1932

Abstract

The ocean has undergone several profound biogeochemical transformations in its 4-billion-year history, and these were an integral part of the coevolution of life and the planet. This review focuses on changes in ocean redox state as controlled by changes in biological activity, nutrient concentrations, and atmospheric O. Motivated by disparate interpretations of available geochemical data, we aim to show how quantitative modeling—spanning microbial mats, shelf seas, and the open ocean—can help constrain past ocean biogeochemical redox states and show what caused transformations between them. We outline key controls on ocean redox structure and review pertinent proxies and their interpretation. We then apply this quantitative framework to three key questions: How did the origin of oxygenic photosynthesis transform ocean biogeochemistry? How did the Great Oxidation transform ocean biogeochemistry? And how was ocean biogeochemistry transformed in the Neoproterozoic-Paleozoic?

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-010816-060521
2017-01-03
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/marine/9/1/annurev-marine-010816-060521.html?itemId=/content/journals/10.1146/annurev-marine-010816-060521&mimeType=html&fmt=ahah

Literature Cited

  1. Ader M, Sansjofre P, Halverson GP, Busigny V, Trindade RIF. et al. 2014. Ocean redox structure across the Late Neoproterozoic Oxygenation Event: a nitrogen isotope perspective. Earth Planet. Sci. Lett. 396:1–13 [Google Scholar]
  2. Algeo TJ, Luo GM, Song HY, Lyons TW, Canfield DE. 2015. Reconstruction of secular variation in seawater sulfate concentrations. Biogeosciences 12:2131–51 [Google Scholar]
  3. Algeo TJ, Rowe H. 2012. Paleoceanographic applications of trace-metal concentration data. Chem. Geol. 324–25:6–18 [Google Scholar]
  4. Algeo TJ, Tribovillard N. 2009. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation. Chem. Geol. 268:211–25 [Google Scholar]
  5. Allwood AC, Walter MR, Kamber BS, Marshall CP, Burch IW. 2006. Stromatolite reef from the Early Archaean era of Australia. Nature 441:714–18 [Google Scholar]
  6. Anbar AD, Duan Y, Lyons TW, Arnold GL, Kendall B. et al. 2007. A whiff of oxygen before the Great Oxidation Event?. Science 317:1903–6 [Google Scholar]
  7. Bachan A, Kump LR. 2015. The rise of oxygen and siderite oxidation during the Lomagundi Event. PNAS 112:6562–67 [Google Scholar]
  8. Beaumont V. 1999. Nitrogen isotope ratios of kerogens in Precambrian cherts: a record of the evolution of atmosphere chemistry?. Precambr. Res. 96:63–82 [Google Scholar]
  9. Bekker A, Holland HD. 2012. Oxygen overshoot and recovery during the early Paleoproterozoic. Earth Planet. Sci. Lett. 317–18:295–304 [Google Scholar]
  10. Bekker A, Planavsky NJ, Krapež B, Rasmussen B, Hofmann A. et al. 2014. Iron formations: their origins and implications for ancient seawater chemistry. Treatise on Geochemistry, Vol. 9: Sediments, Diagenesis and Sedimentary Rocks HD Holland, KK Turekian 561–628 Oxford, UK: Elsevier Sci, 2nd ed.. [Google Scholar]
  11. Belcher CM, McElwain JC. 2008. Limits for combustion in low O2 redefine paleoatmospheric predictions for the Mesozoic. Science 321:1197–200 [Google Scholar]
  12. Bergman NM, Lenton TM, Watson AJ. 2004. COPSE: a new model of biogeochemical cycling over Phanerozoic time. Am. J. Sci. 304:397–437 [Google Scholar]
  13. Berner RA, Raiswell R. 1983. Burial of organic carbon and pyrite sulfur in sediments over phanerozoic time: a new theory. Geochim. Cosmochim. Acta 47:855–62 [Google Scholar]
  14. Bjerrum CJ, Canfield DE. 2002. Ocean productivity before about 1.9 Gyr ago limited by phosphorus adsorption onto iron oxides. Nature 417:159–62 [Google Scholar]
  15. Bjerrum CJ, Canfield DE. 2004. New insights into the burial history of organic carbon on the early Earth. Geochem. Geophys. Geosyst. 5:Q08001 [Google Scholar]
  16. Blake RE, Chang SJ, Lepland A. 2010. Phosphate oxygen isotopic evidence for a temperate and biologically active Archaean ocean. Nature 464:1029–32 [Google Scholar]
  17. Boyd E, Peters JW. 2013. New insights into the evolutionary history of biological nitrogen fixation. Front. Microbiol. 4:201 [Google Scholar]
  18. Boyle RA, Clark JR, Poulton SW, Shields-Zhou G, Canfield DE, Lenton TM. 2013. Nitrogen cycle feedbacks as a control on euxinia in the mid-Proterozoic ocean. Nat. Commun. 4:1533 [Google Scholar]
