- Home
- A-Z Publications
- Annual Review of Nutrition
- Previous Issues
- Volume 26, 2006
Annual Review of Nutrition - Volume 26, 2006
Volume 26, 2006
- Preface
-
-
-
Fuel Metabolism in Starvation
Vol. 26 (2006), pp. 1–22More Less▪ AbstractThis article, which is partly biographical and partly scientific, summarizes a life in academic medicine. It relates my progress from benchside to bedside and then to academic and research administration, and concludes with the teaching of human biology to college undergraduates. My experience as an intern (anno 1953) treating a youngster in diabetic ketoacidosis underscored our ignorance of the controls in human fuel metabolism. Circulating free fatty acids were then unknown, insulin could not be measured in biologic fluids, and β-hydroxybutyric acid, which was difficult to measure, was considered by many a metabolic poison. The central role of insulin and the metabolism of free fatty acids, glycerol, glucose, lactate, and pyruvate, combined with indirect calorimetry, needed characterization in a near-steady state, namely prolonged starvation. This is the main topic of this chapter. Due to its use by brain, D-β-hydroxybutyric acid not only has permitted man to survive prolonged starvation, but also may have therapeutic potential owing to its greater efficiency in providing cellular energy in ischemic states such as stroke, myocardial insufficiency, neonatal stress, genetic mitochondrial problems, and physical fatigue.
-
-
-
Control of Energy Homeostasis: Role of Enzymes and Intermediates of Fatty Acid Metabolism in the Central Nervous System
Vol. 26 (2006), pp. 23–44More Less▪ AbstractThe regulation of energy homeostasis is critical for normal physiology and survival. Energy flux must be rigorously monitored and adjusted to ensure that fuel intake and expenditure remain within acceptable limits. The central nervous system (CNS) is, in large part, responsible for conducting this energy-monitoring function and for integrating the numerous inputs. It has become evident that neurons of the CNS monitor and respond to levels of metabolic intermediates that reflect peripheral energy status. Intermediates in the fatty acid biosynthetic pathway have been implicated as hypothalamic signaling mediators that sense and respond to changes in circulating fuels. Genetic and pharmacologic manipulation of the enzymes of fatty acid metabolism have led to the hypothesis that neuronal metabolic intermediates affect neural outputs that modify both feeding behavior and energy expenditure. This review focuses on the regulatory roles of these enzymes and intermediates in the regulation of food intake and energy balance.
-
-
-
Fatty Acids as Modulators of the Immune Response
Vol. 26 (2006), pp. 45–73More Less▪ AbstractResearch describing fatty acids as modulators of inflammation and immune responses abounds. Many of these studies have focused on one particular group of fatty acids, omega-3. The data from animal studies have shown that these fatty acids can have powerful anti-inflammatory and immunomodulatory activities in a wide array of diseases (e.g., autoimmunity, arthritis, and infection). However, the evidence from human trials is more equivocal. In this review, a historical framework for understanding how and why fatty acids may affect the immune system is provided. Second, highlights of two recent landmark reports from the Agency for Healthcare Research and Quality are presented. These reports critically evaluate the evidence from human clinical trials of omega-3 fatty acids and rheumatoid arthritis, asthma, and a few other immune-mediated diseases. Third, the data from human clinical trials investigating the impact of various bioactive fatty acids on ex vivo and in vivo immune response are reviewed. Limitations in experimental design and immune assays commonly used are discussed. The discordance between expectation and evidence in this field has been a disappointment. Recommendations for improving both animal-based and human studies are provided.
-
-
-
Innovative Dietary Sources of N-3 Fatty Acids
Jay Whelan, and Cheryl RustVol. 26 (2006), pp. 75–103More Less▪ AbstractIt is now established that dietary n-3 polyunsaturated fatty acids (PUFAs) are involved in health promotion and disease prevention, particularly those traditionally derived from marine sources (e.g., eicosapentaenoic acid and docosahexaenoic acid). A number of organizations have made specific recommendations for the general population to increase their intakes of these nutrients. In response to and along with these recommendations, n-3 PUFAs are being incorporated into nontraditional food sources because of advances in the technology to safely enrich/fortify our food supply. Fatty acid compositions of traditional oils (e.g., canola and soybean) are being genetically modified to deliver more highly concentrated sources of n-3 PUFA. The advent of algal sources of docosahexaenoic acid provides one of the few terrestrial sources of this fatty acid in a concentrated form. All of this is possible because of newer technologies (microencapsulation) and improved processing techniques that ensure stability and preserve the integrity of these unstable fatty acids.
