1932

Abstract

The ocean enabled the diversification of life on Earth by adding O to the atmosphere, yet marine species remain most subject to O limitation. Human industrialization is intensifying the aerobic challenges to marine ecosystems by depleting the ocean's O inventory through the global addition of heat and local addition of nutrients. Historical observations reveal an ∼2% decline in upper-ocean O and accelerating reports of coastal mass mortality events. The dynamic balance of O supply and demand provides a unifying framework for understanding these phenomena across scales from the global ocean to individual organisms. Using this framework, we synthesize recent advances in forecasting O loss and its impacts on marine biogeography, biodiversity, and biogeochemistry. We also highlight three outstanding uncertainties: how long-term global climate change intensifies ocean weather events in which simultaneous heat and hypoxia create metabolic storms, how differential species O sensitivities alter the structure of ecological communities, and how global O loss intersects with coastal eutrophication. Projecting these interacting impacts on future marine ecosystems requires integration of climate dynamics, biogeochemistry, physiology, and ecology, evaluated with an eye on Earth history. Reducing global and local impacts of warming and O loss will be essential if humankind is to preserve the health and biodiversity of the future ocean.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-040323-095231
2024-01-17
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/marine/16/1/annurev-marine-040323-095231.html?itemId=/content/journals/10.1146/annurev-marine-040323-095231&mimeType=html&fmt=ahah

Literature Cited

  1. Altieri AH, Harrison SB, Seemann J, Collin R, Diaz RJ, Knowlton N 2017. Tropical dead zones and mass mortalities on coral reefs. PNAS 114:14366065
    [Google Scholar]
  2. Andrews OD, Bindoff NL, Halloran PR, Ilyina T, Le Quéré C 2013. Detecting an external influence on recent changes in oceanic oxygen using an optimal fingerprinting method. Biogeosciences 10:31799813
    [Google Scholar]
  3. Atkinson D, Leighton G, Berenbrink M. 2022. Controversial roles of oxygen in organismal responses to climate warming. Biol. Bull. 243:220719
    [Google Scholar]
  4. Auderset A, Moretti S, Taphorn B, Ebner P-R, Kast E et al. 2022. Enhanced ocean oxygenation during Cenozoic warm periods. Nature 609:79257782
    [Google Scholar]
  5. Babbin AR, Keil RG, Devol AH, Ward BB. 2014. Organic matter stoichiometry, flux, and oxygen control nitrogen loss in the ocean. Science 344:61824068
    [Google Scholar]
  6. Bates AE, Helmuth B, Burrows MT, Duncan MI, Garrabou J et al. 2018. Biologists ignore ocean weather at their peril. Nature 560:7718299301
    [Google Scholar]
  7. Battye W, Aneja VP, Schlesinger WH. 2017. Is nitrogen the next carbon?. Earth's Future 5:9894904
    [Google Scholar]
  8. Bianchi D, Galbraith ED, Carozza DA, Mislan KAS, Stock CA. 2013. Intensification of open-ocean oxygen depletion by vertically migrating animals. Nat. Geosci. 6:754548
    [Google Scholar]
  9. Bianchi D, Weber TS, Kiko R, Deutsch C. 2018. Global niche of marine anaerobic metabolisms expanded by particle microenvironments. Nat. Geosci. 11:426368
    [Google Scholar]
  10. Bianchi G, Gislason H, Graham K, Hill L, Jin X et al. 2000. Impact of fishing on size composition and diversity of demersal fish communities. ICES J. Mar. Sci. 57:355871
    [Google Scholar]
  11. Birk MA, McLean EL, Seibel BA. 2018. Ocean acidification does not limit squid metabolism via blood oxygen supply. J. Exp. Biol. 221:19jeb187443
    [Google Scholar]
  12. Boag TH, Stockey RG, Elder LE, Hull PM, Sperling EA. 2018. Oxygen, temperature and the deep-marine stenothermal cradle of Ediacaran evolution. Proc. R. Soc. B 285:189320181724
