1932

Abstract

Cells are crowded, but proteins are almost always studied in dilute aqueous buffer. We review the experimental evidence that crowding affects the equilibrium thermodynamics of protein stability and protein association and discuss the theories employed to explain these observations. In doing so, we highlight differences between synthetic polymers and biologically relevant crowders. Theories based on hard-core interactions predict only crowding-induced entropic stabilization. However, experiment-based efforts conducted under physiologically relevant conditions show that crowding can destabilize proteins and their complexes. Furthermore, quantification of the temperature dependence of crowding effects produced by both large and small cosolutes, including osmolytes, sugars, synthetic polymers, and proteins, reveals enthalpic effects that stabilize or destabilize proteins.Crowding-induced destabilization and the enthalpic component point to the role of chemical interactions between and among the macromolecules, cosolutes, and water. We conclude with suggestions for future studies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-091321-071829
2022-05-09
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/biophys/51/1/annurev-biophys-091321-071829.html?itemId=/content/journals/10.1146/annurev-biophys-091321-071829&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Acosta LC, Perez Goncalves GM, Pielak GJ, Gorensek-Benitez AH. 2017. Large cosolutes, small cosolutes and dihydrofolate reductase activity. Protein Sci 26:2417–25
    [Google Scholar]
  2. 2.
    Anfinsen CB. 1973. Principles that govern the folding of protein chains. Science 181:223–30
    [Google Scholar]
  3. 3.
    Asakura S, Oosawa F 1954. On interaction between two bodies immersed in a solution of macromolecules. J. Chem. Phys. 22:1255–56
    [Google Scholar]
  4. 4.
    Asakura S, Oosawa F 1958. Interaction between particles suspended in solutions of macromolecules. J. Polym. Sci. 33:183–92
    [Google Scholar]
  5. 5.
    Aune KC, Tanford C. 1969. Thermodynamics of the denaturation of lysozyme by guanidine hydrochloride. II. Dependence on denaturant concentration at 25°. Biochemistry 8:4586–90
    [Google Scholar]
  6. 6.
    Auton M, Rösgen J, Sinev M, Holthauzen LMF, Bolen DW. 2011. Osmolyte effects on protein stability and solubility: a balancing act between backbone and side-chains. Biophys. Chem. 159:90–99
    [Google Scholar]
  7. 7.
    Bai J, Liu M, Pielak GJ, Li C. 2017. Macromolecular and small molecular crowding have similar effects on α-synuclein structure. ChemPhysChem 18:55–58
    [Google Scholar]
  8. 8.
    Banks A, Qin S, Weiss KL, Stanley CB, Zhou H-X. 2018. Intrinsically disordered protein exhibits both compaction and expansion under macromolecular crowding. Biophys. J. 114:1067–79
    [Google Scholar]
  9. 9.
    Barnes CO, Pielak GJ 2011. In-cell protein NMR and protein leakage. Proteins Struct. Funct. Bioinform. 79:347–51
    [Google Scholar]
  10. 10.
    Batchelor JD, Olteanu A, Tripathy A, Pielak GJ. 2004. Impact of protein denaturants and stabilizers on water structure. J. Am. Chem. Soc. 126:1958–61
    [Google Scholar]
  11. 11.
    Batra J, Xu K, Qin S, Zhou H-X. 2009. Effect of macromolecular crowding on protein binding stability: modest stabilization and significant biological consequences. Biophys. J. 97:906–11
    [Google Scholar]
  12. 12.
    Becktel WJ, Schellman JA. 1987. Protein stability curves. Biopolymers 26:1859–77
    [Google Scholar]
  13. 13.
    Beg I, Minton AP, Islam A, Hassan MI, Ahmad F. 2016. The pH dependence of saccharides’ influence on thermal denaturation of two model proteins supports an excluded volume model for stabilization generalized to allow for intramolecular electrostatic interactions. J. Biol. Chem. 292:505–11
    [Google Scholar]
  14. 14.
    Bennett BD, Kimball EH, Gao M, Osterhout R, Van Dien SJ, Rabinowitz JD. 2009. Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat. Chem. Biol. 5:593–99
    [Google Scholar]
  15. 15.
    Bennion BJ, Daggett V. 2004. Counteraction of urea-induced protein denaturation by trimethylamine N-oxide: a chemical chaperone at atomic resolution. PNAS 101:6433–38
    [Google Scholar]
  16. 16.
