1932

Abstract

In this article, I use the Estimating the Circulation and Climate of the Ocean version 4 (ECCO4) reanalysis to estimate the residual meridional overturning circulation, zonally averaged, over the separate Atlantic and Indo-Pacific sectors. The abyssal component of this estimate differs quantitatively from previously published estimates that use comparable observations, indicating that this component is still undersampled. I also review recent conceptual models of the oceanic meridional overturning circulation and of the mid-depth and abyssal stratification. These theories show that dynamics in the Antarctic circumpolar region are essential in determining the deep and abyssal stratification. In addition, they show that a mid-depth cell consistent with observational estimates is powered by the wind stress in the Antarctic circumpolar region, while the abyssal cell relies on interior diapycnal mixing, which is bottom intensified.

[Erratum, Closure]

An erratum has been published for this article:
Erratum: The Global Overturning Circulation
Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-010318-095241
2019-01-03
2024-05-19
Loading full text...

Full text loading...

/deliver/fulltext/marine/11/1/annurev-marine-010318-095241.html?itemId=/content/journals/10.1146/annurev-marine-010318-095241&mimeType=html&fmt=ahah

Literature Cited

  1. Allison LC 2009. Spin-up and adjustment of the Antarctic Circumpolar Current and global pycnocline PhD Thesis, Univ. Reading Reading, UK:
  2. Andrews DG, Holton JR, Leovy CB 1987. Middle Atmosphere Dynamics San Diego, CA: Academic
  3. Bouffard D, Boegman L 2013. A diapycnal diffusivity model for stratified environmental flows. Dyn. Atmos. Oceans 6114–34
    [Google Scholar]
  4. Cessi P, Jones CS 2017. Warm-route versus cold-route interbasin exchange in the meridional overturning circulation. J. Phys. Oceanogr. 47:1981–97
    [Google Scholar]
  5. Craig PM, Ferreira D, Methven J 2017. The contrast between Atlantic and Pacific surface water fluxes. Tellus A 69:1330454
    [Google Scholar]
  6. de Lavergne C, Madec G, Sommer JL, Nurser A, Garabato AN 2016.a The impact of a variable mixing efficiency on the abyssal overturning. J. Phys. Oceanogr. 46:663–81
    [Google Scholar]
  7. de Lavergne C, Madec G, Sommer JL, Nurser A, Garabato AN 2016.b On the consumption of Antarctic Bottom Water in the abyssal ocean. J. Phys. Oceanogr. 46:635–61
    [Google Scholar]
  8. de Vries P, Weber SL 2005. The Atlantic freshwater budget as a diagnostic for the existence of a stable shut down of the meridional overturning circulation. Geophys. Res. Lett. 32:L09606
    [Google Scholar]
  9. Emile-Geay J, Cane MA, Naik N, Seager R, Clement AC, van Green A 2003. Warren revisited: atmospheric freshwater fluxes and “Why is no deep water formed in the North Pacific. J. Geophys. Res. 108:3178
    [Google Scholar]
  10. Ferrari R, Jansen MF, Adkins JF, Burke A, Stewart AL, Thompson AF 2014. Antarctic sea ice control on ocean circulation in present and glacial climates. PNAS 111:8753–58
    [Google Scholar]
  11. Ferrari R, Mashayek A, McDougall T, Nikurashin M, Campin-Michael JM 2016. Turning ocean mixing upside down. J. Phys. Oceanogr. 46:2239–61
    [Google Scholar]
  12. Ferrari R, Nadeau LP, Marshall DP, Allison LC, Johnson HL 2017. A model of the ocean overturning circulation with two closed basins and a reentrant channel. J. Phys. Oceanogr. 47:2887–906
    [Google Scholar]
  13. Ferreira D, Cessi P, Coxall H, de Boer A, Dijkstra H et al. 2018. Atlantic-Pacific asymmetry in deep water formation. Annu. Rev. Earth Planet. Sci. 46:327–52
    [Google Scholar]
  14. Ferreira D, Marshall J, Campin JM 2010. Localization of deep water formation: role of atmospheric moisture transport and geometrical constraints on ocean circulation. J. Clim. 23:1456–76
    [Google Scholar]
  15. Forget G, Campin JM, Heimbach P, Hill CN, Ponte RM, Wunsch C 2015. ECCO version 4: a global ocean modeling and state estimation framework. Geosci. Model Dev. 8:3071–104
    [Google Scholar]
  16. Gent PR, McWilliams JC 1990. Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr. 20:150–55