    [Google Scholar]
  13. Bohlen L, Dale AW, Wallmann K. 2012. Simple transfer functions for calculating benthic fixed nitrogen losses and C:N:P regeneration ratios in global biogeochemical models. Glob. Biogeochem. Cycles 26:3GB3029
    [Google Scholar]
  14. Boyer TP, Garcia HE, Locarnini RA, Zweng MM, Mishonov AV et al. 2018. World Ocean Atlas 2018 Dataset, Natl. Cent. Environ. Inf., Natl. Ocean. Atmos. Adm. Washington, DC: https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.nodc:NCEI-WOA18
  15. Breitburg D, Levin LA, Oschlies A, Grégoire M, Chavez FP et al. 2018. Declining oxygen in the global ocean and coastal waters. Science 359:6371eaam7240
    [Google Scholar]
  16. Brett JR. 1971. Energetic responses of salmon to temperature. A study of some thermal relations in the physiology and freshwater ecology of sockeye salmon (Oncorhynchus nerka). Am. Zool. 11:199113
    [Google Scholar]
  17. Buil MP, Di Lorenzo E. 2017. Decadal dynamics and predictability of oxygen and subsurface tracers in the California Current System. Geophys. Res. Lett. 44:9420413
    [Google Scholar]
  18. Burford BP, Wild LA, Schwarz R, Chenoweth EM, Sreenivasan A et al. 2022. Rapid range expansion of a marine ectotherm reveals the demographic and ecological consequences of short-term variability in seawater temperature and dissolved oxygen. Am. Nat. 199:452350
    [Google Scholar]
  19. Burgess SD, Bowring S, Shen S. 2014. High-precision timeline for Earth's most severe extinction. PNAS 111:9331621
    [Google Scholar]
  20. Busecke JJM, Resplandy L, Ditkovsky SJ, John JG. 2022. Diverging fates of the Pacific Ocean oxygen minimum zone and its core in a warming world. AGU Adv. 3:6e2021AV000470
    [Google Scholar]
  21. Camillo CGD, Cerrano C. 2015. Mass mortality events in the NW Adriatic Sea: phase shift from slow- to fast-growing organisms. PLOS ONE 10:5e0126689
    [Google Scholar]
  22. Chabot D, Steffensen JF, Farrell AP. 2016. The determination of standard metabolic rate in fishes. J. Fish Biol. 88:181121
    [Google Scholar]
  23. Chaudhary C, Richardson AJ, Schoeman DS, Costello MJ. 2021. Global warming is causing a more pronounced dip in marine species richness around the equator. PNAS 118:15e2015094118
    [Google Scholar]
  24. Chaudhary C, Saeedi H, Costello MJ. 2017. Marine species richness is bimodal with latitude: a reply to Fernandez and Marques. Trends Ecol. Evol. 32:423437
    [Google Scholar]
  25. Cheung WWL, Sarmiento JL, Dunne J, Frölicher TL, Lam VWY et al. 2012. Shrinking of fishes exacerbates impacts of global ocean changes on marine ecosystems. Nat. Clim. Change 3:325458
    [Google Scholar]
  26. Clarke A, Johnston NM. 1999. Scaling of metabolic rate with body mass and temperature in teleost fish. J. Anim. Ecol. 68:5893905
    [Google Scholar]
  27. Clarke TM, Wabnitz CCC, Striegel S, Frölicher TL, Reygondeau G, Cheung WWL. 2021. Aerobic growth index (AGI): an index to understand the impacts of ocean warming and deoxygenation on global marine fisheries resources. Prog. Oceanogr. 195:102588
    [Google Scholar]
  28. Cram JA, Weber T, Leung SW, McDonnell AMP, Liang J-H, Deutsch C. 2018. The role of particle size, ballast, temperature, and oxygen in the sinking flux to the deep sea. Glob. Biogeochem. Cycles 32:585876
    [Google Scholar]
  29. Deutsch C, Berelson W, Thunell R, Weber T, Tems C et al. 2014. Centennial changes in North Pacific anoxia linked to tropical trade winds. Science 345:619766568
    [Google Scholar]
  30. Deutsch C, Brix H, Ito T, Frenzel H, Thompson L. 2011. Climate-forced variability of ocean hypoxia. Science 333:604033639
    [Google Scholar]
  31. Deutsch C, Ferrel A, Seibel B, Pörtner H-O, Raymond BH. 2015. Climate change tightens a metabolic constraint on marine habitats. Science 348:6239113236