    Benton LA, Smith AE, Young GB, Pielak GJ 2012. Unexpected effects of macromolecular crowding on protein stability. Biochemistry 51:9773–75
    [Google Scholar]
  17. 17.
    Berg OG. 1990. The influence of macromolecular crowding on thermodynamic activity: solubility and dimerization constants for spherical and dumbbell-shaped molecules in a hard-sphere mixture. Biopolymers 30:1027–37
    [Google Scholar]
  18. 18.
    Bonucci A, Palomino-Schätzlein M, Malo de Molina P, Arbe A, Pierattelli R et al. 2021. Crowding effects on the structure and dynamics of the intrinsically disordered nuclear chromatin protein NUPR1. Front. Mol. Biosci. 8:643
    [Google Scholar]
  19. 19.
    Brindle KM, Williams S-P, Boulton M. 1989. 19F NMR detection of a fluorine-labelled enzyme in vivo. FEBS Lett 255:121–24
    [Google Scholar]
  20. 20.
    Bryant JE, Lecomte JTJ, Lee AL, Young GB, Pielak GJ 2007. Retraction of “protein dynamics in living cells. .” Biochemistry 46:8206–7
    [Google Scholar]
  21. 21.
    Canchi DR, Jayasimha P, Rau DC, Makhatadze GI, Garcia AE. 2012. Molecular mechanism for the preferential exclusion of TMAO from protein surfaces. J. Phys. Chem. B 116:12095–104
    [Google Scholar]
  22. 22.
    Chan HS, Dill KA 1991. Compact polymers. Conformations and Forces in Protein Folding BT Nall, KA Dill 169–74 Washington, DC: AAAS
    [Google Scholar]
  23. 23.
    Charlton LM, Barnes CO, Li C, Orans J, Young GB, Pielak GJ 2008. Residue-level interrogation of macromolecular crowding effects on protein stability. J. Am. Chem. Soc. 130:6826–30
    [Google Scholar]
  24. 24.
    Chen T, Dave K, Gruebele M 2018. Pressure- and heat-induced protein unfolding in bacterial cells: crowding versus sticking. FEBS Lett 592:1357–65
    [Google Scholar]
  25. 25.
    Cheng K, Wu Q, Zhang Z, Pielak GJ, Liu M, Li C. 2018. Crowding and confinement can oppositely affect protein stability. ChemPhysChem 19:3350–55
    [Google Scholar]
  26. 26.
    Cheung MS, Klimov D, Thirumalai D 2005. Molecular crowding enhances native state stability and refolding rates of globular proteins. PNAS 102:4753–58
    [Google Scholar]
  27. 27.
    Chialvo AA, Crisalle OD. 2021. Osmolyte-induced effects on the hydration behavior and the osmotic second virial coefficients of alkyl-substituted urea derivatives: critical assessment of their structure-making/breaking behavior. J. Phys. Chem. B 125:6231–43
    [Google Scholar]
  28. 28.
    Chiti F, Dobson CM. 2006. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75:333–66
    [Google Scholar]
  29. 29.
    Christiansen A, Wittung-Stafshede P. 2013. Quantification of excluded volume effects on the folding landscape of Pseudomonas aeruginosa apoazurin in vitro. Biophys. J. 105:1689–99
    [Google Scholar]
  30. 30.
    Cohen RD, Guseman AJ, Pielak GJ. 2015. Intracellular pH modulates quinary structure. Protein Sci 24:1748–55
    [Google Scholar]
  31. 31.
    Cohen RD, Pielak GJ. 2016. Electrostatic contributions to protein quinary structure. J. Am. Chem. Soc. 138:13139–42
    [Google Scholar]
  32. 32.
    Cohen RD, Pielak GJ. 2017. A cell is more than the sum of its (dilute) parts: a brief history of quinary structure. Protein Sci 26:403–13
    [Google Scholar]
  33. 33.
    Cohen RD, Pielak GJ. 2017. Quinary interactions with an unfolded state ensemble. Protein Sci 26:1698–703
    [Google Scholar]
  34. 34.
    Cohen SS. 1942. The isolation and crystallization of plant viruses and other protein macro molecules by means of hydrophilic colloids. J. Biol. Chem. 144:353–62
    [Google Scholar]
  35. 35.
    Cong Q, Anishchenko I, Ovchinnikov S, Baker D. 2019. Protein interaction networks revealed by proteome coevolution. Science 365:185–89
    [Google Scholar]
  36. 36.