  19. Boyle RA, Dahl TW, Dale AW, Shields-Zhou GA, Zhu M. et al. 2014. Stabilization of the coupled oxygen and phosphorus cycles by the evolution of bioturbation. Nat. Geosci. 7:671–76 [Google Scholar]
  20. Brocks JJ, Banfield JF. 2009. Unravelling ancient microbial history with community proteogenomics and lipid geochemistry. Nat. Rev. Microbiol. 7:601–9 [Google Scholar]
  21. Buick R. 1992. The antiquity of oxygenic photosynthesis: evidence from stromatolites in sulphate-deficient Archaean lakes. Science 255:74–77 [Google Scholar]
  22. Buick R. 2008. When did oxygenic photosynthesis evolve?. Philos. Trans. R. Soc. Lond. B 363:2731–43 [Google Scholar]
  23. Canfield DE. 1998. A new model for Proterozoic ocean chemistry. Nature 396:450–53 [Google Scholar]
  24. Canfield DE. 1999. The evolution of the sulfur cycle. Am. J. Sci. 299:697–723 [Google Scholar]
  25. Canfield DE. 2014. Proterozoic atmospheric oxygen. Treatise on Geochemistry 6 The Atmosphere—History HD Holland, KK Turekian 197–216 Oxford, UK: Elsevier Sci, 2nd ed.. [Google Scholar]
  26. Canfield DE, Farquhar J. 2009. Animal evolution, bioturbation, and the sulfate concentration of the oceans. PNAS 106:8123–27 [Google Scholar]
  27. Canfield DE, Ngombi-Pemba L, Hammarlund EU, Bengtson S, Chaussidon M. et al. 2013. Oxygen dynamics in the aftermath of the Great Oxidation of Earth's atmosphere. PNAS 110:16736–41 [Google Scholar]
  28. Canfield DE, Poulton SW, Knoll AH, Narbonne GM, Ross G. et al. 2008. Ferruginous conditions dominated later Neoproterozoic deep-water chemistry. Science 321:949–52 [Google Scholar]
  29. Canfield DE, Poulton SW, Narbonne GM. 2007. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science 315:92–95 [Google Scholar]
  30. Canfield DE, Rosing MT, Bjerrum C. 2006. Early anaerobic metabolisms. Philos. Trans. R. Soc. Lond. B 361:1819–36 [Google Scholar]
  31. Canfield DE, Teske A. 1996. Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature 382:127–32 [Google Scholar]
  32. Chen X, Ling H-F, Vance D, Shields-Zhou GA, Zhu M. et al. 2015. Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals. Nat. Commun. 6:7142 [Google Scholar]
  33. Cloud PE. 1965. Significance of the Gunflint (Precambrian) Microflora: photosynthetic oxygen may have had important local effects before becoming a major atmospheric gas. Science 148:27–35 [Google Scholar]
  34. Cohen PA, Schopf JW, Butterfield NJ, Kudryavtsev AB, Macdonald FA. 2011. Phosphate biomineralization in mid-Neoproterozoic protists. Geology 39:539–42 [Google Scholar]
  35. Crowe SA, Døssing LN, Beukes NJ, Bau M, Kruger SJ. et al. 2013. Atmospheric oxygenation three billion years ago. Nature 501:535–38 [Google Scholar]
  36. Crowe SA, Paris G, Katsev S, Jones C, Kim S-T. et al. 2014. Sulfate was a trace constituent of Archean seawater. Science 346:735–39 [Google Scholar]
  37. Czaja AD, Johnson CM, Roden EE, Beard BL, Voegelin AR. et al. 2012. Evidence for free oxygen in the Neoarchean ocean based on coupled iron-molybdenum isotope fractionation. Geochim. Cosmochim. Acta 86:118–37 [Google Scholar]
  38. Dahl TW, Hammarlund EU, Anbar AD, Bond DPG, Gill BC. et al. 2010. Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish. PNAS 107:17911–15 [Google Scholar]
  39. Daines SJ, Lenton TM. 2016. The effect of widespread early aerobic marine ecosystems on methane cycling and the Great Oxidation. Earth Planet. Sci. Lett. 434:42–51 [Google Scholar]
  40. Dale AW, Boyle RA, Lenton TM, Ingall ED, Wallmann K. 2016. A model for microbial phosphorus cycling in bioturbated marine sediments: significance for phosphorus burial in the early Paleozoic. Geochim. Cosmochim. Acta. 189:251–68 [Google Scholar]
  41. David LA, Alm EJ. 2011. Rapid evolutionary innovation during an Archaean genetic expansion. Nature 469:93–96 [Google Scholar]
  42. Derry LA. 2015. Causes and consequences of mid-Proterozoic anoxia. Geophys. Res. Lett. 42:8538–46 [Google Scholar]
  43. DesMarais DJ, Strauss H, Summons RE, Hayes JM. 1992. Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment. Nature 359:605–9 [Google Scholar]
  44. Eigenbrode JL, Freeman KH. 2006. Late Archean rise of aerobic microbial ecosystems. PNAS 103:15759–64 [Google Scholar]
  45. Farquhar J, Zerkle AL, Bekker A. 2014. Geologic and geochemical constraints on Earth's early atmosphere. Treatise on Geochemistry, Vol. 9: Sediments, Diagenesis and Sedimentary Rocks HD Holland, KK Turekian 91–138 Oxford, UK: Elsevier Sci, 2nd ed.. [Google Scholar]
  46. Fike DA, Bradley AS, Rose CV. 2015. Rethinking the ancient sulfur cycle. Annu. Rev. Earth Planet. Sci. 43:593–622 [Google Scholar]
