1932

Abstract

The water mass transformation (WMT) framework weaves together circulation, thermodynamics, and biogeochemistry into a description of the ocean that complements traditional Eulerian and Lagrangian methods. In so doing, a WMT analysis renders novel insights and predictive capabilities for studies of ocean physics and biogeochemistry. In this review, we describe fundamentals of the WMT framework and illustrate its practical analysis capabilities. We show how it provides a robust methodology to characterize and quantify the impact of physical processes on buoyancy and other thermodynamic fields. We also detail how to extend WMT to insightful analysis of biogeochemical cycles.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-010318-095421
2019-01-03
2024-06-22
Loading full text...

Full text loading...

/deliver/fulltext/marine/11/1/annurev-marine-010318-095421.html?itemId=/content/journals/10.1146/annurev-marine-010318-095421&mimeType=html&fmt=ahah

Literature Cited

  1. Abernathey RP, Cerovecki I, Holland PR, Newsom E, Mazloff M, Talley LD 2016. Water-mass transformation by sea ice in the upper branch of the Southern Ocean overturning. Nat. Geosci. 9:596–601
    [Google Scholar]
  2. Abernathey RP, Marshall J 2013. Global surface eddy diffusivities derived from satellite altimetry. J. Geophys. Res. Oceans 118:901–16
    [Google Scholar]
  3. Aumont O, Éthé C, Tagliabue A, Bopp L, Gehlen M 2015. PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies. Geosci. Model. Dev. 8:2465–513
    [Google Scholar]
  4. Badin G, Williams RG, Sharples J 2010. Water-mass transformation in the shelf seas. J. Mar. Res. 68:189–214
    [Google Scholar]
  5. Boyd PW, Lennartz ST, Glover DM, Doney SC 2015. Biological ramifications of climate-change-mediated oceanic multi-stressors. Nat. Clim. Change 5:71–79
    [Google Scholar]
  6. Boyer T, Antonov JI, Baranova OK, Coleman C, Garcia HE et al. 2013. World Ocean Database 2013 S Levitus, tech. ed. A Mishonov. NOAA Atlas NESDIS 72 Silver Spring, MD: Natl. Ocean. Atmos. Adm http://doi.org/10.7289/V5NZ85MT
    [Crossref] [Google Scholar]
  7. Brambilla E, Talley LD, Robbins PE 2008. Subpolar mode water in the northeastern Atlantic: 2. Origin and transformation. J. Geophys. Res. Oceans 113:C04026
    [Google Scholar]
  8. Broecker WS 1974. “NO”, a conservative water-mass tracer. Earth Planet. Sci. Lett. 23:100–7
    [Google Scholar]
  9. Broecker WS 1982. Tracers in the Sea Palisades, NY: Eldigio
    [Google Scholar]
  10. Buongiorno Nardelli B, Mulet S, Iudicone D 2018. Three-dimensional ageostrophic motion and water mass subduction in the Southern Ocean. J. Geophys. Res. Oceans 123:1533–62
    [Google Scholar]
  11. Capone DG, Bronk DA, Mulholland MR, Carpenter EJ 2008. Nitrogen in the Marine Environment Burlington, MA: Academic. , 2nd ed..
    [Google Scholar]
  12. Ceroveçki I, Talley LD, Mazloff MR, Maze G 2013. Subantarctic Mode Water formation, destruction, and export in the eddy-permitting Southern Ocean state estimate. J. Phys. Oceanogr. 43:1485–511
    [Google Scholar]
  13. Cole ST, Wortham C, Kunze E, Owens WB 2015. Eddy stirring and horizontal diffusivity from Argo float observations: geographic and depth variability. Geophys. Res. Lett. 42:3989–97
    [Google Scholar]
  14. Coles VJ, Stukel MR, Brooks MT, Burd A, Crump BC et al. 2017. Ocean biogeochemistry modeled with emergent trait-based genomics. Science 358:1149–54
    [Google Scholar]
  15. Cushman-Roisin B 1987. Subduction. Dynamics of the Oceanic Surface Mixed Layer P Muller, D Henderson 181–96 Honolulu: Hawaii Inst. Geophys.
