- Home
- A-Z Publications
- Annual Review of Nutrition
- Previous Issues
- Volume 20, 2000
Annual Review of Nutrition - Volume 20, 2000
Volume 20, 2000
- Review Articles
-
-
-
DIET AND APOPTOSIS
Vol. 20 (2000), pp. 485–505More Less▪ AbstractA range of compounds in or derived from the diet modulates apoptosis in cell cultures in vitro. These observations have important implications concerning the mechanisms whereby dietary components affect health. Proapoptotic compounds could protect against cancer by enhancing elimination of initiated, precancerous cells, and antiapoptotic compounds could promote tumor formation by inhibiting apoptosis in genetically damaged cells. Proapoptotic compounds could also contribute to age-related degenerative diseases by activating cell death in postmitotic cells or shifting the normal balance of mitosis and apoptosis in tissues with regenerative capacity. Many age-related diseases, for example macular degeneration and Parkinson's disease, appear to have oxidative stress as an underlying component that interacts with genetic, dietary, and environmental factors to determine relative risk in an individual. Oxidative stress activates apoptosis, and antioxidants protect against apoptosis in vitro; thus, a central role of dietary antioxidants may be to protect against apoptosis. However, little in vivo data are available to directly link diet with altered apoptosis as an underlying determinant of disease. Moreover, the possible antagonistic effects of different dietary components and the uncertainty about whether proapoptotic compounds that may protect against cancer could contribute to degenerative diseases and vice versa indicate that there is a great need for better in vivo assessment of apoptosis and that caution should be exercised when extrapolating in vitro data on apoptosis to in vivo dietary recommendations.
-
-
-
-
THE EXTRACELLULAR Ca2+-SENSING RECEPTOR: Central Mediator of Systemic Calcium Homeostasis
Vol. 20 (2000), pp. 507–533More Less▪ AbstractThe cloning of the G protein-coupled, extracellular calcium (Ca2+o)-sensing receptor (CaR) has identified a central mediator of the mechanism governing systemic Ca2+o homeostasis. This system enables organisms to adapt successfully to wide variations in dietary Ca2+o intake while maintaining near constancy of Ca2+o. Whereas discussions of Ca2+o homeostasis have generally focused on the key role of Ca2+o-elicited changes in parathyroid hormone secretion, the presence of the CaRs in effector tissues of this system enables direct regulation of processes (e.g. renal tubular Ca2+ reabsorption and possibly bone formation and resorption) that add additional layers of homeostatic control. As we understand more about how the CaR regulates these tissues, we may find that it participates in other processes relevant to mineral ion homeostasis, including the control of the 1-hydroxylation and activation of vitamin D3 or reabsorption of phosphate in the renal proximal tubule. Regardless, the remarkable sensitivity of the CaR to small changes in Ca2+o allows adjustments in the response of the Ca2+o homeostatic system to increases or decreases in the intake of dietary Ca2+, for instance, that cause barely detectable alterations in Ca2+o. Furthermore, the CaR likely participates in coordinating interactions among several different homeostatic control systems (including those for water, Mg2+o, Na+, extracellular volume, and/or blood pressure), despite the fact that these systems are often considered to function largely independently of mineral ion metabolism.
-
-
-
TRANSCRIPTIONAL CONTROL OF ADIPOGENESIS
Vol. 20 (2000), pp. 535–559More Less▪ AbstractThe major transcriptional factors involved in the adipogenic process include proteins belonging to the CCAAT/enhancer binding protein family, peroxisome proliferator-activated receptor γ, and adipocyte determination and differentiation dependent factor 1, also known as sterol regulatory element-binding protein 1. This process has been characterized with the aid of cell lines that represent various stages in the path of adipocyte commitment, ranging from pluripotent mesodermal fibroblasts to preadipocytes. Molecular analyses have led to a cascade model for adipogenesis based on timed expression of CCAAT/enhancer-binding proteins and peroxisome proliferator-activated receptor γ. Gene targeting and transgenic-mouse technologies, which allow the manipulation of endogenous genes for these transcription factors, have also contributed to the understanding of adipogenesis. This review aims to integrate this information to gain an understanding of the transcriptional regulation of fat cell formation.
-
-
-
THE HEALTH BENEFITS OF WINE
Vol. 20 (2000), pp. 561–593More Less▪ AbstractEpidemiologic studies from numerous disparate populations reveal that individuals with the habit of daily moderate wine consumption enjoy significant reductions in all-cause and particularly cardiovascular mortality when compared with individuals who abstain or who drink alcohol to excess. Researchers are working to explain this observation in molecular and nutritional terms. Moderate ethanol intake from any type of beverage improves lipoprotein metabolism and lowers cardiovascular mortality risk. The question now is whether wine, particularly red wine with its abundant content of phenolic acids and polyphenols, confers additional health benefits. Discovering the nutritional properties of wine is a challenging task, which requires that the biological actions and bioavailability of the >200 individual phenolic compounds be documented and interpreted within the societal factors that stratify wine consumption and the myriad effects of alcohol alone. Further challenge arises because the health benefits of wine address the prevention of slowly developing diseases for which validated biomarkers are rare. Thus, although the benefits of the polyphenols from fruits and vegetables are increasingly accepted, consensus on wine is developing more slowly. Scientific research has demonstrated that the molecules present in grapes and in wine alter cellular metabolism and signaling, which is consistent mechanistically with reducing arterial disease. Future research must address specific mechanisms both of alcohol and of polyphenolic action and develop biomarkers of their role in disease prevention in individuals.
