1932

Abstract

Three-dimensional (3D) cell culture systems have gained increasing interest not only for 3D migration studies but also for their use in drug screening, tissue engineering, and ex vivo modeling of metastatic behavior in the field of cancer biology and morphogenesis in the field of developmental biology. The goal of studying cells in a 3D context is to attempt to more faithfully recapitulate the physiological microenvironment of tissues, including mechanical and structural parameters that we envision will reveal more predictive data for development programs and disease states. In this review, we discuss the pros and cons of several well-characterized 3D cell culture systems for performing 3D migration studies. We discuss the intracellular and extracellular signaling mechanisms that govern cell migration. We also describe the mathematical models and relevant assumptions that can be used to describe 3D cell movement.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-070816-033854
2018-05-20
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/biophys/47/1/annurev-biophys-070816-033854.html?itemId=/content/journals/10.1146/annurev-biophys-070816-033854&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Acerbi I, Cassereau L, Dean I, Shi Q, Au A et al. 2015. Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration. Integr. Biol. 7:1120–34
    [Google Scholar]
  2. 2.  Antoni D, Burckel H, Josset E, Noel G 2015. Three-dimensional cell culture: a breakthrough in vivo. Int. J. Mol. Sci. 16:5517–27
    [Google Scholar]
  3. 3.  Ayres C, Bowlin GL, Henderson SC, Taylor L, Shultz J et al. 2006. Modulation of anisotropy in electrospun tissue-engineering scaffolds: analysis of fiber alignment by the fast Fourier transform. Biomaterials 27:5524–34
    [Google Scholar]
  4. 4.  Barry DJ, Durkin CH, Abella JV, Way M 2015. Open source software for quantification of cell migration, protrusions, and fluorescence intensities. J. Cell Biol. 209:163–80
    [Google Scholar]
  5. 5.  Berg HC. 1993. Random Walks in Biology Princeton, NJ: Princeton Univ. Press
  6. 6.  Boyd NF, Dite GS, Stone J, Gunasekara A, English DR et al. 2002. Heritability of mammographic density, a risk factor for breast cancer. N. Engl. J. Med. 347:886–94
    [Google Scholar]
  7. 7.  Caliari SR, Burdick JA 2016. A practical guide to hydrogels for cell culture. Nat. Meth. 13:405–14
    [Google Scholar]
  8. 8.  Campos D, Mendez V, Llopis I 2010. Persistent random motion: uncovering cell migration dynamics. J. Theor. Biol. 267:526–34
    [Google Scholar]
  9. 9.  Caswell PT, Chan M, Lindsay AJ, McCaffrey MW, Boettiger D, Norman JC 2008. Rab-coupling protein coordinates recycling of α5β1 integrin and EGFR1 to promote cell migration in 3D microenvironments. J. Cell Biol. 183:143–55
    [Google Scholar]
  10. 10.  Chambliss AB, Khatau SB, Erdenberger N, Robinson DK, Hodzic D et al. 2013. The LINC-anchored actin cap connects the extracellular milieu to the nucleus for ultrafast mechanotransduction. Sci. Rep. 3:1087
    [Google Scholar]
  11. 11.  Chang SS, Guo W-h, Kim Y, Wang Y-l 2013. Guidance of cell migration by substrate dimension. Biophys. J. 104:313–21
    [Google Scholar]
  12. 12.  Chen B-C, Legant WR, Wang K, Shao L, Milkie DE et al. 2014. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 346:1257998
    [Google Scholar]
  13. 13.  Codling EA, Plank MJ, Benhamou S 2008. Random walk models in biology. J. R. Soc. Interface 5:813–34
    [Google Scholar]
  14. 14.  Collins C, Nelson WJ 2015. Running with neighbors: coordinating cell migration and cell–cell adhesion. Curr. Opin. Cell Biol. 36:62–70
    [Google Scholar]
  15. 15.  Condeelis J, Segall JE 2003. Intravital imaging of cell movement in tumours. Nat. Rev. Cancer 3:921–30