  47. Fischer AG. 1965. Fossils, early life, and atmospheric history. PNAS 53:1205–15 [Google Scholar]
  48. Fischer WW, Fike DA, Johnson JE, Raub TD, Guan Y. et al. 2014. SQUID-SIMS is a useful approach to uncover primary signals in the Archean sulfur cycle. PNAS 111:5468–73 [Google Scholar]
  49. Fischer WW, Schroeder S, Lacassie JP, Beukes NJ, Goldberg T. et al. 2009. Isotopic constraints on the Late Archean carbon cycle from the Transvaal Supergroup along the western margin of the Kaapvaal Craton, South Africa. Precambr. Res. 169:15–27 [Google Scholar]
  50. Frei R, Gaucher C, Poulton SW, Canfield DE. 2009. Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes. Nature 461:250–53 [Google Scholar]
  51. French KL, Hallmann C, Hope JM, Schoon PL, Zumberge JA. et al. 2015. Reappraisal of hydrocarbon biomarkers in Archean rocks. PNAS 112:5915–20 [Google Scholar]
  52. Garvin J, Buick R, Anbar AD, Arnold GL, Kaufman AJ. 2009. Isotopic evidence for an aerobic nitrogen cycle in the latest Archean. Science 323:1045–48 [Google Scholar]
  53. Godfrey LV, Falkowski PG. 2009. The cycling and redox state of nitrogen in the Archaean ocean. Nat. Geosci. 2:725–29 [Google Scholar]
  54. Godfrey LV, Poulton SW, Bebout GE, Fralick PW. 2013. Stability of the nitrogen cycle during development of sulfidic water in the redox-stratified late Paleoproterozoic Ocean. Geology 41:655–58 [Google Scholar]
  55. Gómez-Peral LE, Kaufman AJ, Poiré DG. 2014. Paleoenvironmental implications of two phosphogenic events in Neoproterozoic sedimentary successions of the Tandilia System, Argentina. Precambr. Res. 252:88–106 [Google Scholar]
  56. Grassineau NV, Abell P, Appel PWU, Lowry D, Nisbet EG. 2006. Early life signatures in sulfur and carbon isotopes from Isua, Barberton, Wabigoon (Steep Rock), and Belingwe Greenstone Belts (3.8 to 2.7 Ga). GSA Mem. 198:33–52 [Google Scholar]
  57. Grotzinger JP, Kasting JF. 1993. New constraints on Precambrian ocean composition. J. Geol. 101:235–43 [Google Scholar]
  58. Guilbaud R, Butler IB, Ellam RM. 2011. Abiotic pyrite formation produces a large Fe isotope fractionation. Science 332:1548–51 [Google Scholar]
  59. Guilbaud R, Poulton SW, Butterfield NJ, Zhu M, Shields-Zhou GA. 2015. A global transition to ferruginous conditions in the early Neoproterozoic oceans. Nat. Geosci. 8:466–70 [Google Scholar]
  60. Guy BM, Ono S, Gutzmer J, Kaufman AJ, Lin Y. et al. 2012. A multiple sulfur and organic carbon isotope record from non-conglomeratic sedimentary rocks of the Mesoarchean Witwatersrand Supergroup, South Africa. Precambr. Res. 216–19:208–31 [Google Scholar]
  61. Habicht KS, Gade M, Thamdrup B, Berg P, Canfield DE. 2002. Calibration of sulfate levels in the Archean ocean. Science 298:2372–74 [Google Scholar]
  62. Halevy I. 2013. Production, preservation, and biological processing of mass-independent sulfur isotope fractionation in the Archean surface environment. PNAS 110:17644–49 [Google Scholar]
  63. Harada M, Tajika E, Sekine Y. 2015. Transition to an oxygen-rich atmosphere with an extensive overshoot triggered by the Paleoproterozoic snowball Earth. Earth Planet. Sci. Lett. 419:178–86 [Google Scholar]
  64. Hardisty DS, Lu Z, Planavsky NJ, Bekker A, Philippot P. et al. 2014. An iodine record of Paleoproterozoic surface ocean oxygenation. Geology 42:619–22 [Google Scholar]
  65. Hayes JM. 1983. Geochemical evidence bearing on the origin of aerobiosis, a speculative hypothesis. Earth's Earliest Biosphere: Its Origin and Evolution JW Schopf 291–301 Princeton, NJ: Princeton Univ. Press [Google Scholar]
  66. Hayes JM. 1994. Global methanotrophy at the Archean-Proterozoic transition. Early Life on Earth S Bengtson 220–36 New York: Columbia Univ. Press [Google Scholar]
  67. Hayes JM, Waldbauer JR. 2006. The carbon cycle and associated redox processes through time. Philos. Trans. R. Soc. Lond. B 361:931–50 [Google Scholar]
  68. Herman EK, Kump LR. 2005. Biogeochemistry of microbial mats under Precambrian environmental conditions: a modelling study. Geobiology 3:77–92 [Google Scholar]
  69. Hiatt EE, Pufahl PK, Edwards CT. 2015. Sedimentary phosphate and associated fossil bacteria in a Paleoproterozoic tidal flat in the 1.85 Ga Michigamme Formation, Michigan, USA. Sediment. Geol. 319:24–39 [Google Scholar]
  70. Higgins MB, Robinson RS, Husson J, Carter SJ, Pearson A. 2012. Dominant eukaryotic export production during ocean anoxic events reflects the importance of recycled NH4+. PNAS 109:2269–74 [Google Scholar]
