Annual Review of Pharmacology and Toxicology - Volume 45, 2005
Volume 45, 2005
-
-
CLINICAL DEVELOPMENT OF HISTONE DEACETYLASE INHIBITORS AS ANTICANCER AGENTS*
Vol. 45 (2005), pp. 495–528More Less▪ AbstractAcetylation is a key posttranslational modification of many proteins responsible for regulating critical intracellular pathways. Although histones are the most thoroughly studied of acetylated protein substrates, histone acetyltransferases (HATs) and deacetylases (HDACs) are also responsible for modifying the activity of diverse types of nonhistone proteins, including transcription factors and signal transduction mediators. HDACs have emerged as uncredentialed molecular targets for the development of enzymatic inhibitors to treat human cancer, and six structurally distinct drug classes have been identified with in vivo bioavailability and intracellular capability to inhibit many of the known mammalian members representing the two general types of NAD+-independent yeast HDACs, Rpd3 (HDACs 1, 2, 3, 8) and Hda1 (HDACs 4, 5, 6, 7, 9a, 9b, 10). Initial clinical trials indicate that HDAC inhibitors from several different structural classes are very well tolerated and exhibit clinical activity against a variety of human malignancies; however, the molecular basis for their anticancer selectivity remains largely unknown. HDAC inhibitors have also shown preclinical promise when combined with other therapeutic agents, and innovative drug delivery strategies, including liposome encapsulation, may further enhance their clinical development and anticancer potential. An improved understanding of the mechanistic role of specific HDACs in human tumorigenesis, as well as the identification of more specific HDAC inhibitors, will likely accelerate the clinical development and broaden the future scope and utility of HDAC inhibitors for cancer treatment.
-
-
-
THE MAGIC BULLETS AND TUBERCULOSIS DRUG TARGETS
Vol. 45 (2005), pp. 529–564More Less▪ AbstractModern chemotherapy has played a major role in our control of tuberculosis. Yet tuberculosis still remains a leading infectious disease worldwide, largely owing to persistence of tubercle bacillus and inadequacy of the current chemotherapy. The increasing emergence of drug-resistant tuberculosis along with the HIV pandemic threatens disease control and highlights both the need to understand how our current drugs work and the need to develop new and more effective drugs. This review provides a brief historical account of tuberculosis drugs, examines the problem of current chemotherapy, discusses the targets of current tuberculosis drugs, focuses on some promising new drug candidates, and proposes a range of novel drug targets for intervention. Finally, this review addresses the problem of conventional drug screens based on inhibition of replicating bacilli and the challenge to develop drugs that target nonreplicating persistent bacilli. A new generation of drugs that target persistent bacilli is needed for more effective treatment of tuberculosis.
-
-
-
MOLECULAR MECHANISMS OF RESISTANCE IN ANTIMALARIAL CHEMOTHERAPY: The Unmet Challenge
Vol. 45 (2005), pp. 565–585More Less▪ AbstractThe enormous public health problem posed by malaria has been substantially worsened in recent years by the emergence and worldwide spread of drug-resistant parasites. The utility of two major therapies, chloroquine and the synergistic combination of pyrimethamine/sulfadoxine, is now seriously compromised. Although several genetic mechanisms have been described, the major source of drug resistance appears to be point mutations in protein target genes. Clinically significant resistance to these agents requires the accumulation of multiple mutations, which genetic studies of parasite populations suggest arise focally and sweep through the population. Efforts to circumvent resistance range from the use of combination therapy with existing agents to laboratory studies directed toward discovering novel targets and therapies.
The prevention and management of drug resistance are among the most important practical problems of tropical medicine and public health.
