Southern Ocean carbon dioxide uptake. Philos. Trans. R. Soc. A 372:20130046
    [Google Scholar]
  71. Marshall J, Speer K 2012. Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat. Geosci. 5:171–80
    [Google Scholar]
  72. Matsumoto K, Gruber N 2005. How accurate is the estimation of anthropogenic carbon in the ocean? An evaluation of the ΔC* method. Glob. Biogeochem. Cycles 19:GB3014
    [Google Scholar]
  73. Matsumoto K, Sarmiento JL, Brzezinski MA 2002. Silicic acid leakage from the Southern Ocean as possible mechanism for explaining glacial atmospheric pCO2. Glob. Biogeochem. Cycles 16:5–123
    [Google Scholar]
  74. McElroy MB 1983. Marine biological controls on atmospheric CO2 and climate. Nature 302:328–29
    [Google Scholar]
  75. McKinley GA, Fay AR, Lovenduski NS, Pilcher DJ 2017. Natural variability and anthropogenic trends in the ocean carbon sink. Annu. Rev. Mar. Sci. 9:125–50
    [Google Scholar]
  76. McKinley GA, Pilcher DJ, Fay AR, Lindsay K, Long MC, Lovenduski NS 2016. Timescales for detection of trends in the ocean carbon sink. Nature 530:469–72
    [Google Scholar]
  77. McNeil BI, Matear RJ 2013. The non-steady state oceanic CO2 signal: its importance, magnitude and a novel way to detect it. Biogeosciences 10:2219–28
    [Google Scholar]
  78. McNeil BI, Tilbrook B, Matear RJ 2001. Accumulation and uptake of anthropogenic CO2 in the Southern Ocean, south of Australia from 1968 to 1996. J. Geophys. Res. 106:31431–45
    [Google Scholar]
  79. Mikaloff Fletcher SE 2015. An increasing carbon sink. Science 349:1165
    [Google Scholar]
  80. Mikaloff Fletcher SE, Gruber N, Jacobson AR, Doney SC, Dutkiewicz S et al. 2006. Inverse estimates of anthropogenic CO2 uptake, transport, and storage by the ocean. Glob. Biogeochem. Cycles 20:GB2002
    [Google Scholar]
  81. Mikaloff Fletcher SE, Gruber N, Jacobson AR, Gloor M, Doney SC et al. 2007. Inverse estimates of the oceanic sources and sinks of natural CO2 and the implied oceanic carbon transport. Glob. Biogeochem. Cycles 21:GB1010
    [Google Scholar]
  82. Miller RL, Schmidt GA, Shindell DT 2006. Forced annular variations in the 20th century Intergovernmental Panel on Climate Change Fourth Assessment Report models. J. Geophys. Res. Atmos. 111:D18101
    [Google Scholar]
  83. Mo KC, Higgins RW 1998. The Pacific–South American modes and tropical convection during the Southern Hemisphere winter. Mon. Weath. Rev. 126:1581–96
    [Google Scholar]
  84. Mongwe NP, Vichi M, Monteiro PMS 2018. The seasonal cycle of pCO2 and CO2 fluxes in the Southern Ocean: diagnosing anomalies in CMIP5 Earth system models. Biogeosciences 155:2851–72
    [Google Scholar]
  85. Moore JK, Fu W, Primeau F, Britten GL, Lindsay K et al. 2018. Sustained climate warming drives declining marine biological productivity. Science 359:1139–43
    [Google Scholar]
  86. Morrison AK, Frölicher TL, Sarmiento JL 2015. Upwelling in the Southern Ocean. Phys. Today 68:27–32
    [Google Scholar]
  87. Munk WH, Palmén E 1951. Note on the dynamics of the Antarctic Circumpolar Current. Tellus 3:53–55
    [Google Scholar]
  88. Munro DR, Lovenduski NS, Takahashi T, Stephens BB, Newberger T, Sweeney C 2015. Recent evidence for a strengthening CO2 sink in the Southern Ocean from carbonate system measurements in the Drake Passage (2002–2015). Geophys. Res. Lett. 42:7623–30
    [Google Scholar]