    [Google Scholar]
  16. 16.  Conklin MW, Eickhoff JC, Riching KM, Pehlke CA, Eliceiri KW et al. 2011. Aligned collagen is a prognostic signature for survival in human breast carcinoma. Am. J. Pathol. 178:1221–32
    [Google Scholar]
  17. 17.  Cox TR, Bird D, Baker AM, Barker HE, Ho MW et al. 2013. LOX-mediated collagen crosslinking is responsible for fibrosis-enhanced metastasis. Cancer Res 73:1721–32
    [Google Scholar]
  18. 18.  Crosetto N, Bienko M, van Oudenaarden A 2015. Spatially resolved transcriptomics and beyond. Nat. Rev. Genet. 16:57–66
    [Google Scholar]
  19. 19.  Czirok A, Schlett K, Madarasz E, Vicsek T 1998. Exponential distribution of locomotion activity in cell cultures. Phys. Rev. Lett. 81:3038–41
    [Google Scholar]
  20. 20.  Dieterich P, Klages R, Preuss R, Schwab A 2008. Anomalous dynamics of cell migration. PNAS 105:459–63
    [Google Scholar]
  21. 21.  Doyle AD, Carvajal N, Jin A, Matsumoto K, Yamada KM 2015. Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions. Nat. Commun. 6:8720
    [Google Scholar]
  22. 22.  Doyle AD, Petrie RJ, Kutys ML, Yamada KM 2013. Dimensions in cell migration. Curr. Opin. Cell Biol. 25:642–49
    [Google Scholar]
  23. 23.  DuFort CC, Paszek MJ, Weaver VM 2011. Balancing forces: architectural control of mechanotransduction. Nat. Rev. Mol. Cell Biol. 12:308–19
    [Google Scholar]
  24. 24.  Ehrbar M, Sala A, Lienemann P, Ranga A, Mosiewicz K et al. 2011. Elucidating the role of matrix stiffness in 3D cell migration and remodeling. Biophys. J. 100:284–93
    [Google Scholar]
  25. 25.  Eisinger-Mathason TS, Zhang M, Qiu Q, Skuli N, Nakazawa MS et al. 2013. Hypoxia-dependent modification of collagen networks promotes sarcoma metastasis. Cancer Discov 3:1190–205
    [Google Scholar]
  26. 26.  Even-Ram S, Yamada KM 2005. Cell migration in 3D matrix. Curr. Opin. Cell Biol. 17:524–32
    [Google Scholar]
  27. 27.  Eyre DR, Paz MA, Gallop PM 1984. Cross-linking in collagen and elastin. Annu. Rev. Biochem. 53:717–48
    [Google Scholar]
  28. 28.  Fenner J, Stacer AC, Winterroth F, Johnson TD, Luker KE, Luker GD 2014. Macroscopic stiffness of breast tumors predicts metastasis. Sci. Rep. 4:5512
    [Google Scholar]
  29. 29.  Fraley SI, Feng Y, Giri A, Longmore GD, Wirtz D 2012. Dimensional and temporal controls of three-dimensional cell migration by zyxin and binding partners. Nat. Commun. 3:719
    [Google Scholar]
  30. 30.  Fraley SI, Feng Y, Krishnamurthy R, Kim DH, Celedon A et al. 2010. A distinctive role for focal adhesion proteins in three-dimensional cell motility. Nat. Cell Biol. 12:598–604
    [Google Scholar]
  31. 31.  Fraley SI, Wu P-h, He L, Feng Y, Krisnamurthy R et al. 2015. Three-dimensional matrix fiber alignment modulates cell migration and MT1-MMP utility by spatially and temporally directing protrusions. Sci. Rep. 5:14580
    [Google Scholar]
  32. 32.  Frantz C, Stewart KM, Weaver VM 2010. The extracellular matrix at a glance. J. Cell Sci. 123:4195–200
    [Google Scholar]
  33. 33.  Fukumura D, Duda DG, Munn LL, Jain RK 2010. Tumor microvasculature and microenvironment: novel insights through intravital imaging in pre-clinical models. Microcirculation 17:206–25
    [Google Scholar]
  34. 34.  Gadea G, de Toledo M, Anguille C, Roux P 2007. Loss of p53 promotes RhoA-ROCK-dependent cell migration and invasion in 3D matrices. J. Cell Biol. 178:23–30
    [Google Scholar]
  35. 35.  Germain RN, Robey EA, Cahalan MD 2012. A decade of imaging cellular motility and interaction dynamics in the immune system. Science 336:1676–81
    [Google Scholar]