    [Google Scholar]
  32. Deutsch C, Penn JL, Seibel B. 2020. Metabolic trait diversity shapes marine biogeography. Nature 585:782655762
    [Google Scholar]
  33. Deutsch C, Penn JL, Verberk WCEP, Inomura K, Endress M-G, Payne JL. 2022. Impact of warming on aquatic body sizes explained by metabolic scaling from microbes to macrofauna. PNAS 119:28e2201345119
    [Google Scholar]
  34. DeVries T, Deutsch C. 2014. Large-scale variations in the stoichiometry of marine organic matter respiration. Nat. Geosci. 7:1289094
    [Google Scholar]
  35. Diaz R, Selman M, Chique C. 2011. Global eutrophic and hypoxic coastal systems Dataset, World Resour. Inst. Washington, DC: https://datasets.wri.org/dataset/eutrophication-hypoxia-map-data-set
  36. Diaz RJ, Rosenberg R. 2008. Spreading dead zones and consequences for marine ecosystems. Science 321:589192629
    [Google Scholar]
  37. Duncan MI, James NC, Potts WM, Bates AE. 2020. Different drivers, common mechanism; the distribution of a reef fish is restricted by local-scale oxygen and temperature constraints on aerobic metabolism. Conserv. Physiol. 8:1coaa090
    [Google Scholar]
  38. Dussin R, Curchitser EN, Stock CA, Van Oostende N. 2019. Biogeochemical drivers of changing hypoxia in the California Current Ecosystem. Deep-Sea Res. II 169–170:104590
    [Google Scholar]
  39. Endress M-GA, Boag TH, Burford BP, Penn JL, Sperling EA, Deutsch CA. 2022. Physiological causes and biogeographic consequences of thermal optima in the hypoxia tolerance of marine ectotherms. bioRxiv 2022.02.03.478967. https://doi.org/10.1101/2022.02.03.478967
  40. Ern R, Norin T, Gamperl AK, Esbaugh AJ. 2016. Oxygen dependence of upper thermal limits in fishes. J. Exp. Biol. 219:21337683
    [Google Scholar]
  41. Fennel K, Testa JM. 2019. Biogeochemical controls on coastal hypoxia. Annu. Rev. Mar. Sci. 11:10530
    [Google Scholar]
  42. Forster J, Hirst AG, Atkinson D. 2012. Warming-induced reductions in body size are greater in aquatic than terrestrial species. PNAS 109:471931014
    [Google Scholar]
  43. Franco AC, Kim H, Frenzel H, Deutsch C, Ianson D et al. 2022. Impact of warming and deoxygenation on the habitat distribution of Pacific halibut in the Northeast Pacific. Fish. Oceanogr. 31:660114
    [Google Scholar]
  44. Fry FEJ, Hart JS. 1948. The relation of temperature to oxygen consumption in the goldfish. Biol. Bull. 94:16677
    [Google Scholar]
  45. Fu W, Primeau F, Moore JK, Lindsay K, Randerson JT. 2018. Reversal of increasing tropical ocean hypoxia trends with sustained climate warming. Glob. Biogeochem. Cycles 32:455164
    [Google Scholar]
  46. Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL. 2001. Effects of size and temperature on metabolic rate. Science 293:5538224851
    [Google Scholar]
  47. Gillooly JF, Gomez JP, Mavrodiev EV, Rong Y, McLamore ES. 2016. Body mass scaling of passive oxygen diffusion in endotherms and ectotherms. PNAS 113:19534045
    [Google Scholar]
  48. Giovannoni S, Chan F, Davis E II, Deutsch C, Wolf S. 2021. Biochemical barriers on the path to ocean anoxia?. mBio 12:4e01332-21
    [Google Scholar]
  49. Gruber N, Boyd PW, Frölicher TL, Vogt M. 2021. Biogeochemical extremes and compound events in the ocean. Nature 600:7889395407
    [Google Scholar]
  50. Hammond KA, Diamond J. 1997. Maximal sustained energy budgets in humans and animals. Nature 386:662445762
    [Google Scholar]
  51. Hoefnagel KN, Verberk WCEP. 2015. Is the temperature-size rule mediated by oxygen in aquatic ectotherms?. J. Therm. Biol. 54:5665
    [Google Scholar]
  52. Howard EM, Penn JL, Frenzel H, Seibel BA, Bianchi D et al. 2020. Climate-driven aerobic habitat loss in the California Current System. Sci. Adv. 6:20eaay3188
    [Google Scholar]