    [Google Scholar]
  16. Danabasoglu G, Yeager SG, Bailey D, Behrens E, Bentsen M et al. 2014. North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part I: mean states. Ocean Model 73:76–107
    [Google Scholar]
  17. Danabasoglu G, Yeager SG, Kim WM, Behrens E, Bentsen M et al. 2016. North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part II: inter-annual to decadal variability. Ocean Model 97:65–90
    [Google Scholar]
  18. de Lavergne C, Madec G, Le Sommer J, Nurser AJG, Naveira Garabato AC 2015. On the consumption of Antarctic Bottom Water in the abyssal ocean. J. Phys. Oceanogr. 46:635–61
    [Google Scholar]
  19. Defant A 1936. Die Troposphäre. Wissenschaftliche Ergebnisse der Deutschen Atlantischen Expedition auf dem Forschungs- und Vermessungsschiff “Meteor”, Vol. 6: Schichtung und Zirkulation des Atlantischen Ozeans by G Wüst, A Defant 289–411 Berlin: Walter de Gruyter
    [Google Scholar]
  20. Döös K, Kjellsson J, Zika J, Laliberté F, Brodeau L, Aldama Campino A 2016. The coupled ocean-atmosphere hydrothermohaline circulation. J. Clim. 30:631–47
    [Google Scholar]
  21. Döös K, Nilsson J, Nycander J, Brodeau L, Ballarotta M 2012. The world ocean thermohaline circulation. J. Phys. Oceanogr. 42:1445–60
    [Google Scholar]
  22. Döös K, Webb DJ 1994. The Deacon cell and the other meridional cells of the Southern Ocean. J. Phys. Oceanogr. 24:429–42
    [Google Scholar]
  23. Eckart C 1948. An analysis of the stirring and mixing processes in incompressible fluids. J. Mar. Res. 7:265–75
    [Google Scholar]
  24. Einstein A 1905. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. 322:549–60
    [Google Scholar]
  25. Ellis H 1751. A letter to the Rev. Dr. Hales, F.R.S. from Captain Henry Ellis, F.R.S. Philos. Trans. R. Soc. Lond. 47:211–16
    [Google Scholar]
  26. Evans DG, Toole J, Forget G, Zika JD, Garabato ACN et al. 2017. Recent wind-driven variability in Atlantic water mass distribution and meridional overturning circulation. J. Phys. Oceanogr. 47:633–47
    [Google Scholar]
  27. Evans DG, Zika JD, Garabato ACN, Nurser AJG 2014. The imprint of Southern Ocean overturning on seasonal water mass variability in drake passage. J. Geophys. Res. Oceans 119:7987–8010
    [Google Scholar]
  28. Farneti R, Downes SM, Griffies SM, Marsland SJ, Behrens E et al. 2015. An assessment of Antarctic Circumpolar Current and Southern Ocean meridional overturning circulation during 1958–2007 in a suite of interannual CORE-II simulations. Ocean Model 94:84–120
    [Google Scholar]
  29. Ferrari R, Ferreira D 2011. What processes drive the ocean heat transport. Ocean Model 38:171–86
    [Google Scholar]
  30. Ferrari R, Mashayek A, McDougall T, Nikurashin M, Campin JM 2016. Turning ocean mixing upside down. J. Phys. Oceanogr. 46:2239–61
    [Google Scholar]
  31. Ferrari R, McWilliams JC, Canuto VM, Dubovikov M 2008. Parameterization of eddy fluxes near oceanic boundaries. J. Clim. 21:2770–89
    [Google Scholar]
  32. Foster TD 1972. An analysis of the cabbeling instability in sea water. J. Phys. Oceanogr. 2:294–301
    [Google Scholar]
  33. Ganachaud A, Wunsch C 2000. Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature 408:453–57
    [Google Scholar]
  34. Garabato ACN 2012. A perspective on the future of physical oceanography. Philos. Trans. R. Soc. A 370:5480–511
    [Google Scholar]
  35. Garrett C 2001. Stirring and mixing: What are the rate-controlling processes?. From Stirring to Mixing in a Stratified Ocean: Proceedings of the Twelfth 'Aha Huliko'a Hawaiian Winter Workshop1–8 Honolulu: Univ. Hawaii
