- Home
- A-Z Publications
- Annual Review of Virology
- Previous Issues
- Volume 5, 2018
Annual Review of Virology - Volume 5, 2018
Volume 5, 2018
-
-
Antiviral Approaches for the Treatment of Herpes Simplex Virus Infections in Newborn Infants
Vol. 5 (2018), pp. 407–425More LessHerpes simplex virus (HSV) infections in newborns are associated with severe disease and death. Trials conducted by the Collaborative Antiviral Study Group have established the standard of care for the treatment of neonatal HSV disease with marked improvements in morbidity and mortality. We review the studies that have contributed to our understanding of the epidemiology and clinical course of neonatal HSV disease and discuss the landmark trials that have resulted in safe and effective treatment together with improved diagnostics. Although significant advances have been made, neonatal HSV disease continues to have an unacceptably high mortality rate with significant sequelae in survivors. Further research is urgently needed for prevention.
-
-
-
Breaking the Last Chains of Poliovirus Transmission: Progress and Challenges in Global Polio Eradication
Olen Kew, and Mark PallanschVol. 5 (2018), pp. 427–451More LessSince the launch of the Global Polio Eradication Initiative (GPEI), paralytic cases associated with wild poliovirus (WPV) have fallen from ∼350,000 in 1988 to 22 in 2017. WPV type 2 (WPV2) was last detected in 1999, WPV3 in 2012, and WPV1 appeared to be localized to Pakistan and Afghanistan in 2017. Through continuous refinement, the GPEI has overcome operational and biological challenges far more complex and daunting than originally envisioned. Operational challenges had led to sustained WPV endemicity in core reservoirs and widespread dissemination to polio-free countries. The biological challenges derive from intrinsic limitations to the oral poliovirus vaccine: (a) reduced immunogenicity in high-risk settings and (b) genetic instability, leading to repeated outbreaks of circulating vaccine-derived polioviruses and prolonged infections in individuals with primary immunodeficiencies. As polio eradication enters its multifaceted endgame, the GPEI, with its technical, operational, and social innovations, stands as the preeminent model for control of vaccine-preventable diseases worldwide.
-
-
-
Phage-Based Applications in Synthetic Biology
Vol. 5 (2018), pp. 453–476More LessBacteriophage research has been instrumental to advancing many fields of biology, such as genetics, molecular biology, and synthetic biology. Many phage-derived technologies have been adapted for building gene circuits to program biological systems. Phages also exhibit significant medical potential as antibacterial agents and bacterial diagnostics due to their extreme specificity for their host, and our growing ability to engineer them further enhances this potential. Phages have also been used as scaffolds for genetically programmable biomaterials that have highly tunable properties. Furthermore, phages are central to powerful directed evolution platforms, which are being leveraged to enhance existing biological functions and even produce new ones. In this review, we discuss recent examples of how phage research is influencing these next-generation biotechnologies.
-
-
-
VIPERdb: A Tool for Virus Research
Vol. 5 (2018), pp. 477–488More LessThe VIrus Particle ExploreR database (VIPERdb) (http://viperdb.scripps.edu) is a database and web portal for primarily icosahedral virus capsid structures that integrates structure-derived information with visualization and analysis tools accessed through a set of web interfaces. Our aim in developing VIPERdb is to provide comprehensive structure-derived information on viruses comprising simple to detailed attributes such as size (diameter), architecture (T number), genome type, taxonomy, intersubunit association energies, and surface-accessible residues. In addition, a number of web-based tools are provided to enable users to interact with the structures and compare and contrast structure-derived properties between different viruses. Recently, we have constructed a series of data visualizations using modern JavaScript charting libraries such as Google Charts that allow users to explore trends and gain insights based on the various data available in the database. Furthermore, we now include helical viruses and nonicosahedral capsids by implementing modified procedures for data curation and analysis. This article provides an up-to-date overview of VIPERdb, describing various data and tools that are currently available and how to use them to facilitate structure-based bioinformatics analysis of virus capsids.
-