  53. Hunt G, Roy K. 2006. Climate change, body size evolution, and Cope's Rule in deep-sea ostracodes. PNAS 103:5134752
    [Google Scholar]
  54. Ilyina T, Heinze M. 2019. Carbonate dissolution enhanced by ocean stagnation and respiration at the onset of the Paleocene-Eocene Thermal Maximum. Geophys. Res. Lett. 46:284252
    [Google Scholar]
  55. IPCC (Intergov. Panel Clim. Change) 2021. Climate Change 2021: The Physical Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change V Masson-Delmotte, P Zhai, A Pirani, SL Connors, C Péan, et al Cambridge, UK: Cambridge Univ. Press
  56. Ito T, Long MC, Deutsch C, Minobe S, Sun D. 2019. Mechanisms of low-frequency oxygen variability in the North Pacific. Glob. Biogeochem. Cycles 33:211024
    [Google Scholar]
  57. Ito T, Minobe S, Long MC, Deutsch C. 2017. Upper ocean O2 trends: 1958–2015. Geophys. Res. Lett. 44:9421423
    [Google Scholar]
  58. Ito T, Takano Y, Deutsch C, Long MC. 2022. Sensitivity of global ocean deoxygenation to vertical and isopycnal mixing in an ocean biogeochemistry model. Glob. Biogeochem. Cycles 36:4e2021GB007151
    [Google Scholar]
  59. Johnson MD, Scott JJ, Leray M, Lucey N, Rodriguez Bravo LM et al. 2021. Rapid ecosystem-scale consequences of acute deoxygenation on a Caribbean coral reef. Nat. Commun. 12:4522
    [Google Scholar]
  60. Kaiho K, Takeda K, Petrizzo MR, Zachos JC. 2006. Anomalous shifts in tropical Pacific planktonic and benthic foraminiferal test size during the Paleocene–Eocene thermal maximum. Palaeogeogr. Palaeoclimatol. Palaeoecol. 237:2–445664
    [Google Scholar]
  61. Karstensen J, Stramma L, Visbeck M. 2008. Oxygen minimum zones in the eastern tropical Atlantic and Pacific oceans. Prog. Oceanogr. 77:433150
    [Google Scholar]
  62. Keeling RF, Körtzinger A, Gruber N. 2010. Ocean deoxygenation in a warming world. Annu. Rev. Mar. Sci. 2:199229
    [Google Scholar]
  63. Kessouri F, McWilliams JC, Bianchi D, Sutula M, Renault L et al. 2021. Coastal eutrophication drives acidification, oxygen loss, and ecosystem change in a major oceanic upwelling system. PNAS 118:21e2018856118
    [Google Scholar]
  64. Killen SS, Glazier DS, Rezende EL, Clark TD, Atkinson D et al. 2016. Ecological influences and morphological correlates of resting and maximal metabolic rates across teleost fish species. Am. Nat. 187:5592606
    [Google Scholar]
  65. Kwiatkowski L, Torres O, Bopp L, Aumont O, Chamberlain M et al. 2020. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences 17:13343970
    [Google Scholar]
  66. Lefevre S, McKenzie DJ, Nilsson GE. 2017. Models projecting the fate of fish populations under climate change need to be based on valid physiological mechanisms. Glob. Change Biol. 23:9344959
    [Google Scholar]
  67. Levin LA. 2003. Oxygen minimum zone benthos: adaptation and community response to hypoxia. Oceanography and Marine Biology: An Annual Review, Vol. 41 RN Gibson, RJA Atkinson 145. London: Taylor & Francis
    [Google Scholar]
  68. Levin LA, Ekau W, Gooday AJ, Jorissen F, Middelburg JJ et al. 2009. Effects of natural and human-induced hypoxia on coastal benthos. Biogeosciences 6:10206398
    [Google Scholar]
  69. Levin LA, Liu K-K, Emeis K-C, Breitburg DL, Cloern J et al. 2015. Comparative biogeochemistry-ecosystem-human interactions on dynamic continental margins. J. Mar. Syst. 141:317
    [Google Scholar]
  70. Lewis SL, Maslin MA. 2015. Defining the Anthropocene. Nature 519:754217180
    [Google Scholar]
  71. Long MC, Deutsch C, Ito T. 2016. Finding forced trends in oceanic oxygen. Glob. Biogeochem. Cycles 30:238197
    [Google Scholar]
  72. Long MC, Ito T, Deutsch C 2019. Oxygen projections for the future. Ocean Deoxygenation: Everyone's Problem; Causes, Impacts, Consequences and Solutions D Laffoley, JM Baxter 171211. Gland, Switz: Int. Union Conserv. Nat.