    [Google Scholar]
  36. Gent PR, Willebrand J, McDougall TJ, McWilliams JC 1995. Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr. 25:463–74
    [Google Scholar]
  37. Gill AE 1982. Atmosphere-Ocean Dynamics San Diego, CA: Academic
    [Google Scholar]
  38. Gnanadesikan A, Anderson WG 2009. Ocean water clarity and the ocean general circulation in a coupled climate model. J. Phys. Oceanogr. 39:314–32
    [Google Scholar]
  39. Graham FS, McDougall TJ 2013. Quantifying the nonconservative production of Conservative Temperature, potential temperature, and entropy. J. Phys. Oceanogr. 43:838–62
    [Google Scholar]
  40. Griffies SM 2004. Fundamentals of Ocean Climate Models Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  41. Griffies SM, Gnanadesikan A, Pacanowski RC, Larichev V, Dukowicz JK, Smith RD 1998. Isoneutral diffusion in a z-coordinate ocean model. J. Phys. Oceanogr. 28:805–30
    [Google Scholar]
  42. Griffies SM, Pacanowski RC, Hallberg RW 2000. Spurious diapycnal mixing associated with advection in a z-coordinate ocean model. Mon. Weather Rev. 128:538–64
    [Google Scholar]
  43. Grist JP, Josey SA, Jacobs ZL, Marsh R, Sinha B, Van Sebille E 2016. Extreme air–sea interaction over the North Atlantic subpolar gyre during the winter of 2013–2014 and its sub-surface legacy. Clim. Dyn. 46:4027–45
    [Google Scholar]
  44. Groeskamp S, Abernathey RP, Klocker A 2016.a Water mass transformation by cabbeling and thermobaricity. Geophys. Res. Lett. 43:10835–45
    [Google Scholar]
  45. Groeskamp S, Iudicone D 2018. The effect of air-sea flux products, shortwave radiation, depth penetration, and albedo on the upper ocean overturning circulation. Geophys. Res. Lett. 45:9087–97
    [Google Scholar]
  46. Groeskamp S, Lenton A, Matear R, Sloyan BM, Langlais C 2016.b Anthropogenic carbon in the ocean—surface to interior connections. Glob. Biogeochem. Cycles 30:1692–98
    [Google Scholar]
  47. Groeskamp S, Sloyan BM, Zika JD, McDougall TJ 2017. Mixing inferred from an ocean climatology and surface fluxes. J. Phys. Oceanogr. 47:667–87
    [Google Scholar]
  48. Groeskamp S, Zika JD, McDougall TJ, Sloyan BM, Laliberté F 2014.a The representation of ocean circulation and variability in thermodynamic coordinates. J. Phys. Oceanogr. 44:1735–50
    [Google Scholar]
  49. Groeskamp S, Zika JD, Sloyan BM, McDougall TJ, McIntosh PC 2014.b A thermohaline inverse method for estimating diathermohaline circulation and mixing. J. Phys. Oceanogr. 44:2681–97
    [Google Scholar]
  50. Hautala SL 2018. The abyssal and deep circulation of the Northeast Pacific Basin. Prog. Oceanogr. 160:68–82
    [Google Scholar]
  51. Hieronymus M, Nilsson J, Nycander J 2014. Water mass transformation in salinity-temperature space. J. Phys. Oceanogr. 44:2547–68
    [Google Scholar]
  52. Hirst AC, Jackett DR, McDougall TJ 1996. The meridional overturning cells of a world ocean model in neutral density coordinates. J. Phys. Oceanogr. 26:775–91
    [Google Scholar]
  53. Holzer M, Primeau FW 2013. Global teleconnections in the oceanic phosphorus cycle: patterns, paths, and timescales. J. Geophys. Res. Oceans 118:1775–96
    [Google Scholar]
  54. IOC (Intergov. Oceanogr. Comm.), SCOR (Sci. Comm. Ocean. Res.), IAPSO (Int. Assoc. Phys. Sci. Oceans). 2010. The International Thermodynamic Equation of Seawater – 2010: Calculation and Use of Thermodynamic Properties Man. Guides 56 Paris: UN Educ. Sci. Cult. Organ.