  71. Holland HD. 1984. The Chemical Evolution of the Atmosphere and Oceans Princeton, NJ: Princeton Univ. Press
  72. Hotinski RM, Kump LR, Arthur MA. 2004. The effectiveness of the Paleoproterozoic biological pump: a δ13C gradient from platform carbonates of the Pethei Group (Great Slave Lake Supergroup, NWT). Bull. Geol. Soc. Am. 116:539–54 [Google Scholar]
  73. Izon G, Zerkle AL, Zhelezinskaia I, Farquhar J, Newton RJ. et al. 2015. Multiple oscillations in Neoarchaean atmospheric chemistry. Earth Planet. Sci. Lett. 431:264–73 [Google Scholar]
  74. Johnson JE, Gerpheide A, Lamb MP, Fischer WW. 2014. O2 constraints from Paleoproterozoic detrital pyrite and uraninite. Geol. Soc. Am. Bull. 126813–30
  75. Johnston DT, Wolfe-Simon F, Pearson A, Knoll AH. 2009. Anoxygenic photosynthesis modulated Proterozoic oxygen and sustained Earth's middle age. PNAS 106:16925–29 [Google Scholar]
  76. Jones C, Crowe SA, Sturm A, Leslie KL, MacLean LCW. et al. 2011. Biogeochemistry of manganese in Lake Matano, Indonesia. Biogeosci. Discuss. 8:4063–106 [Google Scholar]
  77. Jones C, Nomosatryo S, Crowe SA, Bjerrum CJ, Canfield DE. 2015. Iron oxides, divalent cations, silica, and the early earth phosphorus crisis. Geology 43:135–38 [Google Scholar]
  78. Kah LC, Lyons TW, Frank TD. 2004. Low marine sulphate and protracted oxygenation of the Proterozoic biosphere. Nature 431:834–38 [Google Scholar]
  79. Kamber BS, Whitehouse MJ. 2006. Micro-scale sulphur isotope evidence for sulphur cycling in the late Archean shallow ocean. Geobiology 5:5–17 [Google Scholar]
  80. Kasting JF. 1987. Theoretical constraints on oxygen and carbon dioxide concentrations in the Precambrian atmosphere. Precambr. Res. 34:205–29 [Google Scholar]
  81. Kasting JF. 1991. Box models for the evolution of atmospheric oxygen: an update. Glob. Planet. Change 97:125–31 [Google Scholar]
  82. Kasting JF. 1993. Earth's early atmosphere. Science 259:920–26 [Google Scholar]
  83. Kaufman AJ, Johnston DT, Farquhar J, Masterson AL, Lyons TW. et al. 2007. Late Archean biospheric oxygenation and atmospheric evolution. Science 317:1900–3 [Google Scholar]
  84. Kendall B, Creaser RA, Reinhard CT, Lyons TW, Anbar AD. 2015. Transient episodes of mild environmental oxygenation and oxidative continental weathering during the late Archean. Sci. Adv. 1:e1500777 [Google Scholar]
  85. Kendall B, Reinhard CT, Lyons TW, Kaufman AJ, Poulton SW, Anbar AD. 2010. Pervasive oxygenation along late Archaean ocean margins. Nat. Geosci. 3:647–52 [Google Scholar]
  86. Kharecha P, Kasting J, Siefert J. 2005. A coupled atmosphere-ecosystem model of the early Archean Earth. Geobiology 3:53–76 [Google Scholar]
  87. Kim KM, Qin T, Jiang Y-Y, Chen L-L, Xiong M. et al. 2012. Protein domain structure uncovers the origin of aerobic metabolism and the rise of planetary oxygen. Structure 20:67–76 [Google Scholar]
  88. Klein C, Beukes NJ. 1992. Time distribution, stratigraphy, and sedimentologic setting, and geochemistry of Precambrian iron-formations. The Proterozoic Biosphere: A Multidisciplinary Study JW Schopf 139–46 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  89. Knoll AH, Summons RE, Waldbauer JR, Zumberge JE. 2007. The geological succession of primary producers in the oceans. Evolution of Primary Producers of the Sea PG Falkowski, AH Knoll 133–63 Boston: Elsevier [Google Scholar]
  90. Konhauser KO, Lalonde SV, Amskold L, Holland HD. 2007. Was there really an Archean phosphate crisis?. Science 315:1234 [Google Scholar]
  91. Konhauser KO, Lalonde SV, Planavsky NJ, Pecoits E, Lyons TW. et al. 2011. Aerobic bacterial pyrite oxidation and acid rock drainage during the Great Oxidation Event. Nature 478:369–73 [Google Scholar]
  92. Krapez B, Barley ME, Pickard AL. 2003. Hydrothermal and resedimented origins of the precursor sediments to banded iron formation: sedimentological evidence from the Early Palaeoproterozoic Brockman Supersequence of Western Australia. Sedimentology 50:979–1011 [Google Scholar]
  93. Kump LR. 2014. Hypothesized link between Neoproterozoic greening of the land surface and the establishment of an oxygen-rich atmosphere. PNAS 11114062–65
  94. Kump LR, Seyfried WE. 2005. Hydrothermal Fe fluxes during the Precambrian: effect of low oceanic sulfate concentrations and low hydrostatic pressure on the composition of black smokers. Earth Planet. Sci. Lett. 235:654–62 [Google Scholar]
