1932

Abstract

Molecular chaperones are the guardians of the proteome inside the cell. Chaperones recognize and bind unfolded or misfolded substrates, thereby preventing further aggregation; promoting correct protein folding; and, in some instances, even disaggregating already formed aggregates. Chaperones perform their function by means of an array of weak protein–protein interactions that take place over a wide range of timescales and are therefore invisible to structural techniques dependent upon the availability of highly homogeneous samples. Nuclear magnetic resonance (NMR) spectroscopy, however, is ideally suited to study dynamic, rapidly interconverting conformational states and protein–protein interactions in solution, even if these involve a high-molecular-weight component. In this review, we give a brief overview of the principles used by chaperones to bind their client proteins and describe NMR methods that have emerged as valuable tools to probe chaperone–substrate and chaperone–chaperone interactions. We then focus on a few systems for which the application of these methods has greatly increased our understanding of the mechanisms underlying chaperone functions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-090921-120150
2022-05-09
2024-05-06
Loading full text...

Full text loading...

/deliver/fulltext/biophys/51/1/annurev-biophys-090921-120150.html?itemId=/content/journals/10.1146/annurev-biophys-090921-120150&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Alberts B, Miake-Lye R. 1992. Unscrambling the puzzle of biological machines: the importance of the details. Cell 68:415–20
    [Google Scholar]
  2. 2.
    Alderson TR, Adriaenssens E, Asselbergh B, Pritišanac I, Van Lent J et al. 2021. A weakened interface in the P182L variant of HSP27 associated with severe Charcot-Marie-Tooth neuropathy causes aberrant binding to interacting proteins. EMBO J 40:e103811
    [Google Scholar]
  3. 3.
    Alderson TR, Kay LE. 2020. Unveiling invisible protein states with NMR spectroscopy. Curr. Opin. Struct. Biol. 60:39–49
    [Google Scholar]
  4. 4.
    Alderson TR, Kay LE. 2021. NMR spectroscopy captures the essential role of dynamics in regulating biomolecular function. Cell 184:577–95
    [Google Scholar]
  5. 5.
    Alderson TR, Roche J, Gastall HY, Dias DM, Pritišanac I et al. 2019. Local unfolding of the Hsp27 monomer regulates chaperone activity. Nat. Commun. 10:1068
    [Google Scholar]
  6. 6.
    Ali MMU, Roe SM, Vaughan CK, Meyer P, Panaretou B et al. 2006. Crystal structure of an Hsp90–nucleotide–p23/Sba1 closed chaperone complex. Nature 440:1013–17
    [Google Scholar]
  7. 7.
    Anthis NJ, Clore GM. 2015. Visualizing transient dark states by NMR spectroscopy. Q. Rev. Biophys. 48:35–116
    [Google Scholar]
  8. 8.
    Aquilina JA, Shrestha S, Morris AM, Ecroyd H 2013. Structural and functional aspects of hetero-oligomers formed by the small heat shock proteins αB-crystallin and HSP27. J. Biol. Chem. 288:13602–9
    [Google Scholar]
  9. 9.
    Aslam M, Kandasamy N, Ullah A, Paramasivam N, Öztürk MA et al. 2021. Putative second hit rare genetic variants in families with seemingly GBA-associated Parkinson's disease. Genom. Med. 6:2–10
    [Google Scholar]
  10. 10.
    Assimon VA, Southworth DR, Gestwicki JE. 2015. Specific binding of tetratricopeptide repeat proteins to heat shock protein 70 (Hsp70) and heat shock protein 90 (Hsp90) is regulated by affinity and phosphorylation. Biochemistry 54:7120–31
    [Google Scholar]
  11. 11.
    Balana AT, Levine PM, Craven TW, Mukherjee S, Pedowitz NJ et al. 2021. O-GlcNAc modification of small heat shock proteins enhances their anti-amyloid chaperone activity. Nat. Chem. 13:441–50
    [Google Scholar]
  12. 12.
    Balchin D, Hayer-Hartl M, Hartl FU. 2016. In vivo aspects of protein folding and quality control. Science 353:aac4354
    [Google Scholar]
  13. 13.
    Baldwin AJ, Hilton GR, Lioe H, Bagneris C, Benesch JL, Kay LE. 2011. Quaternary dynamics of αB-crystallin as a direct consequence of localised tertiary fluctuations in the C-terminus. J. Mol. Biol. 413:310–20
    [Google Scholar]
  14. 14.
    Baldwin AJ, Kay LE. 2009. NMR spectroscopy brings invisible protein states into focus. Nat. Chem. Biol. 5:808–14
    [Google Scholar]
  15. 15.
    Baldwin AJ, Lioe H, Robinson CV, Kay LE, Benesch JL 2011. αB-crystallin polydispersity is a consequence of unbiased quaternary dynamics. J. Mol. Biol. 413:297–309
    [Google Scholar]
  16. 16.
    Baldwin AJ, Walsh P, Hansen DF, Hilton GR, Benesch JL et al. 2012. Probing dynamic conformations of the high-molecular-weight αB-crystallin heat shock protein ensemble by NMR spectroscopy. J. Am. Chem. Soc. 134:15343–50
    [Google Scholar]
  17. 17.
    Barducci A, De Los Rios P. 2015. Non-equilibrium conformational dynamics in the function of molecular chaperones. Curr. Opin. Struct. Biol. 30:161–69
    [Google Scholar]
  18. 18.