  89. Olsen A, Key RM, van Heuven S, Lauvset SK, Velo A et al. 2016. The Global Ocean Data Analysis Project version 2 (GLODAPv2): an internally consistent data product for the world ocean. Earth Syst. Sci. Data 8:297–323
    [Google Scholar]
  90. Orr JC, Maier-Reimer E, Mikolajewicz U, Monfray P, Sarmiento JL et al. 2001. Global oceanic uptake of anthropogenic carbon dioxide as predicted by four 3-D ocean models. Glob. Biogeochem. Cycles 15:43–60
    [Google Scholar]
  91. Pérez FF, Mercier H, Vázquez-Rodríguez M, Lherminier P, Velo A et al. 2013. Atlantic Ocean CO2 uptake reduced by weakening of the meridional overturning circulation. Nat. Geosci. 6:146–52
    [Google Scholar]
  92. Raphael MN 2004. A zonal wave 3 index for the Southern Hemisphere. Geophys. Res. Lett. 31:L23212
    [Google Scholar]
  93. Ritter R, Landschützer P, Gruber N, Fay AR, Iida Y et al. 2017. Observation-based trends of the Southern Ocean carbon sink. Geophys. Res. Lett. 44:12339–48
    [Google Scholar]
  94. Rödenbeck C, Bakker DCE, Gruber N, Iida Y, Jacobson AR et al. 2015. Data-based estimates of the ocean carbon sink variability – first results of the Surface Ocean pCO2 Mapping intercomparison (SOCOM). Biogeosciences 12:7251–78
    [Google Scholar]
  95. Rödenbeck C, Bakker DCE, Metzl N, Olsen A, Sabine C et al. 2014. Interannual sea–air CO2 flux variability from an observation-driven ocean mixed-layer scheme. Biogeosciences 11:4599–613
    [Google Scholar]
  96. Sabine CL, Feely RA, Gruber N, Key RF, Lee K et al. 2004. The oceanic sink for anthropogenic CO2. Science 305:367–71
    [Google Scholar]
  97. Sabine CL, Tanhua T 2010. Estimation of anthropogenic CO2 inventories in the ocean. Annu. Rev. Mar. Sci. 2:175–98
    [Google Scholar]
  98. Sallée JB, Matear RJ, Rintoul SR, Lenton A 2012. Localized subduction of anthropogenic carbon dioxide in the Southern Hemisphere oceans. Nat. Geosci. 5:579–84
    [Google Scholar]
  99. Sarmiento JL, Gruber N 2006. Ocean Biogeochemical Dynamics Princeton, NJ: Princeton Univ. Press
  100. Sarmiento JL, Gruber N, Brzezinski MA, Dunne JP 2004. High-latitude controls of thermocline nutrients and low-latitude biological productivity. Nature 427:56–60
    [Google Scholar]
  101. Sarmiento JL, Hughes TMC, Stouffer RJ, Manabe S 1998. Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature 393:245–49
    [Google Scholar]
  102. Sarmiento JL, Toggweiler JR 1984. A new model for the role of the oceans in determining atmospheric pCO2. Nature 308:621–24
    [Google Scholar]
  103. Schwinger J, Goris N, Tjiputra JF, Kriest I, Bentsen M et al. 2016. Evaluation of NorESM-OC (versions 1 and 1.2), the ocean carbon-cycle stand-alone configuration of the Norwegian Earth System Model (NorESM1). Geosci. Model Dev. 9:2589–622
    [Google Scholar]
  104. Séférian R, Berthet S, Chevallier M 2018. Assessing the decadal predictability of land and ocean carbon uptake. Geophys. Res. Lett. 45:2455–66
    [Google Scholar]
  105. Séférian R, Bopp L, Gehlen M, Orr JC, Ethé C et al. 2013. Skill assessment of three earth system models with common marine biogeochemistry. Clim. Dyn. 40:2549–73
    [Google Scholar]
  106. Siegenthaler U, Wenk T 1984. Rapid atmospheric CO2 variations and ocean circulation. Nature 308:624–26
    [Google Scholar]
  107. Takahashi T, Olafsson J, Goddard JG, Chipman DW, Sutherland SC 1993. Seasonal variation of CO2 and nutrients in the high-latitude surface oceans: a comparative study. Glob. Biogeochem. Cycles 7:843–78