-
-
-
Variations on a Gene: Rare and Common Variants in ABCA1 and Their Impact on HDL Cholesterol Levels and Atherosclerosis
Vol. 26 (2006), pp. 105–129More Less▪ AbstractCholesterol and its metabolites play a variety of essential roles in living systems. Virtually all animal cells require cholesterol, which they acquire through synthesis or uptake, but only the liver can degrade cholesterol. The ABCA1 gene product regulates the rate-controlling step in the removal of cellular cholesterol: the efflux of cellular cholesterol and phospholipids to an apolipoprotein acceptor. Mutations in ABCA1, as seen in Tangier disease, result in accumulation of cellular cholesterol, reduced plasma high-density lipoprotein cholesterol, and increased risk for coronary artery disease. To date, more than 100 coding variants have been identified in ABCA1, and these variants result in a broad spectrum of biochemical and clinical phenotypes. Here we review genetic variation in ABCA1 and its critical role in cholesterol metabolism and atherosclerosis in the general population.
-
-
-
Cow's Milk and Linear Growth in Industrialized and Developing Countries
Vol. 26 (2006), pp. 131–173More Less▪ AbstractThe strongest evidence that cow's milk stimulates linear growth comes from observational and intervention studies in developing countries that show considerable effects. Additionally, many observational studies from well-nourished populations also show an association between milk intake and growth. These results suggest that milk has a growth-stimulating effect even in situations where the nutrient intake is adequate. This effect is supported by studies that show milk intake stimulates circulating insulin-like growth factor (IGF)-I, which suggests that at least part of the growth-stimulating effects of milk occur through the stimulation of IGFs. Given that the biological purpose of milk is to support the newborn during a period of high growth velocity, such an effect seems plausible. Adding cow's milk to the diet of stunted children is likely to improve linear growth and thereby reduce morbidity. In well-nourished children, the long-term consequences of an increased consumption of cow's milk, which may lead to higher levels of IGF-I in circulation or an increase in the velocity of linear growth, are likely to be both positive and negative. Based on emerging data that suggest both growth and diet during early life program the IGF axis, the association between milk intake and later health is likely to be complex. [Notice]
-
-
-
Dietary Proteins as Environmental Modifiers of Type 1 Diabetes Mellitus
Vol. 26 (2006), pp. 175–202More Less▪ AbstractType 1 diabetes is an autoimmune disease in which the patient's immune system destroys the insulin-secreting β-cells in the pancreatic islets of Langerhans. A majority of cases is thought to occur as a result of gene-environment interactions. The identity of the environmental factors remains unknown mainly because of the difficulty in linking past exposures with later disease development. Overall, the data suggest a model in which individuals develop diabetes by several different pathways, each influenced by numerous genetic and environmental variables. The most investigated environmental factors are diet and viruses. In this review, we examine the evidence that the source of dietary proteins can modify diabetes outcome, describe new approaches to identify candidate diabetes-related dietary agents, examine possible links with gut dysfunction, discuss some of the limitations, and propose a multifactorial model for dietary modification of diabetes. The key to diabetes pathogenesis, its prevention, and the ultimate success of β-cell replacement therapies lies in understanding how the environment controls disease expression. Dietary proteins could be one of these keys.
-
-
-
The Clinical Significance of Asymmetric Dimethylarginine
Vol. 26 (2006), pp. 203–228More Less▪ AbstractIn 1992, asymmetrical dimethylarginine (ADMA) was first described as an endogenous inhibitor of the arginine-nitric oxide (NO) pathway. From then, its role in regulating NO production has attracted increasing attention. Nowadays, ADMA is regarded as a novel cardiovascular risk factor. The role of the kidney and the liver in the metabolism of ADMA has been extensively studied and both organs have proven to play a key role in the elimination of ADMA. Although the liver removes ADMA exclusively via degradation by the enzyme dimethylarginine dimethylaminohydrolase (DDAH), the kidney uses both metabolic degradation via DDAH and urinary excretion to eliminate ADMA. Modulating activity and/or expression of DDAH is still under research and may be a potential therapeutic approach to influence ADMA plasma levels. Interestingly, next to its association with cardiovascular disease, ADMA also seems to play a role in other clinical conditions, such as critical illness, hepatic failure, and preeclampsia. To elucidate the clinical significance of ADMA in these conditions, the field of research must be enlarged.