-
-
-
ENVIRONMENT AND CONTAMINANTS IN TRADITIONAL FOOD SYSTEMS OF NORTHERN INDIGENOUS PEOPLES
H. V. Kuhnlein, and H. M. ChanVol. 20 (2000), pp. 595–626More LessTraditional food resources of indigenous peoples are now recognized as containing a variety of environmental contaminants which reach food species through local or long-range transport avenues. In this chapter we review the published reports of contaminants contained in traditional food in northern North America and Europe as organochlorines, heavy metals, and radionuclides. Usually, multiple contaminants are contained in the same food species. Measurement of dietary exposure to these environmental contaminants is reviewed, as are major issues of risk assessment, evaluation, and management. The dilemma faced by indigenous peoples in weighing the multiple nutritional and socioeconomic benefits of traditional food use against risk of contaminants in culturally important food resources is described.
-
-
-
IRON REGULATORY PROTEINS AND THE MOLECULAR CONTROL OF MAMMALIAN IRON METABOLISM
Vol. 20 (2000), pp. 627–662More Less▪ AbstractMammalian iron homeostasis is maintained through the concerted action of sensory and regulatory networks that modulate the expression of proteins of iron metabolism at the transcriptional and/or post-transcriptional levels. Regulation of gene transcription provides critical developmental, cell cycle, and cell-type-specific controls on iron metabolism. Post-transcriptional control through the action of iron regulatory protein 1 (IRP1) and IRP2 coordinate the use of messenger RNA-encoding proteins that are involved in the uptake, storage, and use of iron in all cells of the body. IRPs may also provide a link between iron availability and cellular citrate use. Multiple factors, including iron, nitric oxide, oxidative stress, phosphorylation, and hypoxia/reoxygenation, influence IRP function. Recent evidence indicates that there is diversity in the function of the IRP system with respect to the response of specific IRPs to the same effector, as well as the selectivity with which IRPs modulate the use of specific messenger RNA.
-
-
-
The Role of the Microsomal Triglygeride Transfer Protein in Abetalipoproteinemia
Vol. 20 (2000), pp. 663–697More LessThe microsomal triglyceride transfer protein (MTP) is a dimeric lipid transfer protein consisting of protein disulfide isomerase and a unique 97-kDa subunit. In vitro, MTP accelerates the transport of triglyceride, cholesteryl ester, and phospholipid between membranes. It was recently demonstrated that abetalipoproteinemia, a hereditary disease characterized as an inability to produce chylomicrons and very low-density lipoproteins in the intestine and liver, respectively, results from mutations in the gene encoding the 97-kDa subunit of the microsomal triglyceride transfer protein. Downstream effects resulting from this defect include malnutrition, very low plasma cholesterol and triglyceride levels, altered lipid and protein compositions of membranes and lipoprotein particles, and vitamin deficiencies. Unless treated, abetalipoproteinemic subjects develop gastrointestinal, neurological, ophthalmological, and hematological abnormalities.
-
-
-
Oligosaccharides in Human Milk: Structural, Functional, and Metabolic Aspects
C. Kunz, S. Rudloff, W. Baier, N. Klein, and S. StrobelVol. 20 (2000), pp. 699–722More LessResearch on human milk oligosaccharides (HMOs) has received much attention in recent years. However, it started about a century ago with the observation that oligosaccharides might be growth factors for a so-called bifidus flora in breast-fed infants and extends to the recent finding of cell adhesion molecules in human milk. The latter are involved in inflammatory events recognizing carbohydrate sequences that also can be found in human milk. The similarities between epithelial cell surface carbohydrates and oligosaccharides in human milk strengthen the idea that specific interactions of those oligosaccharides with pathogenic microorganisms do occur preventing the attachment of microbes to epithelial cells. HMOs may act as soluble receptors for different pathogens, thus increasing the resistance of breast-fed infants. However, we need to know more about the metabolism of oligosaccharides in the gastrointestinal tract. How far are oligosaccharides degraded by intestinal enzymes and does oligosaccharide processing (e.g. degradation, synthesis, and elongation of core structures) occur in intestinal epithelial cells? Further research on HMOs is certainly needed to increase our knowledge of infant nutrition as it is affected by complex oligosaccharides.
-
Previous Volumes
-
Volume 44 (2024)
-
Volume 43 (2023)
-
Volume 42 (2022)
-
Volume 41 (2021)
-
Volume 40 (2020)
-
Volume 39 (2019)
-
Volume 38 (2018)
-
Volume 37 (2017)
-
Volume 36 (2016)
-
Volume 35 (2015)
-
Volume 34 (2014)
-
Volume 33 (2013)
-
Volume 32 (2012)
-
Volume 31 (2011)
-
Volume 30 (2010)
-
Volume 29 (2009)
-
Volume 28 (2008)
-
Volume 27 (2007)
-
Volume 26 (2006)
-
Volume 25 (2005)
-
Volume 24 (2004)
-
Volume 23 (2003)
-
Volume 22 (2002)
-
Volume 21 (2001)
-
Volume 20 (2000)
-
Volume 19 (1999)
-
Volume 18 (1998)
-
Volume 17 (1997)
-
Volume 16 (1996)
-
Volume 15 (1995)
-
Volume 14 (1994)
-
Volume 13 (1993)
-
Volume 12 (1992)
-
Volume 11 (1991)
-
Volume 10 (1990)
-
Volume 9 (1989)
-
Volume 8 (1988)
-
Volume 7 (1987)
-
Volume 6 (1986)
-
Volume 5 (1985)
-
Volume 4 (1984)
-
Volume 3 (1983)
-
Volume 2 (1982)
-
Volume 1 (1981)
-
Volume 0 (1932)