1932

Abstract

Accurate translation of genetic information is crucial for synthesis of functional proteins in all organisms. We use recent experimental data to discuss how induced fit affects accuracy of initial codon selection on the ribosome by aminoacyl transfer RNA in ternary complex () with elongation factor Tu (EF-Tu) and guanosine-5′-triphosphate (GTP). We define actual accuracy () of a particular protein synthesis system as its current accuracy and the effective selectivity () as in the limit of zero ribosomal binding affinity for . Intrinsic selectivity (), defined as the upper thermodynamic limit of , is determined by the free energy difference between near-cognate and cognate in the pre-GTP hydrolysis state on the ribosome. is much larger than , suggesting the possibility of a considerable increase in and at negligible kinetic cost. Induced fit increases and without affecting , and aminoglycoside antibiotics reduce and at unaltered .

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-060414-034148
2018-05-20
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/biophys/47/1/annurev-biophys-060414-034148.html?itemId=/content/journals/10.1146/annurev-biophys-060414-034148&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Blanchard SC, Gonzalez RL Jr., Kim HD, Chu S, Puglisi JD 2004. tRNA selection and kinetic proofreading in translation. Nat. Struct. Mol. Biol. 11:1008–14
    [Google Scholar]
  2. 2.  Borovinskaya MA, Pai RD, Zhang W, Schuwirth BS, Holton JM et al. 2007. Structural basis for aminoglycoside inhibition of bacterial ribosome recycling. Nat. Struct. Mol. Biol. 14:727–32
    [Google Scholar]
  3. 3.  Cabañas MJ, Vázquez D, Modolell J 1978. Inhibition of ribosomal translocation by aminoglycoside antibiotics. Biochem. Biophys. Res. Commun. 83:991–97
    [Google Scholar]
  4. 4.  Carter AP, Clemons WM, Brodersen DE, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V 2000. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407:340–48
    [Google Scholar]
  5. 5.  Daviter T, Gromadski KB, Rodnina MV 2006. The ribosome's response to codon-anticodon mismatches. Biochimie 88:1001–11
    [Google Scholar]
  6. 6.  Demeshkina N, Jenner L, Westhof E, Yusupov M, Yusupova G 2012. A new understanding of the decoding principle on the ribosome. Nature 484:256–59
    [Google Scholar]
  7. 7.  Demeshkina N, Jenner L, Westhof E, Yusupov M, Yusupova G 2013. New structural insights into the decoding mechanism: translation infidelity via a G·U pair with Watson-Crick geometry. FEBS Lett 587:1848–57
    [Google Scholar]
  8. 8.  Dincbas V, Heurgue-Hamard V, Buckingham RH, Karimi R, Ehrenberg M 1999. Shutdown in protein synthesis due to the expression of mini-genes in bacteria. J. Mol. Biol. 291:745–59
    [Google Scholar]
  9. 9.  Ehrenberg M, Blomberg C 1980. Thermodynamic constraints on kinetic proofreading in biosynthetic pathways. Biophys. J. 31:333–58
    [Google Scholar]
  10. 10.  Ehrenberg M, Kurland CG 1988. Measurement of translational kinetic parameters. Methods Enzymol 164:611–31
    [Google Scholar]
  11. 11.  Elf J, Ehrenberg M 2003. Fast evaluation of fluctuations in biochemical networks with the linear noise approximation. Genome Res 13:2475–84
    [Google Scholar]
  12. 12.  Fersht AR. 1977. Enzyme Structure and Mechanism New York: Freeman
  13. 13.  Fersht AR. 1987. Dissection of the structure and activity of the tyrosyl-tRNA synthetase by site-directed mutagenesis. Biochemistry 26:8031–37
    [Google Scholar]
  14. 14.  Fersht AR. 1997. Thermodynamic cycles. Structure and Mechanisms in Protein Science125–30 New York: W.H. Freeman and Co.