-
-
-
Choline: Critical Role During Fetal Development and Dietary Requirements in Adults
Vol. 26 (2006), pp. 229–250More Less▪ AbstractCholine is an essential nutrient needed for the structural integrity and signaling functions of cell membranes; for normal cholinergic neurotransmission; for normal muscle function; for lipid transport from liver; and it is the major source of methyl groups in the diet. Choline is critical during fetal development, when it influences stem cell proliferation and apoptosis, thereby altering brain and spinal cord structure and function and influencing risk for neural tube defects and lifelong memory function. Choline is derived not only from the diet, but from de novo synthesis as well. Though many foods contain choline, there is at least a twofold variation in dietary intake in humans. When deprived of dietary choline, most men and postmenopausal women developed signs of organ dysfunction (fatty liver or muscle damage), while less than half of premenopausal women developed such signs. Aside from gender differences, there is significant variation in the dietary requirement for choline that can be explained by very common genetic polymorphisms.
-
-
-
Hereditary Hemochromatosis
Vol. 26 (2006), pp. 251–270More Less▪ AbstractIn recent years, the number of proteins implicated in iron homeostasis has increased dramatically, and genetic causes have apparently been identified for the major disorders associated with tissue iron overload. These dramatic steps forward have transformed the way we look at iron-related disorders, particularly hemochromatosis. This review presents a concept of this disease that is based on this new knowledge and stems from the idea that, beyond their genetic diversities, all known hemochromatoses originate from the same metabolic error, the genetic disruption of human tendency for circulatory iron constancy. Hepcidin, the iron hormone, seems to hold a central pathogenic place in hemochromatosis, similar to insulin in diabetes: Genetically determined lack of hepcidin synthesis or activity may cause the disease.
-
-
-
Maternal Obesity, Metabolism, and Pregnancy Outcomes
Vol. 26 (2006), pp. 271–291More Less▪ AbstractAbout one third of all pregnant women in the United States are obese. Maternal obesity at conception alters gestational metabolic adjustments and affects placental, embryonic, and fetal growth and development. Neural tube defects and other developmental anomalies are more common in infants born to obese women; these defects have been linked to poor glycemic control. Preeclampsia, a gestational disorder occurring more frequently in obese women, appears to be due to a subclinical inflammatory state that impairs early placentation and development of its blood supply. Fetal growth and development during the last half of pregnancy depends on maternal metabolic adjustments dictated by placental hormones and the subsequent oxygen and nutrient supply. Maternal obesity affects these metabolic adjustments as well. Basal metabolic rates are significantly higher in obese women, and maternal fat gain is lower, possibly in response to altered leptin function. The usual increase in insulin resistance seen in late pregnancy is enhanced in obese mothers, causing marked postprandial increases in glucose, lipids, and amino acids and excessive fetal exposure to fuel sources, which in turn increases fetal size, fat stores, and risk for disease postnatally. Impaired glucose tolerance, gestational diabetes, and hyperlipidemia are more common among obese mothers. To date, little attention has been given to the role of diet among obese women in preventing these problems. However, studies of women with impaired glucose tolerance show that replacing refined carbohydrates and saturated fat with complex, low-glycemic carbohydrates and polyunsaturated fatty acids improves metabolic homeostasis and pregnancy outcomes. Thus, current dietary guidelines regarding the amount and type of carbohydrates and fat for nonpregnant women seem appropriate for pregnant women as well.