    [Google Scholar]
  55. Isachsen PE, Mauritzen C, Svendsen H 2007. Dense water formation in the Nordic Seas diagnosed from sea surface buoyancy fluxes. Deep-Sea Res. I 54:22–41
    [Google Scholar]
  56. Isachsen PE, Nøst OA 2012. The air-sea transformation and residual overturning circulation within the Nordic Seas. J. Mar. Res. 70:31–68
    [Google Scholar]
  57. Iselin CO 1939. The influence of vertical and lateral turbulence on the characteristics of the waters at mid-depths. Eos Trans. AGU 20:414–17
    [Google Scholar]
  58. Iudicone D, Madec G, Blanke B, Speich S 2008.a The role of Southern Ocean surface forcings and mixing in the global conveyor. J. Phys. Oceanogr. 38:1377–400
    [Google Scholar]
  59. Iudicone D, Madec G, McDougall TJ 2008.b Water-mass transformations in a neutral density framework and the key role of light penetration. J. Phys. Oceanogr. 38:1357–76
    [Google Scholar]
  60. Iudicone D, Rodgers KB, Plancherel Y, Aumont O, Ito T et al. 2016. The formation of the ocean's anthropogenic carbon reservoir. Sci. Rep. 6:35473
    [Google Scholar]
  61. Iudicone D, Rodgers KB, Stendardo I, Aumont O, Madec G et al. 2011. Water masses as a unifying framework for understanding the Southern Ocean carbon cycle. Biogeosciences 8:1031–52
    [Google Scholar]
  62. Iudicone D, Speich S, Madec G, Blanke B 2008.c The global conveyor belt from a Southern Ocean perspective. J. Phys. Oceanogr. 38:1401–25
    [Google Scholar]
  63. Jackett DR, McDougall TJ 1997. A neutral density variable for the world's oceans. J. Phys. Oceanogr. 27:237–63
    [Google Scholar]
  64. Jamous D, Mémery L, Andrié C, Jean-Baptiste P, Merlivat L 1992. The distribution of helium 3 in the deep western and southern Indian Ocean. J. Geophys. Res. Oceans 97:2243–50
    [Google Scholar]
  65. Klocker A, Abernathey R 2013. Global patterns of mesoscale eddy properties and diffusivities. J. Phys. Oceanogr. 44:1030–46
    [Google Scholar]
  66. Klocker A, McDougall TJ 2010.a Influence of the nonlinear equation of state on global estimates of dianeutral advection and diffusion. J. Phys. Oceanogr. 40:1690–709
    [Google Scholar]
  67. Klocker A, McDougall TJ 2010.b Quantifying the consequences of the ill-defined nature of neutral surfaces. J. Phys. Oceanogr. 40:1866–80
    [Google Scholar]
  68. Klocker A, McDougall TJ, Jackett DR 2009. A new method for forming approximately neutral surfaces. Ocean Sci 5:155–72
    [Google Scholar]
  69. Large WB, McWilliams J, Doney S 1994. Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev. Geophys. 32:363–403
    [Google Scholar]
  70. Large WB, Nurser AG 2001. Ocean surface water mass transformation. Ocean Circulation and Climate: Observing and Modelling the Global Ocean G Siedler, J Church, J Gould 317–36 Int. Geophys. Ser 77 San Diego, CA: Academic
    [Google Scholar]
  71. Large WG, Yeager S 2009. The global climatology of an interannually varying air-sea flux data set. Clim. Dyn. 33:341–64
    [Google Scholar]
  72. Lee MM, Coward ACC, Nurser AJG 2002. Spurious diapycnal mixing of the deep waters in an eddy-permitting global ocean model. J. Phys. Oceanogr. 32:1522–35
    [Google Scholar]