    Cotter MA. 1977. Hard spherocylinders in an anisotropic mean field: a simple model for a nematic liquid crystal. J. Chem. Phys. 66:1098–106
    [Google Scholar]
  37. 37.
    Courtenay ES, Capp MW, Anderson CF, Record MT Jr 2000. Vapor pressure osmometry studies of osmolyte-protein interactions: implications for the action of osmoprotectants in vivo and for the interpretation of “osmotic stress” experiments in vitro. Biochemistry 39:4455–71
    [Google Scholar]
  38. 38.
    Croke RL, Sallum CO, Watson E, Watt ED, Alexandrescu AT. 2008. Hydrogen exchange of monomeric α-synuclein shows unfolded structure persists at physiological temperature and is independent of molecular crowding in Escherichia coli. Protein Sci 17:1434–45
    [Google Scholar]
  39. 39.
    Crowley PB, Brett K, Muldoon J. 2008. NMR spectroscopy reveals cytochrome c-poly(ethylene glycol) interactions. ChemBioChem 9:685–88
    [Google Scholar]
  40. 40.
    Crowley PB, Chow E, Papkovskaia T. 2011. Protein interactions in the Escherichia coli cytosol: an impediment to in-cell NMR spectroscopy. ChemBioChem 12:1043–48
    [Google Scholar]
  41. 41.
    Crowley PB, Kyne C, Monteith WB. 2012. Simple and inexpensive incorporation of 19F-tryptophan for protein NMR spectroscopy. Chem. Commun. 48:10681–83
    [Google Scholar]
  42. 42.
    Cruz RdC, Martins RJ, Cardoso MJEdM, Barcia OE. 2009. Volumetric study of aqueous solutions of polyethylene glycol as a function of the polymer molar mass in the temperature range 283.15 to 313.15 k and 0.1 MPa. J. Solut. Chem. 38:957–81
    [Google Scholar]
  43. 43.
    Cruzeiro-Silva C, Albernaz FP, Valente AP, Almeida FCL. 2006. In-cell NMR spectroscopy: inhibition of autologous protein expression reduces Escherichia coli lysis. Cell Biochem. Biophys. 44:497–502
    [Google Scholar]
  44. 44.
    Daniels A, Williams RJP, Wright PE. 1976. Nuclear magnetic resonance studies of the adrenal gland and some other organs. Nature 261:321–23
    [Google Scholar]
  45. 45.
    Danielsson J, Mu X, Lang L, Wang H, Binolfi A et al. 2015. Thermodynamics of protein destabilization in live cells. PNAS 112:12402–7
    [Google Scholar]
  46. 46.
    Dass R, Corlianò E, Mulder FAA 2021. The contribution of electrostatics to hydrogen exchange in the unfolded protein state. bioRxiv 2021.02.22.432104. https://doi.org/10.1101/2021.02.22.432104
    [Crossref]
  47. 47.
    Davis CM, Gruebele M. 2018. Non-steric interactions predict the trend and steric interactions the offset of protein stability in cells. ChemPhysChem 19:2290–94
    [Google Scholar]
  48. 48.
    Davis-Searles PR, Morar AS, Saunders AJ, Erie DA, Pielak GJ. 1998. Sugar-induced molten-globule model. Biochemistry 37:17048–53
    [Google Scholar]
  49. 49.
    Davis-Searles PR, Saunders AJ, Erie DA, Winzor DJ, Pielak GJ. 2001. Interpreting the effects of small uncharged solutes on protein-folding equilibria. Annu. Rev. Biophys. Biomol. Struct. 30:271–306
    [Google Scholar]
  50. 50.
    de Vrieze J. 2021. Pfizer's vaccine raises allergy concerns. Science 371:10–11
    [Google Scholar]
  51. 51.
    Debye PJ. 1929. Polar Molecules New York: Chem. Cat. Co.
  52. 52.
    Dedmon MM, Patel CN, Young GB, Pielak GJ 2002. FlgM gains structure in living cells. PNAS 99:12681–84
    [Google Scholar]
  53. 53.
    Denesyuk ND, Thirumalai D. 2020. Theory and simulations for crowding-induced changes in stability of proteins with applications to λ repressor. arXiv:2012.1111 [cond-mat.soft]
  54. 54.
    Denos S, Dhar A, Gruebele M. 2012. Crowding effects on the small, fast-folding protein λ(6–85). Faraday Discuss 157:451–500
    [Google Scholar]
  55. 55.