    Baughman HER, Pham T-HT, CS Adams, Nath A, Klevit RE. 2020. Release of a disordered domain enhances HspB1 chaperone activity toward tau. PNAS 117:2923–29
    [Google Scholar]
  19. 19.
    Bax A, Grzesiek S. 1993. Methodological advances in protein NMR. Acc. Chem. Res. 26:131–38
    [Google Scholar]
  20. 20.
    Beadle GWG, Tatum ELE. 1941. Genetic control of biochemical reactions in Neurospora. PNAS 27:499–506
    [Google Scholar]
  21. 21.
    Blake CC, Johnson LN, Mair GA, North AC, Phillips DC, Sarma VR. 1967. Crystallographic studies of the activity of hen egg-white lysozyme. Proc. R. Soc. Lond. B 167:378–88
    [Google Scholar]
  22. 22.
    Blake CC, Koenig DF, Mair GA, North AC, Philipps C, Sarma VR. 1965. Structure of hen egg-white lysozyme: a three-dimensional Fourier synthesis at 2 Å resolution. Nature 206:757–61
    [Google Scholar]
  23. 23.
    Burmann BM, Gerez JA, Matečko-Burmann I, Campioni S, Kumari P et al. 2020. Regulation of α-synuclein by chaperones in mammalian cells. Nature 577:127–32
    [Google Scholar]
  24. 24.
    Burmann BM, Hiller S. 2015. Chaperones and chaperone–substrate complexes: dynamic playgrounds for NMR spectroscopists. Prog. Nucl. Magn. Reson. Spectrosc 86–87:41–64
    [Google Scholar]
  25. 25.
    Burmann BM, Wang C, Hiller S 2013. Conformation and dynamics of the periplasmic membrane-protein–chaperone complexes OmpX–Skp and tOmpA–Skp. Nat. Struct. Mol. Biol. 20:1265–72
    [Google Scholar]
  26. 26.
    Clore GM, Driscoll PC, Wingfield PT, Gronenborn AM. 1990. Analysis of the backbone dynamics of interleukin-1β using two-dimensional inverse detected heteronuclear 15N-1H NMR spectroscopy. Biochemistry 29:7387–401
    [Google Scholar]
  27. 27.
    Clore GM, Gronenborn AM. 1991. Structures of larger proteins in solution: three- and four-dimensional heteronuclear NMR spectroscopy. Science 252:1390–99
    [Google Scholar]
  28. 28.
    Clore GM, Gronenborn AM. 1998. Determining the structures of large proteins and protein complexes by NMR. Trends Biotechnol 16:22–34
    [Google Scholar]
  29. 29.
    Clore GM, Iwahara J. 2009. Theory, practice, and applications of paramagnetic relaxation enhancement for the characterization of transient low-population states of biological macromolecules and their complexes. Chem. Rev. 109:4108–39
    [Google Scholar]
  30. 30.
    Clore GM, Venditti V. 2013. Structure, dynamics and biophysics of the cytoplasmic protein-protein complexes of the bacterial phosphoenolpyruvate: sugar phosphotransferase system. Trends Biochem. Sci. 38:515–30
    [Google Scholar]
  31. 31.
    Clouser AF, Baughman HER, Basanta B, Guttman M, Nath A, Klevit RE 2019. Interplay of disordered and ordered regions of a human small heat shock protein yields an ensemble of “quasi-ordered” states. eLife 8:e50259
    [Google Scholar]
  32. 32.
    Conicella AE, Huang R, Ripstein ZA, Nguyen A, Wang E et al. 2020. An intrinsically disordered motif regulates the interaction between the p47 adaptor and the p97 AAA+ ATPase. PNAS 117:26226–36
    [Google Scholar]
  33. 33.
    Dekker SL, Kampinga HH, Bergink S. 2015. DNAJs: more than substrate delivery to HSPA. Front. Mol. Biosci. 2:35
    [Google Scholar]
  34. 34.
    Englander SW. 2006. Hydrogen exchange and mass spectrometry: a historical perspective. J. Am. Soc. Mass Spectrom. 17:1481–89
    [Google Scholar]
  35. 35.
    Englander SW, Downer NW, Teitelbaum H. 1972. Hydrogen exchange. Annu. Rev. Biochem. 41:903–24
    [Google Scholar]
  36. 36.
    Englander SW, Mayne L, Bai Y, Sosnick TR. 1997. Hydrogen exchange: the modern legacy of Linderstrom-Lang. Protein Sci 6:1101–9
    [Google Scholar]
  37. 37.
    Evgrafov OV, Mersiyanova I, Irobi J, Van Den Bosch L, Dierick I et al. 2004. Mutant small heat-shock protein 27 causes axonal Charcot-Marie-Tooth disease and distal hereditary motor neuropathy. Nat. Genet. 36:602–6
    [Google Scholar]
  38. 38.
    Farr GW, Furtak K, Rowland MB, Ranson NA, Saibil HR et al. 2000. Multivalent binding of nonnative substrate proteins by the chaperonin GroEL. Cell 100:561–73
    [Google Scholar]
  39. 39.
    Faust O, Abayev-Avraham M, Wentink AS, Maurer M, Nillegoda NB et al. 2020. Hsp40 proteins use class-specific regulation to drive Hsp70 functional diversity. Nature 587:489–94
    [Google Scholar]
  40. 40.