  95. Kurzweil F, Claire MW, Thomazo C, Peters M, Hannington M, Strauss H. 2013. Atmospheric sulfur rearrangement 2.7 billion years ago: evidence for oxygenic photosynthesis. Earth Planet. Sci. Lett. 366:17–26 [Google Scholar]
  96. Laakso TA, Schrag DP. 2014. Regulation of atmospheric oxygen during the Proterozoic. Earth Planet. Sci. Lett. 388:81–91 [Google Scholar]
  97. Lalonde SV, Konhauser KO. 2015. Benthic perspective on Earth's oldest evidence for oxygenic photosynthesis. PNAS 112:995–1000 [Google Scholar]
  98. Lenton TM, Boyle RA, Poulton SW, Shields GA, Butterfield NJ. 2014. Co-evolution of eukaryotes and ocean oxygenation in the Neoproterozoic era. Nat. Geosci. 7:257–65 [Google Scholar]
  99. Lenton TM, Dahl TW, Daines SJ, Mills BJW, Ozaki K. et al. 2016. Earliest land plants created modern levels of atmospheric oxygen. PNAS 1139704–9 [Google Scholar]
  100. Lepland A, Joosu L, Kirsimäe K, Prave AR, Romashkin AE. et al. 2013. Potential influence of sulphur bacteria on Palaeoproterozoic phosphogenesis. Nat. Geosci. 7:20–24 [Google Scholar]
  101. Li Y-L, Sun S, Chan LS. 2013. Phosphogenesis in the 2460 and 2728 million-year-old banded iron formations as evidence for biological cycling of phosphate in the early biosphere. Ecol. Evol. 3:115–25 [Google Scholar]
  102. Logan GB, Hayes JM, Hieshima GB, Summons RE. 1995. Terminal Proterozoic reorganization of biogeochemical cycles. Nature 376:53–56 [Google Scholar]
  103. Luo G, Ono S, Huang J, Algeo TJ, Li C. et al. 2015. Decline in oceanic sulfate levels during the early Mesoproterozoic. Precambr. Res. 258:36–47 [Google Scholar]
  104. Lyons TW, Anbar AD, Severmann S, Scott C, Gill BC. 2009. Tracking euxinia in the ancient ocean: a multiproxy perspective and proterozoic case study. Annu. Rev. Earth Planet. Sci. 37:507–34 [Google Scholar]
  105. Lyons TW, Reinhard CT, Planavsky NJ. 2014. The rise of oxygen in Earth's early ocean and atmosphere. Nature 506:307–15 [Google Scholar]
  106. Marais DJD. 2003. Biogeochemistry of hypersaline microbial mats illustrates the dynamics of modern microbial ecosystems and the early evolution of the biosphere. Biol. Bull. 204:160 [Google Scholar]
  107. Marsh R, Hickman AE, Sharples J. 2015. S2P3-R (v1.0): a framework for efficient regional modelling of physical and biological structures and processes in shelf seas. Geosci. Model Dev. 8:3163–78 [Google Scholar]
  108. Mills DB, Ward LM, Jones C, Sweeten B, Forth M. et al. 2014. Oxygen requirements of the earliest animals. PNAS 1114168–72
  109. Mitchell K, Mason PRD, Van Cappellen P, Johnson TM, Gill BC. et al. 2012. Selenium as paleo-oceanographic proxy: a first assessment. Geochim. Cosmochim. Acta 89:302–17 [Google Scholar]
  110. Murakami T, Sreenivas B, Sharma SD, Sugimori H. 2011. Quantification of atmospheric oxygen levels during the Paleoproterozoic using paleosol compositions and iron oxidation kinetics. Geochim. Cosmochim. Acta 75:3982–4004 [Google Scholar]
  111. Och LM, Shields-Zhou GA. 2012. The Neoproterozoic oxygenation event: environmental perturbations and biogeochemical cycling. Earth Sci. Rev. 110:26–57 [Google Scholar]
  112. Olson SL, Kump LR, Kasting JF. 2013. Quantifying the areal extent and dissolved oxygen concentrations of Archean oxygen oases. Chem. Geol. 362:35–43 [Google Scholar]
  113. Ozaki K, Tajika E. 2013. Biogeochemical effects of atmospheric oxygen concentration, phosphorus weathering, and sea-level stand on oceanic redox chemistry: implications for greenhouse climates. Earth Planet. Sci. Lett. 373:129–39 [Google Scholar]
  114. Papineau D. 2010. Global biogeochemical changes at both ends of the Proterozoic: insights from phosphorites. Astrobiology 10:165–81 [Google Scholar]
  115. Papineau D, Purohit R, Fogel ML, Shields-Zhou GA. 2013. High phosphate availability as a possible cause for massive cyanobacterial production of oxygen in the Paleoproterozoic atmosphere. Earth Planet. Sci. Lett. 362:225–36 [Google Scholar]
  116. Partin CA, Bekker A, Planavsky NJ, Scott CT, Gill BC. et al. 2013. Large-scale fluctuations in Precambrian atmospheric and oceanic oxygen levels from the record of U in shales. Earth Planet. Sci. Lett. 369–70:284–93 [Google Scholar]
  117. Pasek MA, Harnmeijer JP, Buick R, Gull M, Atlas Z. 2013. Evidence for reactive reduced phosphorus species in the early Archean ocean. PNAS 110:10089–94 [Google Scholar]
  118. Pawlowska MM, Butterfield NJ, Brocks JJ. 2012. Lipid taphonomy in the Proterozoic and the effect of microbial mats on biomarker preservation. Geology 41:103–6 [Google Scholar]