  36. 36.  Gilkes DM, Bajpai S, Chaturvedi P, Wirtz D, Semenza GL 2013. Hypoxia-inducible factor 1 (HIF-1) promotes extracellular matrix remodeling under hypoxic conditions by inducing P4HA1, P4HA2, and PLOD2 expression in fibroblasts. J. Biol. Chem. 288:10819–29
    [Google Scholar]
  37. 37.  Gilkes DM, Bajpai S, Wong CC, Chaturvedi P, Hubbi ME et al. 2013. Procollagen lysyl hydroxylase 2 is essential for hypoxia-induced breast cancer metastasis. Mol. Cancer Res. 11:456–66
    [Google Scholar]
  38. 38.  Gilkes DM, Chaturvedi P, Bajpai S, Wong CC, Wei H et al. 2013. Collagen prolyl hydroxylases are essential for breast cancer metastasis. Cancer Res 73:3285–96
    [Google Scholar]
  39. 39.  Gilkes DM, Semenza GL, Wirtz D 2014. Hypoxia and the extracellular matrix: drivers of tumour metastasis. Nat. Rev. Cancer 14:430–39
    [Google Scholar]
  40. 40.  Giri A, Bajpai S, Trenton N, Jayatilaka H, Longmore GD, Wirtz D 2013. The Arp2/3 complex mediates multigeneration dendritic protrusions for efficient 3-dimensional cancer cell migration. FASEB J 27:4089–99
    [Google Scholar]
  41. 41.  Hakkinen KM, Harunaga JS, Doyle AD, Yamada KM 2011. Direct comparisons of the morphology, migration, cell adhesions, and actin cytoskeleton of fibroblasts in four different three-dimensional extracellular matrices. Tissue Eng. Part A 17:713–24
    [Google Scholar]
  42. 42.  Harada T, Swift J, Irianto J, Shin JW, Spinler KR et al. 2014. Nuclear lamin stiffness is a barrier to 3D migration, but softness can limit survival. J. Cell Biol. 204:669–82
    [Google Scholar]
  43. 43.  Harley BA, Kim H-D, Zaman MH, Yannas IV, Lauffenburger DA, Gibson LJ 2008. Microarchitecture of three-dimensional scaffolds influences cell migration behavior via junction interactions. Biophys. J. 95:4013–24
    [Google Scholar]
  44. 44.  Hynes RO. 2009. Extracellular matrix: not just pretty fibrils. Science 326:1216–19
    [Google Scholar]
  45. 45.  Jayatilaka H, Tyle P, Chen JJ, Kwak M, Ju J et al. 2017. Synergistic IL-6 and IL-8 paracrine signalling pathway infers a strategy to inhibit tumour cell migration. Nat. Commun. 8:15584
    [Google Scholar]
  46. 46.  Ju JA, Godet I, Ye IC, Byun J, Jayatilaka H et al. 2017. Hypoxia selectively enhances integrin receptor expression to promote metastasis. Mol. Cancer Res. 15:723–34
    [Google Scholar]
  47. 47.  Keely P, Nain A 2015. Capturing relevant extracellular matrices for investigating cell migration. F1000Res 4:1408
    [Google Scholar]
  48. 48.  Keller PJ. 2013. In vivo imaging of zebrafish embryogenesis. Methods 62:268–78
    [Google Scholar]
  49. 49.  Khatau SB, Bloom RJ, Bajpai S, Razafsky D, Zang S et al. 2012. The distinct roles of the nucleus and nucleus-cytoskeleton connections in three-dimensional cell migration. Sci. Rep. 2:488
    [Google Scholar]
  50. 50.  Kim D-H, Cho S, Wirtz D 2014. Tight coupling between nucleus and cell migration through the perinuclear actin cap. J. Cell Sci. 127:2528–41
    [Google Scholar]
  51. 51.  Kim D-H, Khatau SB, Feng Y, Walcott S, Sun SX et al. 2012. Actin cap associated focal adhesions and their distinct role in cellular mechanosensing. Sci. Rep. 2:555
    [Google Scholar]
  52. 52.  Kim D-H, Wirtz D 2013. Focal adhesion size uniquely predicts cell migration. FASEB J 27:1351–61
    [Google Scholar]
  53. 53.  Kim D-H, Wirtz D 2013. Predicting how cells spread and migrate: Focal adhesion size does matter. Cell Adh. Migr. 7:293–96
    [Google Scholar]
  54. 54.  Kim H-D, Guo TW, Wu AP, Wells A, Gertler FB, Lauffenburger DA 2008. Epidermal growth factor–induced enhancement of glioblastoma cell migration in 3D arises from an intrinsic increase in speed but an extrinsic matrix- and proteolysis-dependent increase in persistence. Mol. Biol. Cell 19:4249–59
    [Google Scholar]
