1932

Abstract

In this article, I use the Estimating the Circulation and Climate of the Ocean version 4 (ECCO4) reanalysis to estimate the residual meridional overturning circulation, zonally averaged, over the separate Atlantic and Indo-Pacific sectors. The abyssal component of this estimate differs quantitatively from previously published estimates that use comparable observations, indicating that this component is still undersampled. I also review recent conceptual models of the oceanic meridional overturning circulation and of the mid-depth and abyssal stratification. These theories show that dynamics in the Antarctic circumpolar region are essential in determining the deep and abyssal stratification. In addition, they show that a mid-depth cell consistent with observational estimates is powered by the wind stress in the Antarctic circumpolar region, while the abyssal cell relies on interior diapycnal mixing, which is bottom intensified.

Erratum

An erratum has been published for this article:
Erratum: The Global Overturning Circulation
Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-010318-095241
2019-01-03
2025-06-14
Loading full text...

Full text loading...

/deliver/fulltext/marine/11/1/annurev-marine-010318-095241.html?itemId=/content/journals/10.1146/annurev-marine-010318-095241&mimeType=html&fmt=ahah

Literature Cited

  1. Allison LC 2009. Spin-up and adjustment of the Antarctic Circumpolar Current and global pycnocline PhD Thesis, Univ. Reading Reading, UK:
    [Google Scholar]
  2. Andrews DG, Holton JR, Leovy CB 1987. Middle Atmosphere Dynamics San Diego, CA: Academic
    [Google Scholar]
  3. Bouffard D, Boegman L 2013. A diapycnal diffusivity model for stratified environmental flows. Dyn. Atmos. Oceans 6114–34
    [Google Scholar]
  4. Cessi P, Jones CS 2017. Warm-route versus cold-route interbasin exchange in the meridional overturning circulation. J. Phys. Oceanogr. 47:1981–97
    [Google Scholar]
  5. Craig PM, Ferreira D, Methven J 2017. The contrast between Atlantic and Pacific surface water fluxes. Tellus A 69:1330454
    [Google Scholar]
  6. de Lavergne C, Madec G, Sommer JL, Nurser A, Garabato AN 2016.a The impact of a variable mixing efficiency on the abyssal overturning. J. Phys. Oceanogr. 46:663–81
    [Google Scholar]
  7. de Lavergne C, Madec G, Sommer JL, Nurser A, Garabato AN 2016.b On the consumption of Antarctic Bottom Water in the abyssal ocean. J. Phys. Oceanogr. 46:635–61
    [Google Scholar]
  8. de Vries P, Weber SL 2005. The Atlantic freshwater budget as a diagnostic for the existence of a stable shut down of the meridional overturning circulation. Geophys. Res. Lett. 32:L09606
    [Google Scholar]
  9. Emile-Geay J, Cane MA, Naik N, Seager R, Clement AC, van Green A 2003. Warren revisited: atmospheric freshwater fluxes and “Why is no deep water formed in the North Pacific. J. Geophys. Res. 108:3178
    [Google Scholar]
  10. Ferrari R, Jansen MF, Adkins JF, Burke A, Stewart AL, Thompson AF 2014. Antarctic sea ice control on ocean circulation in present and glacial climates. PNAS 111:8753–58
    [Google Scholar]
  11. Ferrari R, Mashayek A, McDougall T, Nikurashin M, Campin-Michael JM 2016. Turning ocean mixing upside down. J. Phys. Oceanogr. 46:2239–61
    [Google Scholar]
  12. Ferrari R, Nadeau LP, Marshall DP, Allison LC, Johnson HL 2017. A model of the ocean overturning circulation with two closed basins and a reentrant channel. J. Phys. Oceanogr. 47:2887–906
    [Google Scholar]
  13. Ferreira D, Cessi P, Coxall H, de Boer A, Dijkstra H et al. 2018. Atlantic-Pacific asymmetry in deep water formation. Annu. Rev. Earth Planet. Sci. 46:327–52
    [Google Scholar]
  14. Ferreira D, Marshall J, Campin JM 2010. Localization of deep water formation: role of atmospheric moisture transport and geometrical constraints on ocean circulation. J. Clim. 23:1456–76
    [Google Scholar]
  15. Forget G, Campin JM, Heimbach P, Hill CN, Ponte RM, Wunsch C 2015. ECCO version 4: a global ocean modeling and state estimation framework. Geosci. Model Dev. 8:3071–104
    [Google Scholar]
  16. Gent PR, McWilliams JC 1990. Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr. 20:150–55