Leonard J. Bruce-Chwatt, 1972
-
-
-
SIGNALING NETWORKS IN LIVING CELLS
Vol. 45 (2005), pp. 587–603More Less▪ AbstractRecent advances in cell signaling research suggest that multiple sets of signal transducing molecules are preorganized and sequestered in distinct compartments within the cell. These compartments are assembled and maintained by specific cellular machinery. The molecular ecology within a compartment creates an environment that favors the efficient and accurate integration of signaling information arriving from humoral, mechanical, and nutritional sources. The functional organization of these compartments suggests they are the location of signaling networks that naturally organize into hierarchical interconnected sets of molecules through their participation in different classes of interacting units. An important goal is to determine the contribution of the compartment to the function of these networks in living cells.
-
-
-
HEPATIC FIBROSIS: Molecular Mechanisms and Drug Targets
Vol. 45 (2005), pp. 605–628More Less▪ AbstractLiver fibrosis is the common response to chronic liver injury, ultimately leading to cirrhosis and its complications, portal hypertension, liver failure, and hepatocellular carcinoma. Efficient and well-tolerated antifibrotic drugs are currently lacking, and current treatment of hepatic fibrosis is limited to withdrawal of the noxious agent. Efforts over the past decade have mainly focused on fibrogenic cells generating the scarring response, although promising data on inhibition of parenchymal injury and/or reduction of liver inflammation have also been obtained. A large number of approaches have been validated in culture studies and in animal models, and several clinical trials are underway or anticipated for a growing number of molecules. This review highlights recent advances in the molecular mechanisms of liver fibrosis and discusses mechanistically based strategies that have recently emerged.
-
-
-
ABERRANT DNA METHYLATION AS A CANCER-INDUCING MECHANISM
Vol. 45 (2005), pp. 629–656More Less▪ AbstractAberrant DNA methylation is the most common molecular lesion of the cancer cell. Neither gene mutations (nucleotide changes, deletions, recombinations) nor cytogenetic abnormalities are as common in human tumors as DNA methylation alterations. The most studied change of DNA methylation in neoplasms is the silencing of tumor suppressor genes by CpG island promoter hypermethylation, which targets genes such as p16INK4a, BRCA1, and hMLH1. There is a profile of CpG island hypermethylation according to the tumor type, and genes silent by methylation represent all cellular pathways. The introduction of bisulfite-PCR methodologies combined with new genomic approaches provides a comprehensive spectrum of the genes undergoing this epigenetic change across all malignancies. However, we still know very little about how this aberrant DNA methylation “invades” the previously unmethylated CpG island and how it is maintained through cell divisions. Furthermore, we should remember that this methylation occurs in the context of a global genomic loss of 5-methylcytosine (5mC). Initial clues to understand this paradox should be revealed from the current studies of DNA methyltransferases and methyl CpG binding proteins. From the translational standpoint, we should make an effort to validate the use of some hypermethylated genes as biomarkers of the disease; for example, it may occur with MGMT and GSTP1 in brain and prostate tumors, respectively. Finally, we must expect the development of new and more specific DNA demethylating agents that awake these methyl-dormant tumor suppressor genes and prove their therapeutic values. The expectations are high.
-
-
-
THE CARDIAC FIBROBLAST: Therapeutic Target in Myocardial Remodeling and Failure
Vol. 45 (2005), pp. 657–687More Less▪ AbstractCardiac fibroblasts play a central role in the maintenance of extracellular matrix in the normal heart and as mediators of inflammatory and fibrotic myocardial remodeling in the injured and failing heart. In this review, we evaluate the cardiac fibroblast as a therapeutic target in heart disease. Unique features of cardiac fibroblast cell biology are discussed in relation to normal and pathophysiological cardiac function. The contribution of cardiac fibrosis as an independent risk factor in the outcome of heart failure is considered. Candidate drug therapies that derive benefit from actions on cardiac fibroblasts are summarized, including inhibitors of angiotensin-aldosterone systems, endothelin receptor antagonists, statins, anticytokine therapies, matrix metalloproteinase inhibitors, and novel antifibrotic/anti-inflammatory agents. These findings point the way to future challenges in cardiac fibroblast biology and pharmacotherapy.