    [Google Scholar]
  15. 15.  Fersht AR, Mulvey RS, Koch GLE 1975. Ligand binding and enzymic catalysis coupled through subunits in tyrosyl-tRNA synthetase. Biochemistry 14:13–18
    [Google Scholar]
  16. 16.  Fischer N, Neumann P, Konevega AL, Bock LV, Ficner R et al. 2015. Structure of the E. coli ribosome–EF-Tu complex at <3 Å resolution by Cs-corrected cryo-EM. Nature 520:567–70
    [Google Scholar]
  17. 17.  Fourmy D, Recht MI, Blanchard SC, Puglisi JD 1996. Structure of the A site of Escherichia coli 16S ribosomal RNA complexed with an aminoglycoside antibiotic. Science 274:1367–71
    [Google Scholar]
  18. 18.  Fourmy D, Recht MI, Puglisi JD 1998. Binding of neomycin-class aminoglycoside antibiotics to the A site of 16 S rRNA. J. Mol. Biol. 277:347–62
    [Google Scholar]
  19. 19.  Freter RR, Savageau MA 1980. Proofreading systems of multiple stages for improved accuracy of biological discrimination. J. Theor. Biol. 85:99–123
    [Google Scholar]
  20. 20.  Gromadski KB, Daviter T, Rodnina MV 2006. A uniform response to mismatches in codon-anticodon complexes ensures ribosomal fidelity. Mol. Cell 21:369–77
    [Google Scholar]
  21. 21.  Gromadski KB, Rodnina MV 2004. Kinetic determinants of high-fidelity tRNA discrimination on the ribosome. Mol. Cell 13:191–200
    [Google Scholar]
  22. 22.  Gromadski KB, Rodnina MV 2004. Streptomycin interferes with conformational coupling between codon recognition and GTPase activation on the ribosome. Nat. Struct. Mol. Biol. 11:316–22
    [Google Scholar]
  23. 23.  Hopfield JJ. 1974. Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. PNAS 71:4135–39
    [Google Scholar]
  24. 24.  Ieong KW, Uzun U, Selmer M, Ehrenberg M 2016. Two proofreading steps amplify the accuracy of genetic code translation. PNAS 113:13744–49
    [Google Scholar]
  25. 25.  Jelenc PC, Kurland CG 1979. Nucleoside triphosphate regeneration decreases the frequency of translation errors. PNAS 76:3174–78
    [Google Scholar]
  26. 26.  Johansson M, Bouakaz E, Lovmar M, Ehrenberg M 2008. The kinetics of ribosomal peptidyl transfer revisited. Mol. Cell 30:589–98
    [Google Scholar]
  27. 27.  Johansson M, Ieong KW, Trobro S, Strazewski P, Aqvist J et al. 2011. pH-sensitivity of the ribosomal peptidyl transfer reaction dependent on the identity of the A-site aminoacyl-tRNA. PNAS 108:79–8428
    [Google Scholar]
  28. 28.  Johansson M, Lovmar M, Ehrenberg M 2008. Rate and accuracy of bacterial protein synthesis revisited. Curr. Opin. Microbiol. 11:141–47
    [Google Scholar]
  29. 29.  Johansson M, Zhang J, Ehrenberg M 2012. Genetic code translation displays a linear trade-off between efficiency and accuracy of tRNA selection. PNAS 109:131–36
    [Google Scholar]
  30. 30.  Karimi R, Ehrenberg M 1994. Dissociation rate of cognate peptidyl-tRNA from the A-site of hyper-accurate and error-prone ribosomes. Eur. J. Biochem. 226:355–60
    [Google Scholar]
  31. 31.  Kimsey IJ, Petzold K, Sathyamoorthy B, Stein ZW, Al-Hashimi HM 2015. Visualizing transient Watson-Crick-like mispairs in DNA and RNA duplexes. Nature 519:315–20
    [Google Scholar]
  32. 32.  Koshland DE Jr 1958. Application of a theory of enzyme specificity to protein synthesis. PNAS 44:98–104
    [Google Scholar]
  33. 33.  Koshland DE Jr., Neet KE. 1968. The catalytic and regulatory properties of enzymes. Annu. Rev. Biochem. 37:359–411
    [Google Scholar]
  34. 34.  Kramer EB, Farabaugh PJ 2007. The frequency of translational misreading errors in E. coli is largely determined by tRNA competition. RNA 13:87–96
    [Google Scholar]
  35. 35.  Kurland CG, Ehrenberg M 1987. Growth-optimizing accuracy of gene expression. Annu. Rev. Biophys. Biophys. Chem. 16:291–317
    [Google Scholar]
  36. 36.  Kurland CG, Rigler R, Ehrenberg M, Blomberg C 1975. Allosteric mechanism for codon-dependent tRNA selection on ribosomes. PNAS 72:4248–5137
    [Google Scholar]
  37. 37.  Loveland AB, Demo G, Grigorieff N, Korostelev AA 2017. Ensemble cryo-EM elucidates the mechanism of translation fidelity. Nature 546:113–17