    [Google Scholar]
  17. Gnanadesikan A 1999. A simple predictive model for the structure of the oceanic pycnocline. Science 283:2077–79
    [Google Scholar]
  18. Gordon AL 1986.a Interocean exchange of thermocline water. J. Geophys. Res 91:5037–46
    [Google Scholar]
  19. Gordon AL 1986.b Is there a global scale ocean circulation?. Eos Trans. AGU 67:109–10
    [Google Scholar]
  20. Gregg MC, D'Asaro EA, Riley JJ, Kunze E 2018. Mixing efficiency in the ocean. Annu. Rev. Mar. Sci. 10:443–73
    [Google Scholar]
  21. Griffies SM 1998. The Gent–McWilliams skew flux. J. Phys. Oceanogr. 28:831–41
    [Google Scholar]
  22. Henyey FS, Wright J, Flatté SM 1986. Energy and action flow through the internal wave field: an eikonal approach. J. Geophys. Res. 91:8487–95
    [Google Scholar]
  23. Holmes RM, de Lavergne C, McDougall T 2018. Ridges, seamounts, troughs and bowls: topographic control of the dianeutral circulation in the abyssal ocean. J. Phys. Oceanogr. 48:861–82
    [Google Scholar]
  24. Ito T, Marshall J 2008. Control of lower-limb overturning circulation in the Southern Ocean by diapycnal mixing and mesoscale eddy transfer. J. Phys. Oceanogr. 38:2832–45
    [Google Scholar]
  25. Jansen MF, Nadeau LP 2016. The effect of Southern Ocean surface buoyancy loss on the deep-ocean circulation and stratification. J. Phys. Oceanogr. 46:3455–70
    [Google Scholar]
  26. Jayne SR 2009. The impact of abyssal mixing parameterizations in an ocean general circulation model. J. Phys. Oceanogr. 39:1756–75
    [Google Scholar]
  27. Jones CS, Cessi P 2016. Interbasin transport of the meridional overturning circulation. J. Phys. Oceanogr. 46:1157–69
    [Google Scholar]
  28. Kuhlbrodt T, Griesel A, Montoya M, Levermann A, Hofmann M, Rahmstorf S 2007. On the driving processes of the Atlantic meridional overturning circulation. Rev. Geophys. 45:RG2001
    [Google Scholar]
  29. Kunze E 2017. The internal-wave-driven meridional overturning circulation. J. Phys. Oceanogr. 47:2673–89
    [Google Scholar]
  30. Kunze E, Firing E, Hummon JM, Chereskin TK, Thurnherr AM 2006. Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles. J. Phys. Oceanogr 36:1553–76
    [Google Scholar]
  31. Lumpkin R, Speer K 2007. Global ocean meridional overturning. J. Phys. Oceanogr. 37:2550–62
    [Google Scholar]
  32. Marshall J, Radko T 2003. Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J. Phys. Oceanogr. 33:2341–54
    [Google Scholar]
  33. Marshall J, Speer K 2012. Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat. Geosci. 5:171–80
    [Google Scholar]
  34. Mashayek A, Ferrari R, Nikurashin M, Peltier W 2015. Influence of enhanced abyssal diapycnal mixing on stratification and the ocean overturning circulation. J. Phys. Oceanogr. 45:2580–97
    [Google Scholar]
  35. McCarthy GD, Smeed DA, Johns WE, Frajka-Williams E, Moat BI et al. 2015. Measuring the Atlantic meridional overturning circulation at 26°N. Prog. Oceanogr. 130:91–111
    [Google Scholar]
  36. McDougall TJ, Ferrari R 2017. Abyssal upwelling and downwelling driven by near-boundary mixing. J. Phys. Oceanogr. 47:261–83
    [Google Scholar]
  37. Meinen CS, Speich S, Piola AR, Ansorge I, Campos E et al. 2018. Meridional overturning circulation transport variability at 34.5°S during 2009–2017: baroclinic and barotropic flows and the dueling influence of the boundaries. Geophys. Res. Lett. 45:4810–88
    [Google Scholar]
  38. Melet A, Legg S, Hallberg R 2016. Climatic impacts of parameterized local and remote tidal mixing. J. Clim. 29:3473–500
    [Google Scholar]
  39. Munk WH 1966. Abyssal recipes. Deep-Sea Res. Oceanogr. Abstr. 13:707–30
    [Google Scholar]
  40. Nikurashin M, Ferrari R 2013. Overturning circulation driven by breaking internal waves in the deep ocean. Geophys. Res. Lett. 40:3133–37
    [Google Scholar]
  41. Nikurashin M, Vallis G 2011. A theory of deep stratification and overturning circulation in the ocean. J. Phys. Oceanogr. 41:485–502
    [Google Scholar]
  42. Nikurashin M, Vallis G 2012. A theory of the interhemispheric meridional overturning circulation and associated stratification. J. Phys. Oceanogr. 42:1652–67