-
-
-
Nutritional Epidemiology and Thyroid Hormone Metabolism
Vol. 26 (2006), pp. 293–322More Less▪ AbstractSevere iodine deficiency was the main cause of endemic goiter and cretinism. Most of the previously iodine-deficient areas are now supplemented, mainly with iodized salt. The geographical distribution of severe endemic areas has been progressively reduced, and at present, approximately 200 million people living in remote places are still at risk of severe iodine deficiency. International public health programs should be focused first on reaching these populations, and second on auditing and monitoring the operational work of supplementation programs. This second point is essential to prevent iodine-induced hyperthyroidism or interruptions of iodine supplement distribution, which could be catastrophic for the fetus and the young infant. Echography brings a complementary tool to clinical assessment of goiter by palpation. Inductively coupled plasma–mass spectrometry brings at least a definitive gold standard for iodine measurement and thyroid hormone measurement. Thiocyanate overload has been clearly documented as a goitrogen in Central Africa, and when associated with selenium deficiency, it may be included as risk factor for endemic myxedematous cretinism. Variable exposure to different environmental risk factors is likely the explanation of the variable distribution of two types of endemic cretinism (neurological and myxedematous), and the clinical overlap of the pathogeny of both syndromes is more important than previously described. It is possible that Kashin-Beck osteoarthropathy is another evanescent endemic disease that will disappear with the correction of iodine deficiency.
-
-
-
Regulation of Iron Metabolism by Hepcidin
Vol. 26 (2006), pp. 323–342More Less▪ AbstractHepcidin, a peptide hormone made in the liver, is the principal regulator of systemic iron homeostasis. Hepcidin controls plasma iron concentration and tissue distribution of iron by inhibiting intestinal iron absorption, iron recycling by macrophages, and iron mobilization from hepatic stores. Hepcidin acts by inhibiting cellular iron efflux through binding to and inducing the degradation of ferroportin, the sole known cellular iron exporter. Synthesis of hepcidin is homeostatically increased by iron loading and decreased by anemia and hypoxia. Hepcidin is also elevated during infections and inflammation, causing a decrease in serum iron levels and contributing to the development of anemia of inflammation, probably as a host defense mechanism to limit the availability of iron to invading microorganisms. At the opposite side of the spectrum, hepcidin deficiency appears to be the ultimate cause of most forms of hemochromatosis, either due to mutations in the hepcidin gene itself or due to mutations in the regulators of hepcidin synthesis. The emergence of hepcidin as the pathogenic factor in most systemic iron disorders should provide important opportunities for improving their diagnosis and treatment.
-
-
-
Salt Handling and Hypertension
Vol. 26 (2006), pp. 343–365More Less▪ AbstractThe kidney plays a central role in our ability to maintain an appropriate sodium balance, which is critical for the determination of blood pressure. The kidney's capacity for salt conservation may not be widely appreciated, and in general we consume vastly more salt than we need. Here we consider the socioeconomics of salt consumption, outline current knowledge of renal salt handling at the molecular level, describe some of the disease entities associated with abnormal sodium handling, give an overview of some of the animal models and their relevance to human disease, and examine the evidence that lowering our salt intake can help combat hypertension and cardiovascular disease.
-
-
-
The Influence of Iron Status on Iodine Utilization and Thyroid Function
Vol. 26 (2006), pp. 367–389More Less▪ AbstractDespite significant progress, deficiencies of iron and iodine remain major public health problems affecting ≥30% of the global population. These deficiencies often coexist in children. Recent studies have demonstrated that a high prevalence of iron deficiency among children in areas of endemic goiter may reduce the effectiveness of iodized salt programs. These findings argue strongly for improving iron status in areas of overlapping deficiency, not only to combat anemia but also to increase the efficacy of iodine prophylaxis. The dual fortification of salt with iodine and iron may prove to be an effective and sustainable method to accomplish these important goals.
-
-
-
Glucagon-Like Peptide-2
Vol. 26 (2006), pp. 391–411More Less▪ AbstractMultiple peptide hormones produced within the gastrointestinal system aid in the regulation of energy homeostasis and metabolism. Among these is the intestinotrophic peptide glucagon-like peptide-2 (GLP-2), which is released following food intake and plays a significant role in the adaptive regulation of bowel mass and mucosal integrity. The discovery of GLP-2's potent growth-promoting and cytoprotective effects in the gastrointestinal (GI) tract stimulated interest in its use as a therapeutic agent for the treatment of GI diseases involving malabsorption, inflammation, and/or mucosal damage. Current research has focused on determining the physiological mechanisms contributing to the effects of GLP-2 and factors regulating its biological mechanisms of action. This chapter provides an overview of the biology of GLP-2 with a focus on the most recent findings on the role of this peptide hormone in the normal and diseased GI tract.