    [Google Scholar]
  17. Gnanadesikan A 1999. A simple predictive model for the structure of the oceanic pycnocline. Science 283:2077–79
    [Google Scholar]
  18. Gordon AL 1986.a Interocean exchange of thermocline water. J. Geophys. Res 91:5037–46
    [Google Scholar]
  19. Gordon AL 1986.b Is there a global scale ocean circulation?. Eos Trans. AGU 67:109–10
    [Google Scholar]
  20. Gregg MC, D'Asaro EA, Riley JJ, Kunze E 2018. Mixing efficiency in the ocean. Annu. Rev. Mar. Sci. 10:443–73
    [Google Scholar]
  21. Griffies SM 1998. The Gent–McWilliams skew flux. J. Phys. Oceanogr. 28:831–41
    [Google Scholar]
  22. Henyey FS, Wright J, Flatté SM 1986. Energy and action flow through the internal wave field: an eikonal approach. J. Geophys. Res. 91:8487–95
    [Google Scholar]
  23. Holmes RM, de Lavergne C, McDougall T 2018. Ridges, seamounts, troughs and bowls: topographic control of the dianeutral circulation in the abyssal ocean. J. Phys. Oceanogr. 48:861–82
    [Google Scholar]
  24. Ito T, Marshall J 2008. Control of lower-limb overturning circulation in the Southern Ocean by diapycnal mixing and mesoscale eddy transfer. J. Phys. Oceanogr. 38:2832–45
    [Google Scholar]
  25. Jansen MF, Nadeau LP 2016. The effect of Southern Ocean surface buoyancy loss on the deep-ocean circulation and stratification. J. Phys. Oceanogr. 46:3455–70
    [Google Scholar]
  26. Jayne SR 2009. The impact of abyssal mixing parameterizations in an ocean general circulation model. J. Phys. Oceanogr. 39:1756–75
    [Google Scholar]
  27. Jones CS, Cessi P 2016. Interbasin transport of the meridional overturning circulation. J. Phys. Oceanogr. 46:1157–69
    [Google Scholar]
  28. Kuhlbrodt T, Griesel A, Montoya M, Levermann A, Hofmann M, Rahmstorf S 2007. On the driving processes of the Atlantic meridional overturning circulation. Rev. Geophys. 45:RG2001
    [Google Scholar]
  29. Kunze E 2017. The internal-wave-driven meridional overturning circulation. J. Phys. Oceanogr. 47:2673–89
    [Google Scholar]
  30. Kunze E, Firing E, Hummon JM, Chereskin TK, Thurnherr AM 2006. Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles. J. Phys. Oceanogr 36:1553–76
    [Google Scholar]
  31. Lumpkin R, Speer K 2007. Global ocean meridional overturning. J. Phys. Oceanogr. 37:2550–62
    [Google Scholar]
  32. Marshall J, Radko T 2003. Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J. Phys. Oceanogr. 33:2341–54
    [Google Scholar]
  33. Marshall J, Speer K 2012. Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat. Geosci. 5:171–80
    [Google Scholar]
  34. Mashayek A, Ferrari R, Nikurashin M, Peltier W 2015. Influence of enhanced abyssal diapycnal mixing on stratification and the ocean overturning circulation. J. Phys. Oceanogr. 45:2580–97
    [Google Scholar]
  35. McCarthy GD, Smeed DA, Johns WE, Frajka-Williams E, Moat BI et al. 2015. Measuring the Atlantic meridional overturning circulation at 26°N. Prog. Oceanogr. 130:91–111
    [Google Scholar]
  36. McDougall TJ, Ferrari R 2017. Abyssal upwelling and downwelling driven by near-boundary mixing. J. Phys. Oceanogr. 47:261–83
    [Google Scholar]
  37. Meinen CS, Speich S, Piola AR, Ansorge I, Campos E et al. 2018. Meridional overturning circulation transport variability at 34.5°S during 2009–2017: baroclinic and barotropic flows and the dueling influence of the boundaries. Geophys. Res. Lett. 45:4810–88
    [Google Scholar]
  38. Melet A, Legg S, Hallberg R 2016. Climatic impacts of parameterized local and remote tidal mixing. J. Clim. 29:3473–500
    [Google Scholar]
  39. Munk WH 1966. Abyssal recipes. Deep-Sea Res. Oceanogr. Abstr. 13:707–30
    [Google Scholar]
  40. Nikurashin M, Ferrari R 2013. Overturning circulation driven by breaking internal waves in the deep ocean. Geophys. Res. Lett. 40:3133–37
    [Google Scholar]
  41. Nikurashin M, Vallis G 2011. A theory of deep stratification and overturning circulation in the ocean. J. Phys. Oceanogr. 41:485–502
    [Google Scholar]
  42. Nikurashin M, Vallis G 2012. A theory of the interhemispheric meridional overturning circulation and associated stratification. J. Phys. Oceanogr. 42:1652–67