    Fawzi NL, Ying J, Ghirlando R, Torchia DA, Clore GM. 2011. Atomic-resolution dynamics on the surface of amyloid-β protofibrils probed by solution NMR. Nature 480:268–72
    [Google Scholar]
  41. 41.
    Fawzi NL, Ying J, Torchia DA, Clore GM 2010. Kinetics of amyloid β monomer-to-oligomer exchange by NMR relaxation. J. Am. Chem. Soc. 132:9948–51
    [Google Scholar]
  42. 42.
    Fenton WA, Horwich AL. 1997. GroEL-mediated protein folding. Protein Sci 6:743–60
    [Google Scholar]
  43. 43.
    Fischer E. 1894. Einfluss der Configuration auf die Wirkung der Enzyme. Ber. Dtsch. Chem. Ges. 27:2985–93
    [Google Scholar]
  44. 44.
    Freilich R, Arhar T, Abrams JL, Gestwicki JE. 2018. Protein–protein interactions in the molecular chaperone network. Acc. Chem. Res. 51:940–49
    [Google Scholar]
  45. 45.
    Georgopoulos C. 2006. Toothpicks, serendipity and the emergence of the Escherichia coli DnaK (Hsp70) and GroEL (Hsp60) chaperone machines. Genetics 174:1699–707
    [Google Scholar]
  46. 46.
    Georgopoulos CP, Lam B, Lundquist-Heil A, Rudolph CF, Yochem J, Feiss M 1979. Identification of the E. coli dnaK (groPC756) gene product. Mol. Gen. Genet. 172:143–49
    [Google Scholar]
  47. 47.
    Godoy-Ruiz R Guo C, Tugarinov V. 2010. Alanine methyl groups as NMR probes of molecular structure and dynamics in high-molecular-weight proteins. J. Am. Chem. Soc. 132:18340–50
    [Google Scholar]
  48. 48.
    Goloubinoff P, Christeller JT, Gatenby AA, Lorimer GH. 1989. Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfolded state depends on two chaperonin proteins and Mg-ATP. Nature 342:884–89
    [Google Scholar]
  49. 49.
    Goloubinoff P, Gatenby AA, Lorimer GH. 1989. GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli. Nature 337:44–47
    [Google Scholar]
  50. 50.
    Goloubinoff P, Sassi AS, Fauvet B, Barducci A, De Los Rios P. 2018. Chaperones convert the energy from ATP into the nonequilibrium stabilization of native proteins. Nat. Chem. Biol. 14:388–95
    [Google Scholar]
  51. 51.
    Greene MK, Maskos K, Landry SJ 1998. Role of the J-domain in the cooperation of Hsp40 with Hsp70. PNAS 95:6108–13
    [Google Scholar]
  52. 52.
    Gupta AJ, Haldar S, Miličić G, Hartl FU, Hayer-Hartl M. 2014. Active cage mechanism of chaperonin-assisted protein folding demonstrated at single-molecule level. J. Mol. Biol. 426:2739–54
    [Google Scholar]
  53. 53.
    Gutfreund H. 1995. Kinetics for the Life Sciences: Receptors, Transmitters and Catalysts Cambridge, UK: Cambridge Univ. Press
  54. 54.
    Hagn F, Lagleder S, Retzlaff M, Rohrberg J, Demmer O et al. 2011. Structural analysis of the interaction between Hsp90 and the tumor suppressor protein p53. Nat. Struct. Mol. Biol. 18:1086–93
    [Google Scholar]
  55. 55.
    Hansen DF, Vallurupalli P, Kay LE. 2008. An improved 15N relaxation dispersion experiment for the measurement of millisecond time-scale dynamics in proteins. J. Phys. Chem. B 112:5898–904
    [Google Scholar]
  56. 56.
    Hartl FU. 2016. Cellular homeostasis and aging. Annu. Rev. Biochem. 85:1–4
    [Google Scholar]
  57. 57.
    Hartl FU. 2017. Protein misfolding diseases. Annu. Rev. Biochem. 86:21–26
    [Google Scholar]
  58. 58.
    Hartl FU, Bracher A, Hayer-Hartl M. 2011. Molecular chaperones in protein folding and proteostasis. Nature 475:324–32
    [Google Scholar]
  59. 59.
    Haslbeck M, Vierling E. 2015. A first line of stress defense: small heat shock proteins and their function in protein homeostasis. J. Mol. Biol. 427:1537–48
    [Google Scholar]
  60. 60.
    Hayer-Hartl M, Bracher A, Hartl FU. 2016. The GroEL–GroES chaperonin machine: a nano-cage for protein folding. Trends Biochem. Sci. 41:62–76
    [Google Scholar]
  61. 61.
    He L, Sharpe T, Mazur A, Hiller S 2016. A molecular mechanism of chaperone-client recognition. Sci. Adv. 2:e1601625
    [Google Scholar]
  62. 62.
    Henzler-Wildman K, Kern D. 2007. Dynamic personalities of proteins. Nature 450:964–72
    [Google Scholar]
  63. 63.
    Hiller S. 2019. Chaperone-bound clients: the importance of being dynamic. Trends Biochem. Sci. 44:517–27
    [Google Scholar]
  64. 64.
    Hochberg GKA, Shepherd DA, Marklund EG, Santhanagoplan I, Degiacomi MT et al. 2018. Structural principles that enable oligomeric small heat-shock protein paralogs to evolve distinct functions. Science 359:930–35
    [Google Scholar]
  65. 65.