    [Google Scholar]
  43. Nilsson J, Langen PL, Ferreira D, Marshall J 2013. Ocean basin geometry and the salinification of the Atlantic Ocean. J. Clim. 26:6163–84
    [Google Scholar]
  44. Polzin KL, Toole JM, Ledwell JR, Schmitt RW 1997. Spatial variability of turbulent mixing in the abyssal ocean. Science 276:93–96
    [Google Scholar]
  45. Rahmstorf S 1996. On the freshwater forcing and transport of the Atlantic thermohaline circulation. Clim. Dyn. 12:799–811
    [Google Scholar]
  46. Reid JL 1961. On the temperature, salinity, and density differences between the Atlantic and Pacific oceans in the upper kilometre. Deep-Sea Res 7:265–75
    [Google Scholar]
  47. Ridgway KR, Dunn JR 2007. Observational evidence for a Southern Hemisphere oceanic supergyre. Geophys. Res. Lett. 34:L13612
    [Google Scholar]
  48. Rintoul SR 1991. South Atlantic interbasin exchange. J. Geophys. Res. 96:2675–92
    [Google Scholar]
  49. Rooth C 1982. Hydrology and ocean circulation. Prog. Oceanogr. 11:131–49
    [Google Scholar]
  50. Saenko O, Merryfield W 2005. On the effect of topographically enhanced mixing on the global ocean circulation. J. Phys. Oceanogr. 35:826–34
    [Google Scholar]
  51. Schmitt RW, Bogden PS, Dorman CE 1989. Evaporation minus precipitation and density fluxes for the North Atlantic. J. Phys. Oceanogr. 19:1208–21
    [Google Scholar]
  52. Sloyan BM, Rintoul SR 2001. Circulation, renewal, and modification of Antarctic Mode and Intermediate Water. J. Phys. Oceanogr. 31:1005–30
    [Google Scholar]
  53. Speich S, Blanke B, Cai W 2007. Atlantic meridional overturning circulation and the Southern Hemisphere supergyre. Geophys. Res. Lett. 34:L23614
    [Google Scholar]
  54. Speich S, Blanke B, de Vries P, Drijfhout S, Döös K et al. 2002. Tasman leakage: a new route in the global ocean conveyor belt. Geophys. Res. Lett. 29:55–14
    [Google Scholar]
  55. St. Laurent LC, Simmons HL, Jayne SR 2002. Estimating tidally driven mixing in the deep ocean. Geophys. Res. Lett. 29:21–14
    [Google Scholar]
  56. Stommel H 1961. Thermohaline convection with two stable regimes of flow. Tellus 13:224–30
    [Google Scholar]
  57. Talley LD 2013. Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: schematics and transports. Oceanography 26:180–97
    [Google Scholar]
  58. Tamsitt V, Abernathey RP, Mazloff MR, Wang J, Talley LD 2018. Transformation of deep water masses along Lagrangian upwelling pathways in the Southern Ocean. J. Geophys. Res. Oceans 123:1994–2017
    [Google Scholar]
  59. Thompson AF, Stewart A, Bischoff T 2016. A multibasin residual-mean model for the global overturning circulation. J. Phys. Oceanogr. 46:2583–604
    [Google Scholar]
  60. Toggweiler JR, Samuels B 1993. New radiocarbon constraints on the upwelling of abyssal water to the ocean's surface. The Global Carbon Cycle M Heimann 333–66 New York: Springer
    [Google Scholar]
  61. Waterhouse AF, MacKinnon JA, Nash JD, Alford MH, Kunze E et al. 2014. Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J. Phys. Oceanogr. 44:1854–72
    [Google Scholar]
  62. Welander P 1971. The thermocline problem. Philos. Trans. R. Soc. Lond. A 270:69–73
    [Google Scholar]
  63. Whalen CB, MacKinnon JA, Talley LD, Waterhouse AF 2015. Estimating the mean diapycnal mixing using a finescale strain parameterization. J. Phys. Oceanogr. 45:1174–88
    [Google Scholar]
  64. Wolfe CL, Cessi P 2010. What sets the strength of the mid-depth stratification and overturning circulation in eddying ocean models?. J. Phys. Oceanogr. 40:1520–38
    [Google Scholar]
  65. Wolfe CL, Cessi P 2011. The adiabatic pole-to-pole overturning circulation. J. Phys. Oceanogr. 41:1795–810
    [Google Scholar]
  66. Wolfe CL, Cessi P 2014. Salt feedback in the adiabatic overturning circulation. J. Phys. Oceanogr. 44:1175–94
    [Google Scholar]
  67. Young WR 2012. An exact thickness-weighted average formulation of the Boussinesq equations. J. Phys. Oceanogr. 42:692–707
    [Google Scholar]
/content/journals/10.1146/annurev-marine-010318-095241
Loading
/content/journals/10.1146/annurev-marine-010318-095241
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error