  73. Lewis MR, Carr ME, Feldman GC, Esaias W, McClain C 1990. Influence of penetrating solar radiation on the heat budget of the equatorial Pacific Ocean. Nature 347:543–45
    [Google Scholar]
  74. Lewis MR, Cullen JJ, Platt T 1983. Phytoplankton and thermal structure in the upper ocean: consequences of nonuniformity in chlorophyll profile. J. Geophys. Res. Oceans 88:2565–70
    [Google Scholar]
  75. Lumpkin R, Speer K 2007. Global ocean meridional overturning. J. Phys. Oceanogr. 37:2550–62
    [Google Scholar]
  76. Lupton JE, Craig H 1981. A major helium-3 source at 15°S on the East Pacific Rise. Science 214:13–18
    [Google Scholar]
  77. MacGilchrist GA, Marshall DP, Johnson HL, Lique C, Thomas M 2017. Characterizing the chaotic nature of ocean ventilation. J. Geophys. Res. Oceans 122:7577–94
    [Google Scholar]
  78. Mackay N, Wilson C, Zika J, Holliday NP 2018. A regional thermohaline inverse method for estimating circulation and mixing in the Arctic and subpolar North Atlantic. J. Atmos. Ocean. Technol. In press. https://doi.org/10.1175/JTECH-D-17-0198.1
    [Crossref] [Google Scholar]
  79. MacKinnon J, Laurent LS, Garabato AN 2013. Diapycnal mixing processes in the ocean interior. Ocean Circulation and Climate: A 21st Century Perspective G Siedler, SM Griffies, J Gould, JA Church 159–84 Int. Geophys. Ser 103 San Diego, CA: Academic. , 2nd ed..
    [Google Scholar]
  80. Marsh R 2000. Recent variability of the North Atlantic thermohaline circulation inferred from surface heat and freshwater fluxes. J. Clim. 13:3239–60
    [Google Scholar]
  81. Marsh R, Josey SA, Nurser AJG, de Cuevas BA, Coward AC 2005. Water mass transformation in the North Atlantic over 1985–2002 simulated in an eddy-permitting model. Ocean Sci 1:127–44
    [Google Scholar]
  82. Marsh R, Nurser AJG, Megann AP, New AL 2000. Water mass transformation in the Southern Ocean of a global isopycnal coordinate GCM. J. Phys. Oceanogr. 30:1013–45
    [Google Scholar]
  83. Marshall JC, Jamous D, Nilsson J 1999. Reconciling thermodynamic and dynamic methods of computation of water-mass transformation rates. Deep-Sea Res. I 46:545–72
    [Google Scholar]
  84. Marshall JC, Shuckburgh E, Jones H, Hill C 2006. Estimates and implications of surface eddy diffusivity in the Southern Ocean derived from tracer transport. J. Phys. Oceanogr. 36:1806–21
    [Google Scholar]
  85. Marshall JC, Williams RG, Nurser AJG 1993. Inferring the subduction rate and period over the North Atlantic. J. Phys. Oceanogr. 23:1315–29
    [Google Scholar]
  86. Maze G, Forget G, Buckley M, Marshall J, Cerovecki I 2009. Using transformation and formation maps to study the role of air–sea heat fluxes in North Atlantic Eighteen Degree Water formation. J. Phys. Oceanogr. 39:1818–35
    [Google Scholar]
  87. McDougall TJ 1984. The relative roles of diapycnal and isopycnal mixing on subsurface water mass conversion. J. Phys. Oceanogr. 14:1577–89
    [Google Scholar]
  88. McDougall TJ 1987.a Neutral surfaces. J. Phys. Oceanogr. 17:1950–64
    [Google Scholar]
  89. McDougall TJ 1987.b Thermobaricity, cabbeling, and water-mass conversion. J. Geophys. Res. Oceans 92:5448–64
    [Google Scholar]
  90. McDougall TJ 2003. Potential enthalpy: a conservative oceanic variable for evaluating heat content and heat fluxes. J. Phys. Oceanogr. 33:945–63