    [Google Scholar]
  108. Takahashi T, Sutherland SC, Wanninkhof R, Sweeney C, Feely RA et al. 2009. Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep-Sea Res. II 56:554–77
    [Google Scholar]
  109. Takahashi T, Sweeney C, Hales B, Chipman D, Newberger T et al. 2012. The changing carbon cycle in the Southern Ocean. Oceanography 25:326–37
    [Google Scholar]
  110. Talley LD, Feely RA, Sloyan BM, Wanninkhof R, Baringer MO et al. 2016. Changes in ocean heat, carbon content, and ventilation: a review of the first decade of GO-SHIP global repeat hydrography. Annu. Rev. Mar. Sci. 8:185–215
    [Google Scholar]
  111. Tanhua T, Kortzinger A, Friis K, Waugh DW, Wallace DWR 2007. An estimate of anthropogenic CO2 inventory from decadal changes in oceanic carbon content. PNAS 104:3037–42
    [Google Scholar]
  112. Verdy A, Mazloff MR 2017. A data assimilating model for estimating Southern Ocean biogeochemistry. J. Geophys. Res. Oceans 122:6968–88
    [Google Scholar]
  113. Wallace DWR 2001. Storage and transport of excess CO2 in the oceans: the JGOFS/WOCE global CO2 survey. Ocean Circulation and Climate G Siedler, J Church, J Gould 489–524 San Diego, CA: Academic
    [Google Scholar]
  114. Wanninkhof R, Asher WE, Ho DT, Sweeney C, McGillis WR 2009. Advances in quantifying air-sea gas exchange and environmental forcing. Annu. Rev. Mar. Sci. 1:213–44
    [Google Scholar]
  115. Wanninkhof R, Doney SC, Bullister JL, Levine NM, Warner M, Gruber N 2010. Detecting anthropogenic CO2 changes in the interior Atlantic Ocean between 1989 and 2005. J. Geophys. Res. 115:1–25
    [Google Scholar]
  116. Wanninkhof R, Park GH, Takahashi T, Sweeney C, Feely R et al. 2013. Global ocean carbon uptake: magnitude, variability and trends. Biogeosciences 10:1983–2000
    [Google Scholar]
  117. Watson AJ, Bakker DCE, Ridgewell AJ, Boyd PW, Law CS 2000. Effect of iron supply on Southern Ocean CO2 uptake and implications for glacial atmospheric CO2. Nature 407:730–33
    [Google Scholar]
  118. Waugh DW, Hall TM, McNeil BI, Key R, Matear RJ 2006. Anthropogenic CO2 in the oceans estimated using transit time distributions. Tellus B 58:376–89
    [Google Scholar]
  119. Waugh DW, Primeau F, Devries T, Holzer M 2013. Recent changes in the ventilation of the southern oceans. Science 339:568–70
    [Google Scholar]
  120. Williams NL, Juranek LW, Feely RA, Russell JL, Johnson KS, Hales B 2018. Assessment of the carbonate chemistry seasonal cycles in the Southern Ocean from persistent observational platforms. J. Geophys. Res. Oceans 123:4833–52
    [Google Scholar]
  121. Woosley RJ, Millero FJ, Wanninkhof R 2016. Rapid anthropogenic changes in CO2 and pH in the Atlantic Ocean: 2003–2014. Glob. Biogeochem. Cycles 30:70–90
    [Google Scholar]
  122. Xue L, Gao L, Cai W-J, Yu W, Wei M 2015. Response of sea surface fugacity of CO2 to the SAM shift south of Tasmania: regional differences. Geophys. Res. Lett. 42:3973–79
    [Google Scholar]
  123. Yeager S, Danabasoglu G, Rosenbloom N, Strand W, Bates S et al. 2018. Predicting near-term changes in the Earth system: a large ensemble of initialized decadal prediction simulations using the Community Earth System Model. Bull. Am. Meteor. Soc. 99:1867–86
    [Google Scholar]
/content/journals/10.1146/annurev-marine-121916-063407
Loading
/content/journals/10.1146/annurev-marine-121916-063407
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error