    Dhar A, Girdhar K, Singh D, Gelman H, Ebbinghaus S, Gruebele M. 2011. Protein stability and folding kinetics in the nucleus and endoplasmic reticulum of eucaryotic cells. Biophys. J. 101:421–30
    [Google Scholar]
  56. 56.
    Diehl RC, Guinn EJ, Capp MW, Tsodikov OV, Record MT. 2013. Quantifying additive interactions of the osmolyte proline with individual functional groups of proteins: comparisons with urea and glycine betaine, interpretation of m-values. Biochemistry 52:5997–6010
    [Google Scholar]
  57. 57.
    Dill KA. 1990. Dominant forces in protein folding. Biochemistry 31:7133–55
    [Google Scholar]
  58. 58.
    Ebbinghaus S, Dhar A, McDonald JD, Gruebele M. 2010. Protein folding stability and dynamics imaged in a living cell. Nat. Methods 7:319–23
    [Google Scholar]
  59. 59.
    Eggers DK, Valentine JS. 2001. Molecular confinement influences protein structure and enhances thermal protein stability. Protein Sci 10:250–61
    [Google Scholar]
  60. 60.
    Einstein A. 1906. On the theory of the Brownian movement. Ann. Phys. 324:371–81
    [Google Scholar]
  61. 61.
    Einstein A. 1956. Investigations on the Theory of the Brownian Movement New York: Dover Publ.
  62. 62.
    Elcock AH. 2003. Atomic-level observation of macromolecular crowding effects: escape of a protein from the GroEL cage. PNAS 100:2340–44
    [Google Scholar]
  63. 63.
    Elcock AH. 2010. Models of macromolecular crowding effects and the need for quantitative comparisons with experiment. Curr. Opin. Struct. Biol. 20:196–206
    [Google Scholar]
  64. 64.
    Ellis RJ. 2001. Macromolecular crowding: an important but neglected aspect of the intracellular environment. Curr. Opin. Struct. Biol. 11:114–19
    [Google Scholar]
  65. 65.
    Ellis RJ. 2001. Macromolecular crowding: obvious but underappreciated. Trends Biochem. Sci. 26:597–604
    [Google Scholar]
  66. 66.
    Eppig JJ Jr., Dumont JN. 1972. Amino acid pools in developing oocytes of Xenopus laevis. Dev. Biol. 28:531–36
    [Google Scholar]
  67. 67.
    Eppler RK, Hudson EP, Chase SD, Dordick JS, Reimer JA, Clark DS. 2008. Biocatalyst activity in nonaqueous environments correlates with centisecond-range protein motions. PNAS 105:15672–77
    [Google Scholar]
  68. 68.
    Fauvet B, Mbefo MK, Fares M-B, Desobry C, Michael S et al. 2012. α-Synuclein in central nervous system and from erythrocytes, mammalian cells, and Escherichia coli exists predominantly as disordered monomer. J. Biol. Chem. 287:15345–64
    [Google Scholar]
  69. 69.
    Feig M, Sugita Y. 2019. Whole-cell models and simulations in molecular detail. Annu. Rev. Cell Dev. Biol. 35:191–211
    [Google Scholar]
  70. 70.
    Feng R, Gruebele M, Davis CM 2019. Quantifying protein dynamics and stability in a living organism. Nat. Commun. 10:1179
    [Google Scholar]
  71. 71.
    Ferguson MWJ, Joanen T. 1982. Temperature of egg incubation determines sex in Alligator mississippiensis. Nature 296:850–53
    [Google Scholar]
  72. 72.
    Ferreira LA, Uversky VN, Zaslavsky BY. 2017. Role of solvent properties of water in crowding effects induced by macromolecular agents and osmolytes. Mol. BioSyst. 13:2551–63
    [Google Scholar]
  73. 73.
    Fissell WH, Hofmann CL, Smith R, Chen MH 2010. Size and conformation of Ficoll as determined by size-exclusion chromatography followed by multiangle light scattering. Am. J. Physiol. Renal Physiol. 298:F205–8
    [Google Scholar]
  74. 74.
    Flory PJ. 1942. Thermodynamics of high polymer solutions. J. Chem. Phys. 10:51–61
    [Google Scholar]
  75. 75.
    Georges A, Holleley CE. 2018. How does temperature determine sex?. Science 360:601–2
    [Google Scholar]
  76. 76.