    [Google Scholar]
  91. McDougall TJ, Barker PM 2011. Getting started with TEOS-10 and the Gibbs Seawater (GSW) Oceanographic Toolbox TEOS-10 Doc., Sci. Comm. Ocean. Res. (SCOR)/Int. Assoc. Phys. Sci. Oceans (IAPSO) Work. Group 127 Int. Counc. Sci. Paris:
    [Google Scholar]
  92. McDougall TJ, Church JA 1986. Pitfalls with the numerical representation of isopycnal diapycnal mixing. J. Phys. Oceanogr. 16:196–99
    [Google Scholar]
  93. McDougall TJ, Groeskamp S, Griffies SM 2014. On geometrical aspects of interior ocean mixing. J. Phys. Oceanogr. 44:2164–75
    [Google Scholar]
  94. McDougall TJ, Jackett DR 1988. On the helical nature of neutral trajectories in the ocean. Prog. Oceanogr. 20:153–83
    [Google Scholar]
  95. McDougall TJ, Jackett DR 2005. The material derivative of neutral density. J. Mar. Res. 63:159–85
    [Google Scholar]
  96. McDougall TJ, Jackett DR, Millero FJ, Pawlowicz R, Barker PM 2012. A global algorithm for estimating Absolute Salinity. Ocean Sci 8:1117–28
    [Google Scholar]
  97. McDougall TJ, McIntosh PC 2001. The temporal-residual-mean velocity. Part II: isopycnal interpretation and the tracer and momentum equations. J. Phys. Oceanogr. 31:1222–46
    [Google Scholar]
  98. McWilliams J 1998. Oceanic general circulation model. Ocean Modeling and Parameterization EP Chassignet, J Verron 1–44 NATO ASI Math. Phys. Sci. Ser 516 Dordrecht, Neth.: Kluwer Acad.
    [Google Scholar]
  99. Megann A 2018. Estimating the numerical diapycnal mixing in an eddy-permitting ocean model. Ocean Model 121:19–33
    [Google Scholar]
  100. Montgomery RB 1938. Circulation in Upper Layers of Southern North Atlantic Deduced with Use of Isentropic Analysis Pap. Phys. Oceanogr. Meteorol 6 Cambridge, MA/Woods Hole, MA: Mass. Inst. Technol. and Woods Hole Oceanogr. Inst.
    [Google Scholar]
  101. Morel A, Antoine D 1994. Heating rate within the upper ocean in relation to its bio-optical state. J. Phys. Oceanogr. 24:1652–65
    [Google Scholar]
  102. Munk WH 1966. Abyssal recipes. Deep-Sea Res. Oceanogr. Abstracts 13:707–30
    [Google Scholar]
  103. Munk WH, Wunsch C 1998. Abyssal recipes II: energetics of tidal and wind mixing. Deep-Sea Res. I 45:1977–2010
    [Google Scholar]
  104. Nakamura N 2001. A new look at eddy diffusivity as a mixing diagnostic. J. Atmos. Sci. 58:3685–701
    [Google Scholar]
  105. Naveira Garabato AC, Stevens DP, Heywood KJ 2003. Water mass conversion, fluxes, and mixing in the Scotia Sea diagnosed by an inverse model. J. Phys. Oceanogr. 33:2565–87
    [Google Scholar]
  106. Nishikawa S, Tsujino H, Sakamoto K, Nakano H 2013. Diagnosis of water mass transformation and formation rates in a high-resolution GCM of the North Pacific. J. Geophys. Res. Oceans 118:1051–69
    [Google Scholar]
  107. Nurser AJG, Marsh R, Williams RG 1999. Diagnosing water mass formation from air–sea fluxes and surface mixing. J. Phys. Oceanogr. 29:1468–87
    [Google Scholar]
  108. Ohlmann JC 2003. Ocean radiant heating in climate models. J. Clim. 16:1337–51
    [Google Scholar]
  109. Olbers D, Willebrand J, Eden C 2012. Ocean Dynamics Berlin: Springer
    [Google Scholar]