    Horwich AL, Fenton WA. 2009. Chaperonin-mediated protein folding: using a central cavity to kinetically assist polypeptide chain folding. Q. Rev. Biophys. 42:83–116
    [Google Scholar]
  66. 66.
    Hu J, Wu Y, Li J, Qian X, Fu Z, Sha B. 2008. The crystal structure of the putative peptide-binding fragment from the human Hsp40 protein Hdj1. BMC Struct. Biol. 8:3
    [Google Scholar]
  67. 67.
    Huang C, Rossi P, Saio T, Kalodimos CG. 2016. Structural basis for the antifolding activity of a molecular chaperone. Nature 537:202–6
    [Google Scholar]
  68. 68.
    Jiang Y, Rossi P, Kalodimos CG. 2019. Structural basis for client recognition and activity of Hsp40 chaperones. Science 365:1313–19
    [Google Scholar]
  69. 69.
    Kakkar V, Kuiper EF, Pandey A, Braakman I, Kampinga HH. 2016. Versatile members of the DNAJ family show Hsp70 dependent anti-aggregation activity on RING1 mutant parkin C289G. Sci. Rep. 6:34830
    [Google Scholar]
  70. 70.
    Kampinga HH, Craig EA. 2010. The Hsp70 chaperone machinery: J proteins as drivers of functional specificity. Nat. Rev. Mol. Cell Biol. 11:579–92
    [Google Scholar]
  71. 71.
    Karagoz GE, Duarte AM, Akoury E, Ippel H, Biernat J et al. 2014. Hsp90-Tau complex reveals molecular basis for specificity in chaperone action. Cell 156:963–74
    [Google Scholar]
  72. 72.
    Karamanos TK, Tugarinov V, Clore GM. 2019. Unraveling the structure and dynamics of the human DNAJB6b chaperone by NMR reveals insights into Hsp40-mediated proteostasis. PNAS 116:21529–38
    [Google Scholar]
  73. 73.
    Karamanos TK, Tugarinov V, Clore GM. 2020. An S/T motif controls reversible oligomerization of the Hsp40 chaperone DNAJB6b through subtle reorganization of a β sheet backbone. PNAS30441–50
    [Google Scholar]
  74. 74.
    Karplus M, Petsko GA. 1990. Molecular dynamics simulations in biology. Nature 347:631–39
    [Google Scholar]
  75. 75.
    Karunanithy G, Shukla VK, Hansen DF. 2021. Methodological advancements for characterising protein side chains by NMR spectroscopy. Curr. Opin. Struct. Biol. 70:61–69
    [Google Scholar]
  76. 76.
    Kastritis PL, Moal IH, Hwang H, Weng Z, Bates PA et al. 2011. A structure-based benchmark for protein-protein binding affinity. Protein Sci 20:482–91
    [Google Scholar]
  77. 77.
    Kay LE. 2016. New views of functionally dynamic proteins by solution NMR spectroscopy. J. Mol. Biol. 428:323–31
    [Google Scholar]
  78. 78.
    Kay LE, Torchia DA, Bax A. 1989. Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. Biochemistry 28:8972–79
    [Google Scholar]
  79. 79.
    Korzhnev DM, Kay LE. 2008. Probing invisible, low-populated states of protein molecules by relaxation dispersion NMR spectroscopy: an application to protein folding. Acc. Chem. Res. 41:442–51
    [Google Scholar]
  80. 80.
    Korzhnev DM, Kloiber K, Kanelis V, Tugarinov V, Kay LE 2004. Probing slow dynamics in high molecular weight proteins by methyl-TROSY NMR spectroscopy: application to a 723-residue enzyme. J. Am. Chem. Soc. 126:3964–73
    [Google Scholar]
  81. 81.
    Korzhnev DM, Orekhov VY, Kay LE. 2005. Off-resonance R NMR studies of exchange dynamics in proteins with low spin-lock fields: an application to a Fyn SH3 domain. J. Am. Chem. Soc. 127:713–21
    [Google Scholar]
  82. 82.
    Koshland DE Jr., Nemethy G, Filmer D 1966. Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry 5:365–85
    [Google Scholar]
  83. 83.
    Lange OF, Rossi P, Sgourakis NG, Song Y, Lee HW et al. 2012. Determination of solution structures of proteins up to 40 kDa using CS-Rosetta with sparse NMR data from deuterated samples. PNAS 109:10873–78
    [Google Scholar]
  84. 84.
    Levitt M, Sharon R. 1988. Accurate simulation of protein dynamics in solution. PNAS 85:7557–61
    [Google Scholar]
  85. 85.
    Li J, Qian X, Sha B 2003. The crystal structure of the yeast Hsp40 Ydj1 complexed with its peptide substrate. Structure 11:1475–83
    [Google Scholar]
  86. 86.
    Libich DS, Fawzi NL, Ying J, Clore GM 2013. Probing the transient dark state of substrate binding to GroEL by relaxation-based solution NMR. PNAS 110:11361–66
    [Google Scholar]
  87. 87.
    Libich DS, Tugarinov V, Clore GM. 2015. Intrinsic unfoldase/foldase activity of the chaperonin GroEL directly demonstrated using multinuclear relaxation-based NMR. PNAS 112:8817–23
    [Google Scholar]
  88. 88.
    Libich DS, Tugarinov V, Ghirlando R, Clore GM 2017. Confinement and stabilization of Fyn SH3 folding intermediate mimetics within the cavity of the chaperonin GroEL demonstrated by relaxation-based NMR. Biochemistry 56:903–6
    [Google Scholar]
  89. 89.