    Ghaemmaghami S, Oas TG. 2001. Quantitative protein stability measurements in vivo. Nat. Struct. Biol. 8:879–82
    [Google Scholar]
  77. 77.
    Gibbs JW. 1878. On the equilibrium of heterogeneous substances. Trans. Conn. Acad. Arts Sci. 3:108–248
    [Google Scholar]
  78. 78.
    Gilman-Politi R, Harries D. 2011. Unraveling the molecular mechanism of enthalpy driven peptide folding by polyol osmolytes. J. Chem. Theory Comput. 7:3816–28
    [Google Scholar]
  79. 79.
    Gorensek-Benitez AH, Smith AE, Stadmiller SS, Perez Goncalves GM, Pielak GJ 2017. Cosolutes, crowding and protein folding kinetics. J. Phys. Chem. B 121:6527–37
    [Google Scholar]
  80. 80.
    Graziano G. 2020. Shape effect on non-covalent dimer stability using classic scaled particle theory. Chem. Phys. Lett. 743:137176
    [Google Scholar]
  81. 81.
    Greene RF, Pace CN. 1974. Urea and guanidine hydrochloride denaturation of ribonuclease, lysozyme, α-chymotrypsin, and β-lactoglobulin. J. Biol. Chem. 249:5388–93
    [Google Scholar]
  82. 82.
    Gronenborn AM, Filpula DR, Essig NZ, Achari A, Whitlow M et al. 1991. A novel, highly stable fold of the immunoglobulin binding domain of streptococcal protein G. Science 253:657–61
    [Google Scholar]
  83. 83.
    Gruebele M, Pielak GJ. 2021. Dynamical spectroscopy and microscopy of proteins in cells. Curr. Opin. Struct. Biol. 70:1–7
    [Google Scholar]
  84. 84.
    Guggenheim EA. 1952. Mixtures: The Theory of the Equilibrium Properties of Some Simple Classes of Mixtures, Solutions and Alloys Oxford, UK: Clarendon Press
  85. 85.
    Guo M, Xu Y, Gruebele M. 2012. Temperature dependence of protein folding kinetics in living cells. PNAS 109:17863–67
    [Google Scholar]
  86. 86.
    Guseman AJ, Perez Goncalves GM, Speer SL, Young GB, Pielak GJ. 2018. Protein shape modulates crowding effects. PNAS 115:10965–70
    [Google Scholar]
  87. 87.
    Guseman AJ, Pielak GJ 2020. Protein stability and weak intracellular interactions. In-Cell NMR Spectroscopy: From Molecular Sciences to Cell Biology Y Ito, V Dötsch, M Shirakawa 188–206 London: R. Soc. Chem.
    [Google Scholar]
  88. 88.
    Harries D, Rösgen J. 2008. A practical guide on how osmolytes modulate macromolecular properties. Methods Cell Biol 84:679–735
    [Google Scholar]
  89. 89.
    Hochachka PW, Somero G. 2002. Water-solute adaptations: the evolution and regulation of internal milieu. Bio-Chemical Adaptation: Mechanism and Process in Physiological Evolution217–89 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  90. 90.
    Holehouse AS, Sukenik S. 2020. Controlling structural bias in intrinsically disordered proteins using solution space scanning. J. Chem. Theory Comput. 16:1794–805
    [Google Scholar]
  91. 91.
    Hu CY, Lynch GC, Kokubo H, Pettitt BM. 2010. Trimethylamine N-oxide influence on the backbone of proteins: an oligoglycine model. Proteins 78:695–704
    [Google Scholar]
  92. 92.
    Huggins ML. 1942. Thermodynamic properties of solutions of long-chain compounds. Ann. N. Y. Acad. Sci. 43:1–32
    [Google Scholar]
  93. 93.
    Ingraham J 1987. Effect of temperature, pH, water activity, and pressure on growth. Eschericha coli and Salmonella typhimurium: Cellular and Molecular Biology, Vol. 2 FC Neidhardt, JL Ingraham, K Brooks Low, B Magasanik, M Schaechter, HE Unbarger 1543–54 Washington, DC: Am. Soc. Microbiol.
    [Google Scholar]
  94. 94.
    Jee J, Byeon I-JL, Louis JM, Gronenborn AM 2008. The point mutation A34F causes dimerization of GB1. Proteins Struct. Funct. Bioinform. 71:1420–31
    [Google Scholar]
  95. 95.