  110. Pellichero V, Sallée JB, Chapman CC, Downes SM 2018. The Southern Ocean meridional overturning in the sea-ice sector is driven by freshwater fluxes. Nat. Commun. 9:1789
    [Google Scholar]
  111. Pemberton P, Nilsson J, Hieronymus M, Meier HM 2015. Arctic Ocean water mass transformation in S–T coordinates. J. Phys. Oceanogr. 45:1025–50
    [Google Scholar]
  112. Polzin KL, Toole JM, Ledwell JR, Schmitt RW 1997. Spatial variability of turbulent mixing in the abyssal ocean. Science 276:93–96
    [Google Scholar]
  113. Redi MH 1982. Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr. 12:1154–58
    [Google Scholar]
  114. Richardson PL 2008. On the history of meridional overturning circulation schematic diagrams. Prog. Oceanogr. 76:466–86
    [Google Scholar]
  115. Rumford B 1968 (1798). Of the propagation of heat in fluids. Collected Works of Count Rumford, Vol. 1: The Nature of Heat SC Brown 117–284 Cambridge, MA: Belknap
    [Google Scholar]
  116. Sallée JB, Speer K, Rintoul S, Wijffels S 2010. Southern Ocean thermocline ventilation. J. Phys. Oceanogr. 40:509–29
    [Google Scholar]
  117. Sarmiento JL, Gruber N 2006. Ocean Biogeochemical Dynamics Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  118. Sarmiento JL, Gruber N, Brzezinski MA, Dunne JP 2004. High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427:56–60
    [Google Scholar]
  119. Skliris N, Zika JD, Herold L, Josey SA, Marsh R 2018. Mediterranean sea water budget long-term trend inferred from salinity observations. Clim. Dyn. 51:2857–76
    [Google Scholar]
  120. Skliris N, Zika JD, Nurser G, Josey SA, Marsh R 2016. Global water cycle amplifying at less than the Clausius-Clapeyron rate. Sci. Rep. 6:38752
    [Google Scholar]
  121. Sloyan BM, Rintoul SR 2001. The Southern Ocean limb of the global deep overturning circulation. J. Phys. Oceanogr. 31:143–73
    [Google Scholar]
  122. Solomon H 1971. On the representation of isentropic mixing in ocean circulation models. J. Phys. Oceanogr. 1:233–34
    [Google Scholar]
  123. Speer KG 1993. Conversion among North Atlantic surface water types. Tellus A 45:72–79
    [Google Scholar]
  124. Speer KG 1998. A note on average cross-isopycnal mixing in the North Atlantic Ocean. Deep-Sea Res. I 44:1981–90
    [Google Scholar]
  125. Speer KG, Tziperman E 1992. Rates of water mass formation in the North Atlantic Ocean. J. Phys. Oceanogr. 22:93–104
    [Google Scholar]
  126. Sverdrup HU, Johnson MW, Fleming RH 1942. The Oceans: Their Physics, Chemistry, and General Biology New York: Prentice Hall
    [Google Scholar]
  127. Sweeney C, Gnanadesikan A, Griffies SM, Harrison MJ, Rosati AJ, Samuels BL 2005. Impacts of shortwave penetration depth on large-scale ocean circulation and heat transport. J. Phys. Oceanogr. 35:1103–19
    [Google Scholar]
  128. Talley LD, Yun JY 2001. The role of cabbeling and double diffusion in setting the density of the North Pacific Intermediate Water salinity minimum. J. Phys. Oceanogr. 31:1538–49
    [Google Scholar]
  129. Tamsitt V, Abernathey RP, Mazloff MR, Wang J, Talley LD 2018. Transformation of deep water masses along Lagrangian upwelling pathways in the Southern Ocean. J. Geophys. Res. Oceans 123:1994–2017
    [Google Scholar]