-
-
-
EVALUATION OF DRUG-DRUG INTERACTION IN THE HEPATOBILIARY AND RENAL TRANSPORT OF DRUGS
Vol. 45 (2005), pp. 689–723More Less▪ AbstractRecent studies have revealed the import role played by transporters in the renal and hepatobiliary excretion of many drugs. These transporters exhibit a broad substrate specificity with a degree of overlap, suggesting the possibility of transporter-mediated drug-drug interactions with other substrates. This review is an overview of the roles of transporters and the possibility of transporter-mediated drug-drug interactions. Among the large number of transporters, we compare the Ki values of inhibitors for organic anion transporting polypeptides (OATPs) and organic anion transporters (OATs) and their therapeutic unbound concentrations. Among them, cephalosporins and probenecid have the potential to produce clinically relevant OAT-mediated drug-drug interactions, whereas cyclosporin A and rifampicin may trigger OATP-mediated ones. These drugs have been reported to cause drug-drug interactions in vivo with OATs or OATP substrates, suggesting the possibility of transporter-mediated drug-drug interactions. To avoid adverse consequences of such transporter-mediated drug-drug interactions, we need to be more aware of the role played by drug transporters as well as those caused by drug metabolizing enzymes.
-
-
-
DUAL SPECIFICITY PROTEIN PHOSPHATASES: Therapeutic Targets for Cancer and Alzheimer's Disease
Vol. 45 (2005), pp. 725–750More Less▪ AbstractThe complete sequencing of the human genome is generating many novel targets for drug discovery. Understanding the pathophysiological roles of these putative targets and assessing their suitability for therapeutic intervention has become the major hurdle for drug discovery efforts. The dual-specificity phosphatases (DSPases), which dephosphorylate serine, threonine, and tyrosine residues in the same protein substrate, have important roles in multiple signaling pathways and appear to be deregulated in cancer and Alzheimer's disease. We examine the potential of DSPases as new molecular therapeutic targets for the treatment of human disease.
-
Previous Volumes
-
Volume 65 (2025)
-
Volume 64 (2024)
-
Volume 63 (2023)
-
Volume 62 (2022)
-
Volume 61 (2021)
-
Volume 60 (2020)
-
Volume 59 (2019)
-
Volume 58 (2018)
-
Volume 57 (2017)
-
Volume 56 (2016)
-
Volume 55 (2015)
-
Volume 54 (2014)
-
Volume 53 (2013)
-
Volume 52 (2012)
-
Volume 51 (2011)
-
Volume 50 (2010)
-
Volume 49 (2009)
-
Volume 48 (2008)
-
Volume 47 (2007)
-
Volume 46 (2006)
-
Volume 45 (2005)
-
Volume 44 (2004)
-
Volume 43 (2003)
-
Volume 42 (2002)
-
Volume 41 (2001)
-
Volume 40 (2000)
-
Volume 39 (1999)
-
Volume 38 (1998)
-
Volume 37 (1997)
-
Volume 36 (1996)
-
Volume 35 (1995)
-
Volume 34 (1994)
-
Volume 33 (1993)
-
Volume 32 (1992)
-
Volume 31 (1991)
-
Volume 30 (1990)
-
Volume 29 (1989)
-
Volume 28 (1988)
-
Volume 27 (1987)
-
Volume 26 (1986)
-
Volume 25 (1985)
-
Volume 24 (1984)
-
Volume 23 (1983)
-
Volume 22 (1982)
-
Volume 21 (1981)
-
Volume 20 (1980)
-
Volume 19 (1979)
-
Volume 18 (1978)
-
Volume 17 (1977)
-
Volume 16 (1976)
-
Volume 15 (1975)
-
Volume 14 (1974)
-
Volume 13 (1973)
-
Volume 12 (1972)
-
Volume 11 (1971)
-
Volume 10 (1970)
-
Volume 9 (1969)
-
Volume 8 (1968)
-
Volume 7 (1967)
-
Volume 6 (1966)
-
Volume 5 (1965)
-
Volume 4 (1964)
-
Volume 3 (1963)
-
Volume 2 (1962)
-
Volume 1 (1961)
-
Volume 0 (1932)