    Lin Z, Madan D, Rye HS. 2008. GroEL stimulates protein folding through forced unfolding. Nat. Struct. Mol. Biol. 15:303–11
    [Google Scholar]
  90. 90.
    Lorimer GH. 1996. A quantitative assessment of the role of the chaperonin proteins in protein folding in vivo. FASEB J 10:5–9
    [Google Scholar]
  91. 91.
    Lorimer GH, Todd MJ, Viitanen PV 1993. Chaperonins and protein folding: unity and disunity of mechanisms. Phil. Trans. R. Soc. Lond. B 339:297–303
    [Google Scholar]
  92. 92.
    Luck K, Kim D-K, Lambourne L, Spirohn K, Begg BE et al. 2020. A reference map of the human binary protein interactome. Nature 580:402–8
    [Google Scholar]
  93. 93.
    Mainz A, Peschek J, Stavropoulou M, Back KC, Bardiaux B et al. 2015. The chaperone αB-crystallin uses different interfaces to capture an amorphous and an amyloid client. Nat. Struct. Mol. Biol. 22:898–905
    [Google Scholar]
  94. 94.
    Mansson C, Arosio P, Hussein R, Kampinga HH, Hashem RM et al. 2014. Interaction of the molecular chaperone DNAJB6 with growing amyloid-β42 (Aβ42) aggregates leads to sub-stoichiometric inhibition of amyloid formation. J. Biol. Chem. 289:31066–76
    [Google Scholar]
  95. 95.
    Mansson C, Kakkar V, Monsellier E, Sourigues Y, Harmark J et al. 2014. DNAJB6 is a peptide-binding chaperone which can suppress amyloid fibrillation of polyglutamine peptides at substoichiometric molar ratios. Cell Stress Chaperones 19:227–39
    [Google Scholar]
  96. 96.
    Mansson C, van Cruchten RTP, Weininger U, Yang X, Cukalevski R et al. 2018. Conserved S/T residues of the human chaperone DNAJB6 are required for effective inhibition of Aβ42 amyloid fibril formation. Biochemistry 57:4891–902
    [Google Scholar]
  97. 97.
    Mas G, Burmann BM, Sharpe T, Claudi B, Bumann D, Hiller S. 2020. Regulation of chaperone function by coupled folding and oligomerization. Sci. Adv. 6:eabc5822
    [Google Scholar]
  98. 98.
    Massi F, Johnson E, Wang C, Rance M, Palmer AG 2004. NMR R rotating-frame relaxation with weak radio frequency fields. J. Am. Chem. Soc. 126:2247–56
    [Google Scholar]
  99. 99.
    Mayer MP, Bukau B. 2005. Hsp70 chaperones: cellular functions and molecular mechanism. Cell. Mol. Life Sci. 62:670–84
    [Google Scholar]
  100. 100.
    McConnell HM. 1958. Reaction rates by nuclear magnetic resonance. J. Chem. Phys. 28:430–31
    [Google Scholar]
  101. 101.
    Meiboom S, Gill D 1958. Modified spin-echo method for measuring nuclear relaxation times. Rev. Sci. Instrum. 29:688–91
    [Google Scholar]
  102. 102.
    Meng E, Shevde LA, Samant RS. 2016. Emerging roles and underlying molecular mechanisms of DNAJB6 in cancer. Oncotarget 7:53984–96
    [Google Scholar]
  103. 103.
    Mogk A, Ruger-Herreros C, Bukau B. 2019. Cellular functions and mechanisms of action of small heat shock proteins. Annu. Rev. Microbiol. 73:89–110
    [Google Scholar]
  104. 104.
    Monod J, Wyman J, Changeux J-P. 1965. On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12:88–118
    [Google Scholar]
  105. 105.
    Nerli S, De Paula VS, McShan AC, Sgourakis NG 2021. Backbone-independent NMR resonance assignments of methyl probes in large proteins. Nat. Commun. 12:691
    [Google Scholar]
  106. 106.
    Neudecker P, Zarrine-Afsar A, Choy WY, Muhandiram DR, Davidson AR, Kay LE 2006. Identification of a collapsed intermediate with non-native long-range interactions on the folding pathway of a pair of Fyn SH3 domain mutants by NMR relaxation dispersion spectroscopy. J. Mol. Biol. 363:958–76
    [Google Scholar]
  107. 107.
    Ollerenshaw JE, Tugarinov V, Kay LE. 2003. Methyl TROSY: explanation and experimental verification. Magn. Reson. Chem. 41:843–52
    [Google Scholar]
  108. 108.
    Otten R, Pádua RAP, Bunzel HA, Nguyen V, Pitsawong W et al. 2020. How directed evolution reshapes the energy landscape in an enzyme to boost catalysis. Science 370:1442–46
    [Google Scholar]
  109. 109.
    Palmer AG, Massi F. 2006. Characterization of the dynamics of biomacromolecules using rotating-frame spin relaxation NMR spectroscopy. Chem. Rev. 106:1700–19
    [Google Scholar]
  110. 110.
    Pellecchia M, Szyperski T, Wall D, Georgopoulos C, Wuthrich K 1996. NMR structure of the J-domain and the Gly/Phe-rich region of the Escherichia coli DnaJ chaperone. J. Mol. Biol. 260:236–50
    [Google Scholar]
  111. 111.
    Perutz MF. 1970. Stereochemistry of cooperative effects in haemoglobin. Nature 228:726–39
    [Google Scholar]
  112. 112.