    [Google Scholar]
  38. 38.  Lovmar M, Ehrenberg M 2006. Rate, accuracy and cost of ribosomes in bacterial cells. Biochimie 88:951–61
    [Google Scholar]
  39. 39.  Manickam N, Nag N, Abbasi A, Patel K, Farabaugh PJ 2014. Studies of translational misreading in vivo show that the ribosome very efficiently discriminates against most potential errors. RNA 20:9–15
    [Google Scholar]
  40. 40.  Moore PB, Steitz TA 2003. The structural basis of large ribosomal subunit function. Annu. Rev. Biochem. 72:813–50
    [Google Scholar]
  41. 41.  Ninio J. 1975. Kinetic amplification of enzyme discrimination. Biochimie 57:587–95
    [Google Scholar]
  42. 42.  Nissen P, Kjeldgaard M, Thirup S, Polekhina G, Reshetnikova L et al. 1995. Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog. Science 270:1464–72
    [Google Scholar]
  43. 43.  Ogle JM, Brodersen DE, Clemons WM Jr., Tarry MJ, Carter AP, Ramakrishnan V 2001. Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science 292:897–902
    [Google Scholar]
  44. 44.  Ogle JM, Murphy FV, Tarry MJ, Ramakrishnan V 2002. Selection of tRNA by the ribosome requires a transition from an open to a closed form. Cell 111:721–32
    [Google Scholar]
  45. 45.  Ogle JM, Ramakrishnan V 2005. Structural insights into translational fidelity. Annu. Rev. Biochem. 74:129–77
    [Google Scholar]
  46. 46.  Panecka J, Mura C, Trylska J 2014. Interplay of the bacterial ribosomal A-site, S12 protein mutations and paromomycin binding: a molecular dynamics study. PLOS ONE 9:e111811
    [Google Scholar]
  47. 47.  Pape T, Wintermeyer W, Rodnina MV 1998. Complete kinetic mechanism of elongation factor Tu-dependent binding of aminoacyl-tRNA to the A site of the E. coli ribosome. EMBO J 17:7490–97
    [Google Scholar]
  48. 48.  Pape T, Wintermeyer W, Rodnina M 1999. Induced fit in initial selection and proofreading of aminoacyl-tRNA on the ribosome. EMBO J 18:3800–7
    [Google Scholar]
  49. 49.  Pape T, Wintermeyer W, Rodnina MV 2000. Conformational switch in the decoding region of 16S rRNA during aminoacyl-tRNA selection on the ribosome. Nat. Struct. Biol. 7:104–7
    [Google Scholar]
  50. 50.  Pavlov MY, Liljas A, Ehrenberg M 2017. A recent intermezzo at the Ribosome Club. Philos. Trans. R. Soc. B 372:20160185
    [Google Scholar]
  51. 51.  Peng CS, Baiz CR, Tokmakoff A 2013. Direct observation of ground-state lactam–lactim tautomerization using temperature-jump transient 2D IR spectroscopy. PNAS 110:9243–48
    [Google Scholar]
  52. 52.  Rodnina MV. 2013. The ribosome as a versatile catalyst: reactions at the peptidyl transferase center. Curr. Opin. Struct. Biol. 23:595–602
    [Google Scholar]
  53. 53.  Rodnina MV, Pape T, Fricke R, Kuhn L, Wintermeyer W 1996. Initial binding of the elongation factor Tu·GTP·aminoacyl-tRNA complex preceding codon recognition on the ribosome. J. Biol. Chem. 271:646–52
    [Google Scholar]
  54. 54.  Rodnina MV, Wintermeyer W 2001. Fidelity of aminoacyl-tRNA selection on the ribosome: kinetic and structural mechanisms. Annu. Rev. Biochem. 70:415–35
    [Google Scholar]
  55. 55.  Rozov A, Demeshkina N, Khusainov I, Westhof E, Yusupov M, Yusupova G 2016. Novel base-pairing interactions at the tRNA wobble position crucial for accurate reading of the genetic code. Nat. Commun. 7:10457
    [Google Scholar]
  56. 56.  Rozov A, Demeshkina N, Westhof E, Yusupov M, Yusupova G 2015. Structural insights into the translational infidelity mechanism. Nat. Commun. 6:7251
    [Google Scholar]
  57. 57.  Rozov A, Demeshkina N, Westhof E, Yusupov M, Yusupova G 2016. New structural insights into translational miscoding. Trends Biochem. Sci. 41:798–814
    [Google Scholar]
  58. 58.  Rozov A, Westhof E, Yusupov M, Yusupova G 2016. The ribosome prohibits the G • U wobble geometry at the first position of the codon-anticodon helix. Nucleic Acids Res 44:6434–41
    [Google Scholar]
  59. 59.  Ruusala T, Ehrenberg M, Kurland CG 1982. Is there proofreading during polypeptide synthesis. ? EMBO J 1:741–45