  55. 55.  Kim M, Carman CV, Springer TA 2003. Bidirectional transmembrane signaling by cytoplasmic domain separation in integrins. Science 301:1720–25
    [Google Scholar]
  56. 56.  Konstantopoulos K, Wu P-H, Wirtz D 2013. Dimensional control of cancer cell migration. Biophys. J. 104:279–80
    [Google Scholar]
  57. 57.  Krause M, Gautreau A 2014. Steering cell migration: lamellipodium dynamics and the regulation of directional persistence. Nat. Rev. Mol. Cell Biol. 15:577–90
    [Google Scholar]
  58. 58.  Krummel MF, Bartumeus F, Gerard A 2016. T cell migration, search strategies and mechanisms. Nat. Rev. Immunol. 16:193–201
    [Google Scholar]
  59. 59.  Kubow KE, Voncannon SK, Horwitz AR 2013. Matrix microarchitecture and myosin II determine adhesion in 3D matrices. Curr. Biol. 23:1607–19
    [Google Scholar]
  60. 60.  Lange JR, Fabry B 2013. Cell and tissue mechanics in cell migration. Exp. Cell Res. 319:2418–23
    [Google Scholar]
  61. 61.  Lauffenburger DA, Horwitz AF 1996. Cell migration: a physically integrated molecular process. Cell 84:359–69
    [Google Scholar]
  62. 62.  Lee GY, Kenny PA, Lee EH, Bissell MJ 2007. Three-dimensional culture models of normal and malignant breast epithelial cells. Nat. Methods 4:359–65
    [Google Scholar]
  63. 63.  Lee MH, Wu P-H, Gilkes D, Aifuwa I, Wirtz D 2015. Normal mammary epithelial cells promote carcinoma basement membrane invasion by inducing microtubule-rich protrusions. Oncotarget 6:32634–45
    [Google Scholar]
  64. 64.  Lu P, Weaver VM, Werb Z 2012. The extracellular matrix: a dynamic niche in cancer progression. J. Cell Biol. 196:395–406
    [Google Scholar]
  65. 65.  Luster AD, Alon R, von Andrian UH 2005. Immune cell migration in inflammation: present and future therapeutic targets. Nat. Immunol. 6:1182–90
    [Google Scholar]
  66. 66.  Luxton GW, Gundersen GG 2011. Orientation and function of the nuclear-centrosomal axis during cell migration. Curr. Opin. Cell Biol. 23:579–88
    [Google Scholar]
  67. 67.  Maloney JM, Walton EB, Bruce CM, Van Vliet KJ 2008. Influence of finite thickness and stiffness on cellular adhesion-induced deformation of compliant substrata. Phys. Rev. E 78:041923
    [Google Scholar]
  68. 68.  Marjoram RJ, Lessey EC, Burridge K 2014. Regulation of RhoA activity by adhesion molecules and mechanotransduction. Curr. Mol. Med. 14:199–208
    [Google Scholar]
  69. 69.  Martin LJ, Boyd NF 2008. Mammographic density. Potential mechanisms of breast cancer risk associated with mammographic density: hypotheses based on epidemiological evidence. Breast Cancer Res 10:Suppl. 1201
    [Google Scholar]
  70. 70.  Mayor R, Etienne-Manneville S 2016. The front and rear of collective cell migration. Nat. Rev. Mol. Cell Biol. 17:97–109
    [Google Scholar]
  71. 71.  Metzner C, Mark C, Steinwachs J, Lautscham L, Stadler F, Fabry B 2015. Superstatistical analysis and modelling of heterogeneous random walks. Nat. Commun. 6:7516
    [Google Scholar]
  72. 72.  Meyer AS, Hughes-Alford SK, Kay JE, Castillo A, Wells A et al. 2012. 2D protrusion but not motility predicts growth factor–induced cancer cell migration in 3D collagen. J. Cell Biol. 197:721–29
    [Google Scholar]
  73. 73.  Parkhurst MR, Saltzman WM 1992. Quantification of human neutrophil motility in 3-dimensional collagen gels. Effect of collagen concentration. Biophys. J. 61:306–15
    [Google Scholar]
  74. 74.  Petit V, Thiery JP 2000. Focal adhesions: structure and dynamics. Biol. Cell 92:477–94
    [Google Scholar]
  75. 75.  Petrie RJ, Doyle AD, Yamada KM 2009. Random versus directionally persistent cell migration. Nat. Rev. Mol. Cell Biol. 10:538–49
    [Google Scholar]
  76. 76.  Petrie RJ, Koo H, Yamada KM 2014. Generation of compartmentalized pressure by a nuclear piston governs cell motility in a 3D matrix. Science 345:1062–65