    [Google Scholar]
  43. Nilsson J, Langen PL, Ferreira D, Marshall J 2013. Ocean basin geometry and the salinification of the Atlantic Ocean. J. Clim. 26:6163–84
    [Google Scholar]
  44. Polzin KL, Toole JM, Ledwell JR, Schmitt RW 1997. Spatial variability of turbulent mixing in the abyssal ocean. Science 276:93–96
    [Google Scholar]
  45. Rahmstorf S 1996. On the freshwater forcing and transport of the Atlantic thermohaline circulation. Clim. Dyn. 12:799–811
    [Google Scholar]
  46. Reid JL 1961. On the temperature, salinity, and density differences between the Atlantic and Pacific oceans in the upper kilometre. Deep-Sea Res 7:265–75
    [Google Scholar]
  47. Ridgway KR, Dunn JR 2007. Observational evidence for a Southern Hemisphere oceanic supergyre. Geophys. Res. Lett. 34:L13612
    [Google Scholar]
  48. Rintoul SR 1991. South Atlantic interbasin exchange. J. Geophys. Res. 96:2675–92
    [Google Scholar]
  49. Rooth C 1982. Hydrology and ocean circulation. Prog. Oceanogr. 11:131–49
    [Google Scholar]
  50. Saenko O, Merryfield W 2005. On the effect of topographically enhanced mixing on the global ocean circulation. J. Phys. Oceanogr. 35:826–34
    [Google Scholar]
  51. Schmitt RW, Bogden PS, Dorman CE 1989. Evaporation minus precipitation and density fluxes for the North Atlantic. J. Phys. Oceanogr. 19:1208–21
    [Google Scholar]
  52. Sloyan BM, Rintoul SR 2001. Circulation, renewal, and modification of Antarctic Mode and Intermediate Water. J. Phys. Oceanogr. 31:1005–30
    [Google Scholar]
  53. Speich S, Blanke B, Cai W 2007. Atlantic meridional overturning circulation and the Southern Hemisphere supergyre. Geophys. Res. Lett. 34:L23614
    [Google Scholar]
  54. Speich S, Blanke B, de Vries P, Drijfhout S, Döös K et al. 2002. Tasman leakage: a new route in the global ocean conveyor belt. Geophys. Res. Lett. 29:55–14
    [Google Scholar]
  55. St. Laurent LC, Simmons HL, Jayne SR 2002. Estimating tidally driven mixing in the deep ocean. Geophys. Res. Lett. 29:21–14
    [Google Scholar]
  56. Stommel H 1961. Thermohaline convection with two stable regimes of flow. Tellus 13:224–30
    [Google Scholar]
  57. Talley LD 2013. Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: schematics and transports. Oceanography 26:180–97
    [Google Scholar]
  58. Tamsitt V, Abernathey RP, Mazloff MR, Wang J, Talley LD 2018. Transformation of deep water masses along Lagrangian upwelling pathways in the Southern Ocean. J. Geophys. Res. Oceans 123:1994–2017
    [Google Scholar]
  59. Thompson AF, Stewart A, Bischoff T 2016. A multibasin residual-mean model for the global overturning circulation. J. Phys. Oceanogr. 46:2583–604
    [Google Scholar]
  60. Toggweiler JR, Samuels B 1993. New radiocarbon constraints on the upwelling of abyssal water to the ocean's surface. The Global Carbon Cycle M Heimann 333–66 New York: Springer
    [Google Scholar]
  61. Waterhouse AF, MacKinnon JA, Nash JD, Alford MH, Kunze E et al. 2014. Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J. Phys. Oceanogr. 44:1854–72
    [Google Scholar]
  62. Welander P 1971. The thermocline problem. Philos. Trans. R. Soc. Lond. A 270:69–73
    [Google Scholar]
  63. Whalen CB, MacKinnon JA, Talley LD, Waterhouse AF 2015. Estimating the mean diapycnal mixing using a finescale strain parameterization. J. Phys. Oceanogr. 45:1174–88
    [Google Scholar]
  64. Wolfe CL, Cessi P 2010. What sets the strength of the mid-depth stratification and overturning circulation in eddying ocean models?. J. Phys. Oceanogr. 40:1520–38
    [Google Scholar]
  65. Wolfe CL, Cessi P 2011. The adiabatic pole-to-pole overturning circulation. J. Phys. Oceanogr. 41:1795–810
    [Google Scholar]
  66. Wolfe CL, Cessi P 2014. Salt feedback in the adiabatic overturning circulation. J. Phys. Oceanogr. 44:1175–94
    [Google Scholar]
  67. Young WR 2012. An exact thickness-weighted average formulation of the Boussinesq equations. J. Phys. Oceanogr. 42:692–707
    [Google Scholar]
/content/journals/10.1146/annurev-marine-010318-095241
Loading
/content/journals/10.1146/annurev-marine-010318-095241
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error