  119. Planavsky NJ, Asael D, Hofmann A, Reinhard CT, Lalonde SV. et al. 2014a. Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event. Nat. Geosci. 7:283–86 [Google Scholar]
  120. Planavsky NJ, Bekker A, Hofmann A, Owens JD, Lyons TW. 2012. Sulfur record of rising and falling marine oxygen and sulfate levels during the Lomagundi event. PNAS 109:18300–5 [Google Scholar]
  121. Planavsky NJ, McGoldrick P, Scott CT, Li C, Reinhard CT. et al. 2011. Widespread iron-rich conditions in the mid-Proterozoic ocean. Nature 477:448–51 [Google Scholar]
  122. Planavsky NJ, Reinhard CT, Wang X, Thomson D, McGoldrick P. et al. 2014b. Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science 346:635–38 [Google Scholar]
  123. Planavsky NJ, Rouxel OJ, Bekker A, Lalonde SV, Konhauser KO. et al. 2010. The evolution of the marine phosphate reservoir. Nature 467:1088–90 [Google Scholar]
  124. Pogge von Strandmann PAE, Stüeken EE, Elliott T, Poulton SW, Dehler CM. et al. 2015. Selenium isotope evidence for progressive oxidation of the Neoproterozoic biosphere. Nat. Commun. 6:10157 [Google Scholar]
  125. Poulton SW, Canfield DE. 2005. Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates. Chem. Geol. 214:209–21 [Google Scholar]
  126. Poulton SW, Canfield DE. 2011. Ferruginous conditions: a dominant feature of the ocean through Earth's history. Elements 7:107–12 [Google Scholar]
  127. Poulton SW, Fralick PW, Canfield DE. 2010. Spatial variability in oceanic redox structure 1.8 billion years ago. Nat. Geosci. 3:486–90 [Google Scholar]
  128. Raiswell R, Reinhard CT, Derkowski A, Owens J, Bottrell SH. et al. 2011. Formation of syngenetic and early diagenetic iron minerals in the late Archean Mt. McRae Shale, Hamersley Basin, Australia: new insights on the patterns, controls and paleoenvironmental implications of authigenic mineral formation. Geochim. Cosmochim. Acta 75:1072–87 [Google Scholar]
  129. Reinhard CT, Lalonde SV, Lyons TW. 2013. Oxidative sulfide dissolution on the early Earth. Chem. Geol. 362:44–55 [Google Scholar]
  130. Reinhard CT, Raiswell R, Scott C, Anbar AD, Lyons TW. 2009. A late Archean sulfidic sea stimulated by early oxidative weathering of the continents. Science 326:713–16 [Google Scholar]
  131. Ridgwell A, Hargreaves JC, Edwards NR, Annan JD, Lenton TM. et al. 2007. Marine geochemical data assimilation in an efficient Earth System Model of global biogeochemical cycling. Biogeosciences 4:87–104 [Google Scholar]
  132. Riding R, Fralick P, Liang L. 2014. Identification of an Archean marine oxygen oasis. Precambr. Res. 251:232–37 [Google Scholar]
  133. Romaniello SJ, Derry LA. 2010a. An intermediate-complexity model for simulating marine biogeochemistry in deep time: validation against the modern global ocean. Geochem. Geophys. Geosyst. 11:1–33 [Google Scholar]
  134. Romaniello SJ, Derry LA. 2010b. Validation of an intermediate-complexity model for simulating marine biogeochemistry under anoxic conditions in the modern Black Sea. Geochem. Geophys. Geosyst. 11:1–18 [Google Scholar]
  135. Rosing MT. 1999. 13C-depleted carbon microparticles in >3700-Ma sea-floor sedimentary rocks from west greenland. Science 283:674–76 [Google Scholar]
  136. Rouxel OJ, Bekker A, Edwards KJ. 2005. Iron isotope constraints on the Archean and Paleoproterozoic ocean redox state. Science 307:1088–91 [Google Scholar]
  137. Rye R, Holland HD. 1998. Paleosols and the evolution of atmospheric oxygen: a critical review. Am. J. Sci. 298:621–72 [Google Scholar]
  138. Sahoo SK, Planavsky NJ, Kendall B, Wang X, Shi X. et al. 2012. Ocean oxygenation in the wake of the Marinoan glaciation. Nature 489:546–49 [Google Scholar]
  139. Sánchez-Baracaldo P. 2015. Origin of marine planktonic cyanobacteria. Sci. Rep. 5:17418 [Google Scholar]
  140. Satkoski AM, Beukes NJ, Li W, Beard BL, Johnson CM. 2015. A redox-stratified ocean 3.2 billion years ago. Earth Planet. Sci. Lett. 430:43–53 [Google Scholar]
  141. Schidlowski M. 1988. A 3,800-million-year isotopic record of life from carbon in sedimentary rocks. Nature 333:313–18 [Google Scholar]
  142. Scholz F, Severmann S, McManus J, Hensen C. 2014. Beyond the Black Sea paradigm: the sedimentary fingerprint of an open-marine iron shuttle. Geochim. Cosmochim. Acta 127:368–80 [Google Scholar]
  143. Schrag DP, Higgins JA, Macdonald FA, Johnston DT. 2013. Authigenic carbonate and the history of the global carbon cycle. Science 339:540–43 [Google Scholar]