    [Google Scholar]
  77. 77.  Petrie RJ, Yamada KM 2012. At the leading edge of three-dimensional cell migration. J. Cell Sci. 125:5917–26
    [Google Scholar]
  78. 78.  Petrie RJ, Yamada KM 2016. Multiple mechanisms of 3D migration: the origins of plasticity. Curr. Opin. Cell Biol. 42:7–12
    [Google Scholar]
  79. 79.  Pickup MW, Mouw JK, Weaver VM 2014. The extracellular matrix modulates the hallmarks of cancer. EMBO Rep 15:1243–53
    [Google Scholar]
  80. 80.  Pittet Mikael J, Weissleder R 2011. Intravital imaging. Cell 147:983–91
    [Google Scholar]
  81. 81.  Pollard TD, Borisy GG 2003. Cellular motility driven by assembly and disassembly of actin filaments. Cell 113:549–49
    [Google Scholar]
  82. 82.  Provenzano PP, Eliceiri KW, Keely PJ 2009. Shining new light on 3D cell motility and the metastatic process. Trends Cell Biol 19:638–48
    [Google Scholar]
  83. 83.  Rangarajan R, Zaman MH 2008. Modeling cell migration in 3D: status and challenges. Cell Adh. Migr. 2:106–9
    [Google Scholar]
  84. 84.  Reid SE, Kay EJ, Neilson LJ, Henze AT, Serneels J et al. 2017. Tumor matrix stiffness promotes metastatic cancer cell interaction with the endothelium. EMBO J 36:2373–89
    [Google Scholar]
  85. 85.  Reig G, Pulgar E, Concha ML 2014. Cell migration: from tissue culture to embryos. Development 141:1999–2013
    [Google Scholar]
  86. 86.  Riching KM, Cox BL, Salick MR, Pehlke C, Riching AS et al. 2014. 3D collagen alignment limits protrusions to enhance breast cancer cell persistence. Biophys. J. 107:2546–58
    [Google Scholar]
  87. 87.  Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH et al. 2003. Cell migration: integrating signals from front to back. Science 302:1704–9
    [Google Scholar]
  88. 88.  Russell MRG, Lerner TR, Burden JJ, Nkwe DO, Pelchen-Matthews A et al. 2017. 3D correlative light and electron microscopy of cultured cells using serial blockface scanning electron microscopy. J. Cell Sci. 130:278–91
    [Google Scholar]
  89. 89.  Sahai E, Wyckoff J, Philippar U, Segall JE, Gertler F, Condeelis J 2005. Simultaneous imaging of GFP, CFP and collagen in tumors in vivo using multiphoton microscopy. BMC Biotechnol 5:14
    [Google Scholar]
  90. 90.  Savin T, Doyle PS 2005. Static and dynamic errors in particle tracking microrheology. Biophys. J. 88:623–38
    [Google Scholar]
  91. 91.  Schmid B, Shah G, Scherf N, Weber M, Thierbach K et al. 2013. High-speed panoramic light-sheet microscopy reveals global endodermal cell dynamics. Nat. Commun. 4:2207
    [Google Scholar]
  92. 92.  Selmeczi D, Mosler S, Hagedorn PH, Larsen NB, Flyvbjerg H 2005. Cell motility as persistent random motion: theories from experiments. Biophys. J. 89:912–31
    [Google Scholar]
  93. 93.  Sen S, Engler AJ, Discher DE 2009. Matrix strains induced by cells: computing how far cells can feel. Cell. Mol. Bioeng. 2:39–48
    [Google Scholar]
  94. 94.  Sixt M. 2012. Cell migration: Fibroblasts find a new way to get ahead. J. Cell Biol. 197:347–49
    [Google Scholar]
  95. 95.  Starr DA, Fridolfsson HN 2010. Interactions between nuclei and the cytoskeleton are mediated by SUN-KASH nuclear-envelope bridges. Annu. Rev. Cell Dev. Biol. 26:421–44
    [Google Scholar]
  96. 96.  Stokes CL, Lauffenburger DA 1991. Analysis of the roles of microvessel endothelial-cell random motility and chemotaxis in angiogenesis. J. Theor. Biol. 152:377–403
    [Google Scholar]
  97. 97.  Stokes CL, Lauffenburger DA, Williams SK 1991. Migration of individual microvessel endothelial cells: stochastic model and parameter measurement. J. Cell Sci. 99:419–30
    [Google Scholar]
  98. 98.  Streisinger G, Walker C, Dower N, Knauber D, Singer F 1981. Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature 291:293–96