    Perutz MF, Wilkinson AJ, Paoli M, Dodson GG 1998. The stereochemical mechanism of the cooperative effects in hemoglobin revisited. Annu. Rev. Biophys. Biomol. Struct. 27:1–34
    [Google Scholar]
  113. 113.
    Pritchard RB, Hansen DF. 2019. Characterising side chains in large proteins by protonless 13C-detected NMR spectroscopy. Nat. Commun. 10:1747
    [Google Scholar]
  114. 114.
    Pritisanac I, Alderson TR, Guntert P. 2020. Automated assignment of methyl NMR spectra from large proteins. Prog. Nucl. Magn. Reson. Spectrosc. 118:–1954–73
    [Google Scholar]
  115. 115.
    Qiu XB, Shao YM, Miao S, Wang L. 2006. The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cell. Mol. Life Sci. 63:2560–70
    [Google Scholar]
  116. 116.
    Rennella E, Huang R, Yu Z, Kay LE 2020. Exploring long-range cooperativity in the 20S proteasome core particle from Thermoplasma acidophilum using methyl-TROSY-based NMR. PNAS 117:5298–309
    [Google Scholar]
  117. 117.
    Richter K, Haslbeck M, Buchner J. 2010. The heat shock response: life on the verge of death. Mol. Cell 40:253–66
    [Google Scholar]
  118. 118.
    Robinson CV, Gross M, Eyles SJ, Ewbank JJ, Mayhew M et al. 1994. Conformation of GroEL-bound α-lactalbumin probed by mass spectrometry. Nature 372:646–51
    [Google Scholar]
  119. 119.
    Rosam M, Krader D, Nickels C, Hochmair J, Back KC et al. 2018. Bap (Sil1) regulates the molecular chaperone BiP by coupling release of nucleotide and substrate. Nat. Struct. Mol. Biol. 25:90–100
    [Google Scholar]
  120. 120.
    Rosenzweig R, Kay LE. 2014. Bringing dynamic molecular machines into focus by methyl-TROSY NMR. Annu. Rev. Biochem. 83:291–315
    [Google Scholar]
  121. 121.
    Rosenzweig R, Moradi S, Zarrine-Afsar A, Glover JR, Kay LE. 2013. Unraveling the mechanism of protein disaggregation through a ClpB-DnaK interaction. Science 339:1080–83
    [Google Scholar]
  122. 122.
    Rossi P, Monneau YR, Xia Y, Ishida Y, Kalodimos CG. 2019. Toolkit for NMR studies of methyl-labeled proteins. Methods Enzymol 614:107–42
    [Google Scholar]
  123. 123.
    Saibil HR, Fenton WA, Clare DK, Horwich AL 2013. Structure and allostery of the chaperonin GroEL. J. Mol. Biol. 425:1476–87
    [Google Scholar]
  124. 124.
    Saio T, Guan X, Rossi P, Economou A, Kalodimos CG 2014. Structural basis for protein antiaggregation activity of the trigger factor chaperone. Science 344:1205494
    [Google Scholar]
  125. 125.
    Schütz S, Sprangers R. 2020. Methyl TROSY spectroscopy: a versatile NMR approach to study challenging biological systems. Prog. Nucl. Magn. Reson. Spectrosc. 116:56–84
    [Google Scholar]
  126. 126.
    Sekhar A, Kay LE. 2019. An NMR view of protein dynamics in health and disease. Annu. Rev. Biophys. Biomol. Struct. 48:297–319
    [Google Scholar]
  127. 127.
    Sekhar A, Rosenzweig R, Bouvignies G, Kay LE. 2015. Mapping the conformation of a client protein through the Hsp70 functional cycle. PNAS 112:10395–400
    [Google Scholar]
  128. 128.
    Sekhar A, Rosenzweig R, Bouvignies G, Kay LE. 2016. Hsp70 biases the folding pathways of client proteins. PNAS 113:E2794–801
    [Google Scholar]
  129. 129.
    Sela-Culang I, Kunik V, Ofran Y 2013. The structural basis of antibody-antigen recognition. Front. Immunol. 4:302
    [Google Scholar]
  130. 130.
    Serlidaki D, van Waarde MAWH, Rohland L, Wentink AS, Dekker SL et al. 2020. Functional diversity between Hsp70 paralogs caused by variable interactions with specific co-chaperones. J. Biol. Chem. 295:7301–16
    [Google Scholar]
  131. 131.
    Sharma S, Chakraborty K, Müller BK, Astola N, Tang Y-C et al. 2008. Monitoring protein conformation along the pathway of chaperonin-assisted folding. Cell 133:142–53
    [Google Scholar]
  132. 132.
    Shen Y, Lange O, Delaglio F, Rossi P, Aramini JM et al. 2008. Consistent blind protein structure generation from NMR chemical shift data. PNAS 105:4685–90
    [Google Scholar]
  133. 133.
    Skrynnikov NR, Dahlquist FW, Kay LE. 2002. Reconstructing NMR spectra of “invisible” excited protein states using HSQC and HMQC experiments. J. Am. Chem. Soc. 124:12352–60
    [Google Scholar]
  134. 134.
    Stan G, Brooks BR, Lorimer GH, Thirumalai D. 2005. Identifying natural substrates for chaperonins using a sequence-based approach. Protein Sci 14:193–201
    [Google Scholar]
  135. 135.