  144. Schröder S, Bekker A, Beukes NJ, Strauss H, Van Niekerk HS. 2008. Rise in seawater sulphate concentration associated with the Paleoproterozoic positive carbon isotope excursion: evidence from sulphate evaporites in the ∼2.2–2.1 Gyr shallow-marine Lucknow Formation, South Africa. Terra Nova 20:108–17 [Google Scholar]
  145. Scott AC, Glaspool IJ. 2006. The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration. PNAS 103:10861–65 [Google Scholar]
  146. Scott CT, Bekker A, Reinhard CT, Schnetger B, Krapež B. et al. 2011. Late Archean euxinic conditions before the rise of atmospheric oxygen. Geology 39:119–22 [Google Scholar]
  147. Scott CT, Lyons TW, Bekker A, Shen Y, Poulton SW. et al. 2008. Tracing the stepwise oxygenation of the Proterozoic ocean. Nature 452:456–59 [Google Scholar]
  148. Scott CT, Wing BA, Bekker A, Planavsky NJ, Medvedev P. et al. 2014. Pyrite multiple-sulfur isotope evidence for rapid expansion and contraction of the early Paleoproterozoic seawater sulfate reservoir. Earth Planet. Sci. Lett. 389:95–104 [Google Scholar]
  149. Segura A, Krelove K, Kasting JF, Sommerlatt D, Meadows V. et al. 2003. Ozone concentrations and ultraviolet fluxes on earth-like planets around other stars. Astrobiology 3:689–708 [Google Scholar]
  150. Sekine Y, Tajika E, Tada R, Hirai T, Goto KT. et al. 2011. Manganese enrichment in the Gowganda Formation of the Huronian Supergroup: a highly oxidizing shallow-marine environment after the last Huronian glaciation. Earth Planet. Sci. Lett. 307:201–10 [Google Scholar]
  151. Severmann S, Lyons TW, Anbar AD, McManus J, Gordon G. 2008. Modern iron isotope perspective on the benthic iron shuttle and the redox evolution of ancient oceans. Geology 36:487 [Google Scholar]
  152. Shen Y, Farquhar J, Masterson A, Kaufman AJ, Buick R. 2009. Evaluating the role of microbial sulfate reduction in the early Archean using quadruple isotope systematics. Earth Planet. Sci. Lett. 279:383–91 [Google Scholar]
  153. Shen Y, Knoll AH, Walter MR. 2003. Evidence for low sulphate and anoxia in a mid-Proterozoic marine basin. Nature 423:632–35 [Google Scholar]
  154. Shields G, Veizer J. 2002. Precambrian marine carbonate isotope database: version 1.1. Geochem. Geophys. Geosyst. 3:GC000266 [Google Scholar]
  155. Siebert C, Kramers JD, Meisel T, Morel P, Nägler TF. 2005. PGE, Re-Os, and Mo isotope systematics in Archean and early Proterozoic sedimentary systems as proxies for redox conditions of the early Earth. Geochim. Cosmochim. Acta 69:1787–801 [Google Scholar]
  156. Slack JF, Grenne T, Bekker A. 2009. Seafloor-hydrothermal Si-Fe-Mn exhalites in the Pecos greenstone belt, New Mexico, and the redox state of ca. 1720 Ma deep seawater. Geosphere 5:302–14 [Google Scholar]
  157. Slack JF, Grenne T, Bekker A, Rouxel OJ, Lindberg PA. 2007. Suboxic deep seawater in the late Paleoproterozoic: evidence from hematitic chert and iron formation related to seafloor-hydrothermal sulfide deposits, central Arizona, USA. Earth Planet. Sci. Lett. 255:243–56 [Google Scholar]
  158. Sperling EA, Halverson GP, Knoll AH, Macdonald FA, Johnston DT. 2013. A basin redox transect at the dawn of animal life. Earth Planet. Sci. Lett. 371–72:143–55 [Google Scholar]
  159. Sperling EA, Rooney AD, Hays L, Sergeev VN, Vorob'eva NG. et al. 2014. Redox heterogeneity of subsurface waters in the Mesoproterozoic ocean. Geobiology 12:373–86 [Google Scholar]
  160. Sperling EA, Wolock CJ, Morgan AS, Gill BC, Kunzmann M. et al. 2015. Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation. Nature 523:451–54 [Google Scholar]
  161. Stüeken EE, Buick R, Anbar AD. 2015a. Selenium isotopes support free O2 in the latest Archean. Geology 43:259–62 [Google Scholar]
  162. Stüeken EE, Buick R, Bekker A, Catling D, Foriel J. et al. 2015b. The evolution of the global selenium cycle: secular trends in Se isotopes and abundances. Geochim. Cosmochim. Acta 162:109–25 [Google Scholar]
  163. Stüeken EE, Buick R, Guy BM, Koehler MC. 2015c. Isotopic evidence for biological nitrogen fixation by molybdenum-nitrogenase from 3.2 Gyr. Nature 520:666–69 [Google Scholar]
  164. Stüeken EE, Buick R, Schauer AJ. 2015d. Nitrogen isotope evidence for alkaline lakes on late Archean continents. Earth Planet. Sci. Lett. 411:1–10 [Google Scholar]
  165. Stüeken EE, Catling DC, Buick R. 2012. Contributions to late Archaean sulphur cycling by life on land. Nat. Geosci. 5:722–25 [Google Scholar]
  166. Summons RE, Brassell SC, Eglinton G, Evans E, Horodyski RJ. et al. 1988. Distinctive hydrocarbon biomarkers from fossiliferous sediment of the Late Proterozoic Walcott Member, Chuar Group, Grand Canyon, Arizona. Geochim. Cosmochim. Acta 52:2625–37 [Google Scholar]