    [Google Scholar]
  60. 60.  Satpati P, Aqvist J 2014. Why base tautomerization does not cause errors in mRNA decoding on the ribosome. Nucleic Acids Res 42:12876–84
    [Google Scholar]
  61. 61.  Satpati P, Sund J, Aqvist J 2014. Structure-based energetics of mRNA decoding on the ribosome. Biochemistry 53:1714–22
    [Google Scholar]
  62. 62.  Schmeing TM, Huang KS, Kitchen DE, Strobel SA, Steitz TA 2005. Structural insights into the roles of water and the 2′ hydroxyl of the P site tRNA in the peptidyl transferase reaction. Mol. Cell 20:437–48
    [Google Scholar]
  63. 63.  Schmeing TM, Voorhees RM, Kelley AC, Gao Y-G, Murphy FV IV et al. 2009. The crystal structure of the ribosome bound to EF-Tu and aminoacyl-tRNA. Science 326:688–94
    [Google Scholar]
  64. 64.  Schuette JC, Murphy FV 4th, Kelley AC, Weir JR, Giesebrecht J et al. 2009. GTPase activation of elongation factor EF-Tu by the ribosome during decoding. EMBO J 28:755–65
    [Google Scholar]
  65. 65.  Singh V, Fedeles BI, Essigmann JM 2015. Role of tautomerism in RNA biochemistry. RNA 21:1–13
    [Google Scholar]
  66. 66.  Stark H, Rodnina MV, Wieden H-J, Zemlin F, Wintermeyer W, van Heel M 2002. Ribosome interactions of aminoacyl-tRNA and elongation factor Tu in the codon-recognition complex. Nat. Struct. Biol. 9:849–54
    [Google Scholar]
  67. 67.  Thompson RC, Stone PJ 1977. Proofreading of the codon-anticodon interaction on ribosomes. PNAS 74:198–202
    [Google Scholar]
  68. 68.  Topal MD, Fresco JR 1976. Base pairing and fidelity in codon-anticodon interaction. Nature 263:289–93
    [Google Scholar]
  69. 69.  Trobro S, Åqvist J 2006. Analysis of predictions for the catalytic mechanism of ribosomal peptidyl transfer. Biochemistry 45:7049–56
    [Google Scholar]
  70. 70.  Valle M, Sengupta J, Swami NK, Grassucci RA, Burkhardt N et al. 2002. Cryo-EM reveals an active role for aminoacyl-tRNA in the accommodation process. EMBO J 21:3557–67
    [Google Scholar]
  71. 71.  Vicens Q, Westhof E 2003. Molecular recognition of aminoglycoside antibiotics by ribosomal RNA and resistance enzymes: an analysis of x-ray crystal structures. Biopolymers 70:42–57
    [Google Scholar]
  72. 72.  Voorhees RM, Weixlbaumer A, Loakes D, Kelley AC, Ramakrishnan V 2009. Insights into substrate stabilization from snapshots of the peptidyl transferase center of the intact 70S ribosome. Nat. Struct. Mol. Biol. 16:528–33
    [Google Scholar]
  73. 73.  Voorhees RM, Schmeing TM, Kelley AC, Ramakrishnan V 2010. The mechanism for activation of GTP hydrolysis on the ribosome. Science 330:835–38
    [Google Scholar]
  74. 74.  Voorhees RM, Mandal D, Neubauer C, Köhrer C, RajBhandary UL, Ramakrishnan V 2013. The structural basis for specific decoding of AUA by isoleucine tRNA on the ribosome. Nat. Struct. Mol. Biol. 20:641–43
    [Google Scholar]
  75. 75.  Voorhees RM, Ramakrishnan V 2013. Structural basis of the translational elongation cycle. Annu. Rev. Biochem. 82:203–36
    [Google Scholar]
  76. 76.  Wang J, Kwiatkowski M, Pavlov MY, Ehrenberg M, Forster AC 2014. Peptide formation by N-methyl amino acids in translation is hastened by higher pH and tRNAPro. ACS Chem. Biol. 9:1303–11
    [Google Scholar]
  77. 77.  Zhang J, Ieong KW, Johansson M, Ehrenberg M 2015. Accuracy of initial codon selection by aminoacyl-tRNAs on the mRNA-programmed bacterial ribosome. PNAS 112:9602–7
    [Google Scholar]
  78. 78.  Zhang J, Ieong KW, Mellenius H, Ehrenberg M 2016. Proofreading neutralizes potential error hotspots in genetic code translation by transfer RNAs. RNA 22:896–904
    [Google Scholar]
  79. 79.  Zhang J, Pavlov MY, Ehrenberg M 2018. Accuracy of genetic code translation and its orthogonal corruption by aminoglycosides and Mg2+ ions. Nucleic Acids Res 46:1362–74
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-060414-034148
Loading
/content/journals/10.1146/annurev-biophys-060414-034148
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error