    [Google Scholar]
  99. 99.  Swaney KF, Li R 2016. Function and regulation of the Arp2/3 complex during cell migration in diverse environments. Curr. Opin. Cell Biol. 42:63–72
    [Google Scholar]
  100. 100.  Takagi H, Sato MJ, Yanagida T, Ueda M 2008. Functional analysis of spontaneous cell movement under different physiological conditions. PLOS ONE 3:e2648
    [Google Scholar]
  101. 101.  Tanner K. 2012. Regulation of the basement membrane by epithelia generated forces. Phys. Biol. 9:065003
    [Google Scholar]
  102. 102.  Totsukawa G, Wu Y, Sasaki Y, Hartshorne DJ, Yamakita Y et al. 2004. Distinct roles of MLCK and ROCK in the regulation of membrane protrusions and focal adhesion dynamics during cell migration of fibroblasts. J. Cell Biol. 164:427–39
    [Google Scholar]
  103. 103.  Tranquillo RT, Lauffenburger DA 1987. Stochastic-model of leukocyte chemosensory movement. J. Math. Biol. 25:229–62
    [Google Scholar]
  104. 104.  Tranquillo RT, Lauffenburger DA, Zigmond SH 1988. A stochastic model for leukocyte random motility and chemotaxis based on receptor binding fluctuations. J. Cell Biol. 106:303–9
    [Google Scholar]
  105. 105.  Vaddiraju S, Tomazos I, Burgess DJ, Jain FC, Papadimitrakopoulos F 2010. Emerging synergy between nanotechnology and implantable biosensors: a review. Biosens. Bioelectron. 25:1553–65
    [Google Scholar]
  106. 106.  Valastyan S, Weinberg Robert A 2011. Tumor metastasis: molecular insights and evolving paradigms. Cell 147:275–92
    [Google Scholar]
  107. 107.  Walters BD, Stegemann JP 2014. Strategies for directing the structure and function of 3D collagen biomaterials across length scales. Acta Biomater 10:1488–501
    [Google Scholar]
  108. 108.  Wegener KL, Partridge AW, Han J, Pickford AR, Liddington RC et al. 2007. Structural basis of integrin activation by talin. Cell 128:171–82
    [Google Scholar]
  109. 109.  Wheeler AP, Ridley AJ 2004. Why three Rho proteins? RhoA, RhoB, RhoC, and cell motility. Exp. Cell Res. 301:43–49
    [Google Scholar]
  110. 110.  Wirtz D, Konstantopoulos K, Searson PC 2011. The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat. Rev. Cancer 11:512–22
    [Google Scholar]
  111. 111.  Wolf K, te Lindert M, Krause M, Alexander S, te Riet J et al. 2013. Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J. Cell Biol. 201:1069–84
    [Google Scholar]
  112. 112.  Wood W, Martin P 2002. Structures in focus—filopodia. Int. J. Biochem. Cell Biol. 34:726–30
    [Google Scholar]
  113. 113.  Wu P-H, Agarwal A, Hess H, Khargonekar PP, Tseng Y 2010. Analysis of video-based microscopic particle trajectories using Kalman filtering. Biophys. J. 98:2822–30
    [Google Scholar]
  114. 114.  Wu P-H, Arce SH, Burney PR, Tseng Y 2009. A novel approach to high accuracy of video-based microrheology. Biophys. J. 96:5103–11
    [Google Scholar]
  115. 115.  Wu P-H, Giri A, Sun SX, Wirtz D 2014. Three-dimensional cell migration does not follow a random walk. PNAS 111:3949–54
    [Google Scholar]
  116. 116.  Wu P-H, Giri A, Wirtz D 2015. Statistical analysis of cell migration in 3D using the anisotropic persistent random walk model. Nat. Protoc. 10:517–27
    [Google Scholar]
  117. 117.  Yamaguchi H, Wyckoff J, Condeelis J 2005. Cell migration in tumors. Curr. Opin. Cell Biol. 17:559–64
    [Google Scholar]
  118. 118.  Zaman MH, Kamm RD, Matsudaira P, Lauffenburger DA 2005. Computational model for cell migration in three-dimensional matrices. Biophys. J. 89:1389–97
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-070816-033854
Loading
/content/journals/10.1146/annurev-biophys-070816-033854
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error