    Stan G, Brooks BR, Lorimer GH, Thirumalai D. 2006. Residues in substrate proteins that interact with GroEL in the capture process are buried in the native state. PNAS 103:4433–38
    [Google Scholar]
  136. 136.
    Straume O, Shimamura T, Lampa MJ, Carretero J, Oyan AM et al. 2012. Suppression of heat shock protein 27 induces long-term dormancy in human breast cancer. PNAS 109:8699–704
    [Google Scholar]
  137. 137.
    Taguwa S, Maringer K, Li X, Bernal-Rubio D, Rauch JN et al. 2015. Defining Hsp70 subnetworks in dengue virus replication reveals key vulnerability in flavivirus infection. Cell 163:1108–23
    [Google Scholar]
  138. 138.
    Thirumalai D, Hyeon C, Zhuravlev PI, Lorimer GH. 2019. Symmetry, rigidity, and allosteric signaling: from monomeric proteins to molecular machines. Chem. Rev. 119:6788–821
    [Google Scholar]
  139. 139.
    Thirumalai D, Klimov DK, Lorimer GH. 2003. Caging helps proteins fold. PNAS 100:11195–97
    [Google Scholar]
  140. 140.
    Thirumalai D, Lorimer GH. 2001. Chaperonin-mediated protein folding. Annu. Rev. Biophys. Biomol. Struct. 30:245–69
    [Google Scholar]
  141. 141.
    Thirumalai D, Lorimer GH, Hyeon C. 2020. Iterative annealing mechanism explains the functions of the GroEL and RNA chaperones. Protein Sci 29:360–77
    [Google Scholar]
  142. 142.
    Todd MJ, Viitanen PV, Lorimer GH. 1994. Dynamics of the chaperonin ATPase cycle: implications for facilitated protein folding. Science 265:659–66
    [Google Scholar]
  143. 143.
    Toyama Y, Harkness RW, Lee TYT, Maynes JT, Kay LE. 2021. Oligomeric assembly regulating mitochondrial HtrA2 function as examined by methyl-TROSY NMR. PNAS 118:e2025022118
    [Google Scholar]
  144. 144.
    Tugarinov V, Ceccon A, Clore GM 2021. Probing side-chain dynamics in proteins by NMR relaxation of isolated 13C magnetization modes in 13CH3 methyl groups. J. Phys. Chem. B 125:3343–52
    [Google Scholar]
  145. 145.
    Tugarinov V, Clore GM. 2019. Exchange saturation transfer and associated NMR techniques for studies of protein interactions involving high-molecular-weight systems. J. Biomol. NMR 73:8–9461–69
    [Google Scholar]
  146. 146.
    Tugarinov V, Kanelis V, Kay LE 2006. Isotope labeling strategies for the study of high-molecular-weight proteins by solution NMR spectroscopy. Nat. Protoc. 1:749–54
    [Google Scholar]
  147. 147.
    Tugarinov V, Karamanos TK, Ceccon A, Clore GM 2020. Optimized NMR experiments for the isolation of I = 1/2 manifold transitions in methyl groups of proteins. ChemPhysChem 21:13–19
    [Google Scholar]
  148. 148.
    Tugarinov V, Karamanos TK, Clore GM. 2020. Magic-angle-pulse driven separation of degenerate 1H transitions in methyl groups of proteins: application to studies of methyl axis dynamics. ChemPhysChem 21:1087–91
    [Google Scholar]
  149. 149.
    Tugarinov V, Karamanos TK, Clore GM. 2020. Optimized selection of slow-relaxing 13C transitions in methyl groups of proteins: application to relaxation dispersion. J. Biomol. NMR 74:12673–80
    [Google Scholar]
  150. 150.
    Tugarinov V, Kay LE. 2003. Ile, Leu, and Val methyl assignments of the 723-residue malate synthase G using a new labeling strategy and novel NMR methods. J. Am. Chem. Soc. 125:13868–78
    [Google Scholar]
  151. 151.
    Tugarinov V, Kay LE. 2004. An isotope labeling strategy for methyl TROSY spectroscopy. J. Biomol. NMR 28:165–72
    [Google Scholar]
  152. 152.
    Tugarinov V, Kay LE. 2013. Estimating side-chain order in [U-2H;13CH3]-labeled high molecular weight proteins from analysis of HMQC/HSQC spectra. J. Phys. Chem. B 117:3571–77
    [Google Scholar]
  153. 153.
    Tugarinov V, Sprangers R, Kay LE. 2007. Probing side-chain dynamics in the proteasome by relaxation violated coherence transfer NMR spectroscopy. J. Am. Chem. Soc. 129:1743–50
    [Google Scholar]
  154. 154.
    Venditti V, Egner TK, Clore GM. 2016. Hybrid approaches to structural characterization of conformational ensembles of complex macromolecular systems combining NMR residual dipolar couplings and solution X-ray scattering. Chem. Rev. 116:6305–22
    [Google Scholar]
  155. 155.
    Venditti V, Fawzi NL, Clore GM. 2011. Automated sequence- and stereo-specific assignment of methyl-labeled proteins by paramagnetic relaxation and methyl-methyl nuclear Overhauser enhancement spectroscopy. J. Biomol. NMR 51:319–28
    [Google Scholar]
  156. 156.
    Wälti MA, Kotler SA, Clore GM. 2021. Probing the interaction of Huntingtin exon-1 polypeptides with the chaperonin nanomachine GroEL. ChemBioChem 22:1985–91
    [Google Scholar]
  157. 157.