  167. Sverjensky DA, Lee N. 2010. The Great Oxidation Event and mineral diversification. Elements 6:31–36 [Google Scholar]
  168. Thomazo C, Ader M, Farquhar J, Philippot P. 2009. Methanotrophs regulated atmospheric sulfur isotope anomalies during the Mesoarchean (Tumbiana Formation, Western Australia). Earth Planet. Sci. Lett. 279:65–75 [Google Scholar]
  169. Thomazo C, Ader M, Philippot P. 2011. Extreme 15N-enrichments in 2.72-Gyr-old sediments: evidence for a turning point in the nitrogen cycle. Geobiology 9:107–20 [Google Scholar]
  170. Thomazo C, Papineau D. 2013. Biogeochemical cycling of nitrogen on the early Earth. Elements 9:345–51 [Google Scholar]
  171. Tice MM, Lowe DR. 2004. Photosynthetic microbial mats in the 3,416-Myr-old ocean. Nature 431:549–52 [Google Scholar]
  172. Tosca NJ, Guggenheim S, Pufahl PK. 2016. An authigenic origin for Precambrian greenalite: implications for iron formation and the chemistry of ancient seawater. Geol. Soc. Am. Bull. 128:511–30 [Google Scholar]
  173. Tribovillard N, Algeo TJ, Baudin F, Riboulleau A. 2012. Analysis of marine environmental conditions based on molybdenum-uranium covariation—applications to Mesozoic paleoceanography. Chem. Geol. 324–25:46–58 [Google Scholar]
  174. Tribovillard N, Algeo TJ, Lyons T, Riboulleau A. 2006. Trace metals as paleoredox and paleoproductivity proxies: an update. Chem. Geol. 232:12–32 [Google Scholar]
  175. Turner EC, Bekker A. 2016. Thick sulfate evaporite accumulations marking a mid-Neoproterozoic oxygenation event (Ten Stone Formation, Northwest Territories, Canada). Geol. Soc. Am. Bull. 128:203–22 [Google Scholar]
  176. Veizer J, Mackenzie FT. 2003. Evolution of sedimentary rocks. Treatise on Geochemistry, Vol. 7: Sediments, Diagenesis and Sedimentary Rocks HD Holland, KK Turekian 369–407 Oxford, UK: Elsevier Sci. [Google Scholar]
  177. Wacey D, Kilburn MR, Saunders M, Cliff J, Brasier MD. 2011. Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia. Nat. Geosci. 4:698–702 [Google Scholar]
  178. Walker JCG. 1984. Suboxic diagenesis in banded iron formations. Nature 309:340–42 [Google Scholar]
  179. Walker JCG, Brimblecombe P. 1985. Iron and sulfur in the pre-biologic ocean. Precambr. Res. 28:205–22 [Google Scholar]
  180. Wang M, Jiang Y-Y, Kim KM, Qu G, Ji H-F. et al. 2011. A universal molecular clock of protein folds and its power in tracing the early history of aerobic metabolism and planet oxygenation. Mol. Biol. Evol. 28:567–82 [Google Scholar]
  181. Wille M, Kramers JD, Nagler TF, Beukes NJ, Schroder S. et al. 2007. Evidence for a gradual rise of oxygen between 2.6 and 2.5 Ga from Mo isotopes and Re-PGE signatures in shales. Geochim. Cosmochim. Acta 71:2417–35 [Google Scholar]
  182. Yokota K, Kanzaki Y, Murakami T. 2013. Weathering model for the quantification of atmospheric oxygen evolution during the Paleoproterozoic. Geochim. Cosmochim. Acta 117:332–47 [Google Scholar]
  183. Zegeye A, Bonneville S, Benning LG, Sturm A, Fowle DA. et al. 2012. Green rust formation controls nutrient availability in a ferruginous water column. Geology 40:599–602 [Google Scholar]
  184. Zerkle AL, Claire MW, Domagal-Goldman SD, Farquhar J, Poulton SW. 2012. A bistable organic-rich atmosphere on the Neoarchaean Earth. Nat. Geosci. 5:359–63 [Google Scholar]
  185. Zerkle AL, House CH, Cox RP, Canfield DE. 2006. Metal limitation of cyanobacterial N2 fixation and implications for the Precambrian nitrogen cycle. Geobiology 4:285–97 [Google Scholar]
  186. Zhang L, Gu X, Fan C, Shang J, Shen Q. et al. 2010. Impact of different benthic animals on phosphorus dynamics across the sediment-water interface. J. Environ. Sci. 22:1674–82 [Google Scholar]
  187. Zhang S, Wang X, Wang H, Bjerrum CJ, Hammarlund EU. et al. 2016. Sufficient oxygen for animal respiration 1,400 million years ago. PNAS 1131731–76
  188. Zhang X, Sigman DM, Morel FMM, Kraepiel AML. 2014. Nitrogen isotope fractionation by alternative nitrogenases and past ocean anoxia. PNAS 111:4782–87 [Google Scholar]
  189. Zhelezinskaia I, Kaufman AJ, Farquhar J, Cliff J. 2014. Large sulfur isotope fractionations associated with Neoarchean microbial sulfate reduction. Science 346:742–44 [Google Scholar]
/content/journals/10.1146/annurev-marine-010816-060521
Loading
/content/journals/10.1146/annurev-marine-010816-060521
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error