-
-
-
Genetics of Food Intake and Eating Behavior Phenotypes in Humans
Vol. 26 (2006), pp. 413–434More Less▪ AbstractThis review summarizes the research advances of the past decade regarding the role of human genetic differences in energy and nutrient intake as well as in eating behavior phenotypes and selected eating disorders. The evidence for familial aggregation and heritability based on twin and nuclear family study designs is summarized. Genome-wide linkage scans and quantitative trait loci identified to date are discussed. DNA sequence variants in candidate genes are reviewed. Single genes associated with classical eating disorders are also incorporated. Epigenetic events will need to be incorporated in future studies designed to investigate the effects of DNA variants on dietary phenotypes. Understanding the relative contribution of global genetic variation and of DNA sequence variants in specific genes is important in the effort to influence dietary habits in a healthier direction.
-
-
-
Cancer-Associated Cachexia and Underlying Biological Mechanisms
Vol. 26 (2006), pp. 435–461More Less▪ AbstractCancer metastases (spread to distant organs from the primary tumor site) signify systemic, progressive, and essentially incurable malignant disease. Anorexia and wasting develop continuously throughout the course of incurable cancer. Overall, in Westernized countries nearly exactly half of current cancer diagnoses end in cure and the other half end in death; thus, cancer-associated cachexia has a high prevalence. The pathophysiology of cancer-associated cachexia has two principal components: a failure of food intake and a systemic hypermetabolism/hypercatabolism syndrome. The superimposed metabolic changes result in a rate of depletion of physiological reserves of energy and protein that is greater than would be expected based on the prevailing level of food intake. These features indicate a need for nutritional support, metabolic management, and a clear appreciation of the context of life-limiting illness.
-
-
-
Immunonutrition in Surgery and Critical Care
Vol. 26 (2006), pp. 463–479More Less▪ AbstractThe benefits of specialty supplemented enteral diets administered to critically ill and critically injured patients and those undergoing major surgical procedures have been documented in a number of randomized prospective studies. It is unclear which nutrient or combination of nutrients causes the beneficial effects, but there are significant reductions in infectious complications depending upon the patient populations studied. It is imperative that the data be interpreted in the context of individual patient risk since specialty formulas appear most beneficial in patients at risk of subsequent complications or in those with significant pre-existing malnutrition. Although controversy exists regarding the use of specialty supplemented enteral diets in critically ill patients, they have been administered safely with minimal risk of adverse outcome in malnourished patients and in the critically ill and critically injured.
-
Previous Volumes
-
Volume 44 (2024)
-
Volume 43 (2023)
-
Volume 42 (2022)
-
Volume 41 (2021)
-
Volume 40 (2020)
-
Volume 39 (2019)
-
Volume 38 (2018)
-
Volume 37 (2017)
-
Volume 36 (2016)
-
Volume 35 (2015)
-
Volume 34 (2014)
-
Volume 33 (2013)
-
Volume 32 (2012)
-
Volume 31 (2011)
-
Volume 30 (2010)
-
Volume 29 (2009)
-
Volume 28 (2008)
-
Volume 27 (2007)
-
Volume 26 (2006)
-
Volume 25 (2005)
-
Volume 24 (2004)
-
Volume 23 (2003)
-
Volume 22 (2002)
-
Volume 21 (2001)
-
Volume 20 (2000)
-
Volume 19 (1999)
-
Volume 18 (1998)
-
Volume 17 (1997)
-
Volume 16 (1996)
-
Volume 15 (1995)
-
Volume 14 (1994)
-
Volume 13 (1993)
-
Volume 12 (1992)
-
Volume 11 (1991)
-
Volume 10 (1990)
-
Volume 9 (1989)
-
Volume 8 (1988)
-
Volume 7 (1987)
-
Volume 6 (1986)
-
Volume 5 (1985)
-
Volume 4 (1984)
-
Volume 3 (1983)
-
Volume 2 (1982)
-
Volume 1 (1981)
-
Volume 0 (1932)