    Wälti MA, Libich DS, Clore GM. 2018. Extensive sampling of the cavity of the GroEL nanomachine by protein substrates probed by paramagnetic relaxation enhancement. J. Phys. Chem. Lett. 9:3368–71
    [Google Scholar]
  158. 158.
    Wälti MA, Schmidt T, Murray DT, Wang H, Hinshaw JE, Clore GM. 2017. Chaperonin GroEL accelerates protofibril formation and decorates fibrils of the Het-s prion protein. PNAS 114:9104–9
    [Google Scholar]
  159. 159.
    Wälti MA, Steiner J, Meng F, Chung HS, Louis JM et al. 2018. Probing the mechanism of inhibition of amyloid-β(1–42)–induced neurotoxicity by the chaperonin GroEL. PNAS 115:E11924–32
    [Google Scholar]
  160. 160.
    Warshel A, Parson WW. 2001. Dynamics of biochemical and biophysical reactions: insight from computer simulations. Q. Rev. Biophys. 34:563–679
    [Google Scholar]
  161. 161.
    Waudby CA, Burridge C, Christodoulou J. 2021. Optimal design of adaptively sampled NMR experiments for measurement of methyl group dynamics with application to a ribosome-nascent chain complex. J. Magn. Reson. 326:106937
    [Google Scholar]
  162. 162.
    Weber G. 1972. Uses of fluorescence in biophysics: some recent developments. Annu. Rev. Biophys. Bioeng. 1:553–70
    [Google Scholar]
  163. 163.
    Weber G. 1997. Fluorescence in biophysics: accomplishments and deficiencies. Methods Enzymol 278:1–15
    [Google Scholar]
  164. 164.
    Webster JM, Darling AL, Uversky VN, Blair LJ. 2019. Small heat shock proteins, big impact on protein aggregation in neurodegenerative disease. Front. Pharmacol. 10:1047
    [Google Scholar]
  165. 165.
    Wentink AS, Nillegoda NB, Feufel J, Ubartaitė G, Schneider CP et al. 2020. Molecular dissection of amyloid disaggregation by human Hsp70. Nature 587:483–88
    [Google Scholar]
  166. 166.
    Wentink A, Nussbaum-Krammer C, Bukau B. 2019. Modulation of amyloid states by molecular chaperones. Cold Spring Harb. Perspect. Biol 11:a033969
    [Google Scholar]
  167. 167.
    Wu K, Stull F, Lee C, Bardwell JCA 2019. Protein folding while chaperone bound is dependent on weak interactions. Nat. Commun. 10:4833
    [Google Scholar]
  168. 168.
    Wu Y, Li J, Jin Z, Fu Z, Sha B 2005. The crystal structure of the C-terminal fragment of yeast Hsp40 Ydj1 reveals novel dimerization motif for Hsp40. J. Mol. Biol. 346:1005–11
    [Google Scholar]
  169. 169.
    Wüthrich K. 1986. NMR of Proteins and Nucleic Acids New York: Wiley
  170. 170.
    Xu Z, Horwich AL, Sigler PB. 1997. The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature 388:741–50
    [Google Scholar]
  171. 171.
    Yan W, Craig EA 1999. The glycine-phenylalanine-rich region determines the specificity of the yeast Hsp40 Sis1. Mol. Cell. Biol. 19:7751–58
    [Google Scholar]
  172. 172.
    Yang D, Ye X, Lorimer GH 2013. Symmetric GroEL:GroES2 complexes are the protein-folding functional form of the chaperonin nanomachine. PNAS 110:E4298–305
    [Google Scholar]
  173. 173.
    Ye X, Lorimer GH 2013. Substrate protein switches GroE chaperonins from asymmetric to symmetric cycling by catalyzing nucleotide exchange. PNAS 110:E4289–97
    [Google Scholar]
  174. 174.
    Yonghe D, Weibin L, Yun D, Beninio J, Jingchun Y et al. 2013. Trapping cardiac recessive mutants via expression-based insertional mutagenesis screening. Circ. Res. 112:606–17
    [Google Scholar]
  175. 175.
    Yuwen T, Brady JP, Kay LE. 2018. Probing conformational exchange in weakly interacting, slowly exchanging protein systems via off-resonance R experiments: application to studies of protein phase separation. J. Am. Chem. Soc. 140:2115–26
    [Google Scholar]
  176. 176.
    Zahn R, Perrett S, Stenberg G, Fersht AR. 1996. Catalysis of amide proton exchange by the molecular chaperones GroEL and SecB. Science 271:642–45
    [Google Scholar]
  177. 177.
    Zahn R, Spitzfaden C, Ottiger M, Wüthrich K, Plückthun A 1994. Destabilization of the complete protein secondary structure on binding to the chaperone GroEL. Nature 368:261–65
    [Google Scholar]
  178. 178.
    Zhuravleva A, Clerico EM, Gierasch LM. 2012. An interdomain energetic tug-of-war creates the allosterically active state in Hsp70 molecular chaperones. Cell 151:1296–307
    [Google Scholar]
  179. 179.
    Zylicz M, LeBowitz JH, McMacken R, Georgopoulos C 1983. The dnaK protein of Escherichia coli possesses an ATPase and autophosphorylating activity and is essential in an in vitro DNA replication system. PNAS 80:6431–35
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-090921-120150
Loading
/content/journals/10.1146/annurev-biophys-090921-120150
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error