  130. Tandon A, Garrett C 1997. Water mass formation from thermodynamics: a framework for examining compatibility with dynamics. International WOCE Newsletter 28: Oct. 34–37
    [Google Scholar]
  131. Taylor G 1921. Diffusion by continuous movements. Proc. Lond. Math. Soc. 20:196–212
    [Google Scholar]
  132. Toggweiler JR, Samuels B 1998. On the ocean's large-scale circulation near the limit of no vertical mixing. J. Phys. Oceanogr. 28:1832–52
    [Google Scholar]
  133. Treguier AM, Held I, Larichev V 1997. Parameterization of quasigeostrophic eddies in primitive equation ocean models. J. Phys. Oceanogr. 27:567–80
    [Google Scholar]
  134. Urakawa LS, Hasumi H 2012. Eddy-resolving model estimate of the cabbeling effect on the water mass transformation in the southern ocean. J. Phys. Oceanogr. 42:1288–302
    [Google Scholar]
  135. Walin G 1977. A theoretical framework for the description of estuaries. Tellus 29:128–36
    [Google Scholar]
  136. Walin G 1982. On the relation between sea-surface heat flow and thermal circulation in the ocean. Tellus 34:187–95
    [Google Scholar]
  137. Waterhouse AF, MacKinnon JA, Nash JD, Alford MH, Kunze E et al. 2014. Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J. Phys. Oceanogr. 44:1854–72
    [Google Scholar]
  138. Whalen CB, Talley LD, MacKinnon JA 2012. Spatial and temporal variability of global ocean mixing inferred from Argo profiles. Geophys. Res. Lett. 39:L18612
    [Google Scholar]
  139. Witte E 1902. Zur Theorie den Stromkabbelungen. Gaea 39:229–30
    [Google Scholar]
  140. Worthington LV 1981. The water masses of the world ocean: some results of a fine-scale census. Evolution of Physical Oceanography: Scientific Surveys in Honor of Henry Stommel BA Warren, C Wunsch 42–69 Cambridge, MA: MIT Press
    [Google Scholar]
  141. Wunsch C 1978. The North Atlantic general circulation west of 50°W determined by inverse methods. Rev. Geophys. 16:583–620
    [Google Scholar]
  142. Wüst G 1936. Das Bodenwasser und die Gliederung der Atlantischen Tiefsee. Wissenschaftliche Ergebnisse der Deutschen Atlantischen Expedition auf dem Forschungs- und Vermessungsschiff “Meteor”, Vol. 6: Schichtung und Zirkulation des Atlantischen Ozeans by G Wüst, A Defant 3–107 Berlin: Walter de Gruyter
    [Google Scholar]
  143. Zhai P, Rodgers KB, Griffies SM, Slater RD, Iudicone D et al. 2017. Mechanistic drivers of reemergence of anthropogenic carbon in the equatorial Pacific. Geophys. Res. Lett. 44:9433–39
    [Google Scholar]
  144. Zika JD, England MH, Sijp WP 2012. The ocean circulation in thermohaline coordinates. J. Phys. Oceanogr. 42:708–24
    [Google Scholar]
  145. Zika JD, McDougall TJ, Sloyan BM 2010. Weak mixing in the eastern North Atlantic: an application of the tracer-contour inverse method. J. Phys. Oceanogr. 40:1881–93
    [Google Scholar]
  146. Zika JD, Skliris N, Nurser AJG, Josey SA, Mudryk L et al. 2015. Maintenance and broadening of the ocean's salinity distribution by the water cycle. J. Clim. 28:9550–60
    [Google Scholar]
/content/journals/10.1146/annurev-marine-010318-095421
Loading
/content/journals/10.1146/annurev-marine-010318-095421
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error