    [Google Scholar]
  73. Lucey NM, Deutsch CA, Carignan M-H, Vermandele F, Collins M et al. 2023. Climate warming erodes tropical reef habitat through frequency and intensity of episodic hypoxia. PLOS Clim. 2:3e0000095
    [Google Scholar]
  74. Marinov I, Gnanadesikan A, Toggweiler JR, Sarmiento JL. 2006. The Southern Ocean biogeochemical divide. Nature 441:709696467
    [Google Scholar]
  75. Marquis S. 2022. Stressed out: Dungeness crabs off the Pacific Northwest coast. National Marine Sanctuaries. https://sanctuaries.noaa.gov/news/nov22/stressed-out.html
    [Google Scholar]
  76. Matear RJ, Hirst AC. 2003. Long-term changes in dissolved oxygen concentrations in the ocean caused by protracted global warming. Glob. Biogeochem. Cycles 17:41125
    [Google Scholar]
  77. Molina AN, Pulgar JM, Rezende EL, Carter MJ. 2023. Heat tolerance of marine ectotherms in a warming Antarctica. Glob. Change Biol. 29:117988
    [Google Scholar]
  78. Nilsson GE, Östlund-Nilsson S. 2008. Does size matter for hypoxia tolerance in fish?. Biol. Rev. 83:217389
    [Google Scholar]
  79. Oschlies A. 2021. A committed fourfold increase in ocean oxygen loss. Nat. Commun. 12:2307
    [Google Scholar]
  80. Oschlies A, Brandt P, Stramma L, Schmidtko S. 2018. Drivers and mechanisms of ocean deoxygenation. Nat. Geosci. 11:46773
    [Google Scholar]
  81. Pan YK, Ern R, Esbaugh AJ. 2016. Hypoxia tolerance decreases with body size in red drum Sciaenops ocellatus. J. Fish Biol. 89:2148893
    [Google Scholar]
  82. Paulmier A, Ruiz-Pino D. 2009. Oxygen minimum zones (OMZs) in the modern ocean. Prog. Oceanogr. 80:3–411328
    [Google Scholar]
  83. Pauly D 2021. The gill-oxygen limitation theory (GOLT) and its critics. Sci. Adv. 7:2eabc6050
    [Google Scholar]
  84. Pauly D, Cheung WWL. 2017. Sound physiological knowledge and principles in modeling shrinking of fishes under climate change. Glob. Change Biol. 24:1e1526
    [Google Scholar]
  85. Payne JL, Al Aswad JA, Deutsch C, Monarrez PM, Penn JL, Singh PK 2023. Selectivity of mass extinctions: patterns, processes, and future directions. Camb. Prisms Extinctions 1:E12
    [Google Scholar]
  86. Payne NL, Smith JA, van der Meulen DE, Taylor MD, Watanabe YY et al. 2016. Temperature dependence of fish performance in the wild: links with species biogeography and physiological thermal tolerance. Funct. Ecol. 30:90312
    [Google Scholar]
  87. Penn JL, Deutsch C. 2022. Avoiding ocean mass extinction from climate warming. Science 376:659252426
    [Google Scholar]
  88. Penn JL, Deutsch C, Payne J, Sperling E. 2018. Temperature-dependent hypoxia explains biogeography and severity of end-Permian marine mass extinction. Science 362:6419eaat1327
    [Google Scholar]
  89. Penn JL, Weber T, Deutsch C. 2016. Microbial functional diversity alters the structure and sensitivity of oxygen deficient zones. Geophys. Res. Lett. 43:18977380
    [Google Scholar]
  90. Pinsky ML, Eikeset AM, McCauley DJ, Payne JL, Sunday JM. 2019. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569:7754108
    [Google Scholar]
  91. Pinsky ML, Selden RL, Kitchel ZJ. 2020. Climate-driven shifts in marine species ranges: scaling from organisms to communities. Annu. Rev. Mar. Sci. 12:15379
    [Google Scholar]
  92. Pitcher GC, Aguirre-Velarde A, Breitburg D, Cardich J, Carstensen J et al. 2021. System controls of coastal and open ocean oxygen depletion. Prog. Oceanogr. 197:102613
    [Google Scholar]
  93. Prince ED, Goodyear CP. 2006. Hypoxia-based habitat compression of tropical pelagic fishes. Fish. Oceanogr. 15:645164
    [Google Scholar]
  94. Rogers NJ, Urbina MA, Reardon EE, McKenzie DJ, Wilson RW. 2016. A new analysis of hypoxia tolerance in fishes using a database of critical oxygen level (Pcrit). Conserv. Physiol. 4:1cow012
    [Google Scholar]
  95. Rohde RA, Muller RA. 2005. Cycles in fossil diversity. Nature 434:703020810
    [Google Scholar]
  96. Sarmiento JL, Gruber N. 2006. Ocean Biogeochemical Dynamics Princeton, NJ: Princeton Univ. Press
  97. Schmidtko S, Stramma L, Visbeck M. 2017. Decline in global oceanic oxygen content during the past five decades. Nature 542:33551
    [Google Scholar]
  98. Schmidt-Nielsen K. 1984. Scaling: Why Is Animal Size So Important? Cambridge, UK: Cambridge Univ. Press
  99. Seibel BA. 2011. Critical oxygen levels and metabolic suppression in oceanic oxygen minimum zones. J. Exp. Biol. 214:232636
    [Google Scholar]
  100. Sepkoski JJ. 2002. A Compendium of Fossil Marine Animal Genera Ithaca, NY: Paleontol. Res. Inst.
  101. Shepherd JG, Brewer PG, Oschlies A, Watson AJ. 2017. Ocean ventilation and deoxygenation in a warming world: introduction and overview. Philos. Trans. R. Soc. A 375:210220170240
    [Google Scholar]
  102. Sperling EA, Boag TH, Duncan MI, Endriga CR, Marquez JA et al. 2022. Breathless through time: oxygen and animals across Earth's history. Biol. Bull. 243:2184206
    [Google Scholar]
  103. Sperling EA, Frieder CA, Levin LA. 2016. Biodiversity response to natural gradients of multiple stressors on continental margins. Proc. R. Soc. B 283:182920160637
    [Google Scholar]
  104. Stanley S. 2016. Estimates of the magnitudes of major marine mass extinctions in earth history. PNAS 113:42E632534
    [Google Scholar]
  105. Stramma L, Oschlies A, Schmidtko S. 2012. Mismatch between observed and modeled trends in dissolved upper-ocean oxygen over the last 50 yr. Biogeosciences 9:10404557
    [Google Scholar]
  106. Stuart-Smith RD, Edgar GJ, Bates AE. 2017. Thermal limits to the geographic distributions of shallow-water marine species. Nat. Ecol. Evol. 1:12184652
    [Google Scholar]
  107. Sydeman WJ, Poloczanska E, Reed TE, Thompson SA. 2015. Climate change and marine vertebrates. Science 350:626277277
    [Google Scholar]
  108. Terada M, Minobe S, Deutsch C. 2019. Mechanisms of future changes in equatorial upwelling: CMIP5 intermodel analysis. J. Clim. 33:2497510
    [Google Scholar]
  109. Tewksbury JJ, Huey RB, Deutsch CA. 2008. Putting the heat on tropical animals. Science 320:5881129697
    [Google Scholar]
  110. Tittensor DP, Mora C, Jetz W, Lotze HK, Ricard D et al. 2010. Global patterns and predictors of marine biodiversity across taxa. Nature 466:73101098101
    [Google Scholar]
  111. Vaquer-Sunyer R, Duarte CM. 2008. Thresholds of hypoxia for marine biodiversity. PNAS 105:401545257
    [Google Scholar]
  112. Verberk WCEP, Atkinson D, Hoefnagel KN, Hirst AG, Horne CR, Siepel H. 2020. Shrinking body sizes in response to warming: explanations for the temperature-size rule with special emphasis on the role of oxygen. Biol. Rev. Camb. Philos. Soc. 96:124768
    [Google Scholar]
  113. Weber T, Deutsch C. 2012. Oceanic nitrogen reservoir regulated by plankton diversity and ocean circulation. Nature 489:741641922
    [Google Scholar]
  114. Wishner KF, Seibel BA, Roman C, Deutsch C, Outram D et al. 2018. Ocean deoxygenation and zooplankton: Very small oxygen differences matter. Sci. Adv. 4:12eaau5180
    [Google Scholar]
  115. Yasuhara M, Wei C-L, Kucera M, Costello MJ, Tittensor DP et al. 2020. Past and future decline of tropical pelagic biodiversity. PNAS 117:231289196
    [Google Scholar]
  116. Zakem EJ, Follows MJ. 2017. A theoretical basis for a nanomolar critical oxygen concentration. Limnol. Oceanogr. 62:2795805
    [Google Scholar]
  117. Zhang X, Ward BB, Sigman DM. 2020. Global nitrogen cycle: critical enzymes, organisms, and processes for nitrogen budgets and dynamics. Chem. Rev. 120:12530851
    [Google Scholar]
/content/journals/10.1146/annurev-marine-040323-095231
Loading
/content/journals/10.1146/annurev-marine-040323-095231
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error