    Jiao M, Li H-T, Chen J, Minton AP, Liang Y 2010. Attractive protein-polymer interactions markedly alter the effect of macromolecular crowding on protein association equilibria. Biophys. J. 99:914–23
    [Google Scholar]
  96. 96.
    Kaur K, Juglan KC, Kumar H, Behal I. 2018. Thermodynamic interactions study of some ethylene glycols in aqueous aniline solutions at different temperatures: an acoustical and volumetric approach. J. Chem. Eng. Data 63:3237–51
    [Google Scholar]
  97. 97.
    Kim R, Radhakrishnan ML 2021. Macromolecular crowding effects on electrostatic binding affinity: fundamental insights from theoretical, idealized models. J. Chem. Phys. 154:225101
    [Google Scholar]
  98. 98.
    Kim YC, Mittal J. 2013. Crowding induced entropy-enthalpy compensation in protein association equilibria. Phys. Rev. Lett. 110:208102
    [Google Scholar]
  99. 99.
    Kirkwood JG, Buff FP. 1951. The statistical mechanical theory of solutions. I. J. Chem. Phys. 19:774–77
    [Google Scholar]
  100. 100.
    Kisley L, Serrano KA, Davis CM, Guin D, Murphy EA et al. 2018. Soluble zwitterionic poly(sulfobetaine) destabilizes proteins. Biomacromolecules 19:3894–901
    [Google Scholar]
  101. 101.
    Knowles DB, LaCroix AS, Deines NF, Shkel I, Record MT 2011. Separation of preferential interaction and excluded volume effects on DNA duplex and hairpin stability. PNAS 108:12699–704
    [Google Scholar]
  102. 102.
    Knowles DB, Shkel IA, Phan NM, Sternke M, Lingeman E et al. 2015. Chemical interactions of polyethylene glycols (PEGs) and glycerol with protein functional groups: applications to effects of PEG and glycerol on protein processes. Biochemistry 54:3528–42
    [Google Scholar]
  103. 103.
    Konig I, Soranno A, Nettels D, Schuler B. 2021. Impact of in-cell and in-vitro crowding on the conformations and dynamics of an intrinsically disordered protein. Angew. Chem. Int. Ed. 60:10724–29
    [Google Scholar]
  104. 104.
    Konig I, Zarrine-Afsar A, Aznauryan M, Soranno A, Wunderlich B et al. 2015. Single-molecule spectroscopy of protein conformational dynamics in live eukaryotic cells. Nat. Methods 12:773–79
    [Google Scholar]
  105. 105.
    Korobko I, Mazal H, Haran G, Horovitz A 2020. Measuring protein stability in the GroEL chaperonin cage reveals massive destabilization. eLife 9:e56511
    [Google Scholar]
  106. 106.
    Kumar A, Attri P, Venkatesu P. 2012. Effect of polyols on the native structure of α-chymotrypsin: a comparable study. Thermochim. Acta 536:55–62
    [Google Scholar]
  107. 107.
    Kyne C, Jordon K, Filoti DI, Laue TM, Crowley PB. 2017. Protein charge determination and implications for interactions in cell extracts. Protein Sci 26:258–67
    [Google Scholar]
  108. 108.
    Kyne C, Ruhle B, Gautier VW, Crowley PB. 2015. Specific ion effects on macromolecular interactions in Escherichia coli extracts. Protein Sci 24:310–18
    [Google Scholar]
  109. 109.
    Ladurner AG, Fersht AR. 1999. Upper limit of the time scale for diffusion and chain collapse in chymotrypsin inhibitor 2. Nat. Struct. Biol. 6:28–31
    [Google Scholar]
  110. 110.
    Lebowitz JL, Helfand E, Praestgaard E 1965. Scaled particle theory of fluid mixtures. J. Chem. Phys. 43:774–79
    [Google Scholar]
  111. 111.
    Lee JC, Timasheff SN. 1981. The stabilization of proteins by sucrose. J. Biol. Chem. 256:7193–201
    [Google Scholar]
  112. 112.
    Lee LLY, Lee JC. 1987. Thermal stability of proteins in the presence of poly(ethylene glycols). Biochemistry 26:7813–19
    [Google Scholar]
  113. 113.
    Leeb S, Yang F, Oliveberg M, Danielsson J 2020. Connecting longitudinal and transverse relaxation rates in live-cell NMR. J. Phys. Chem. B 124:10698–707
    [Google Scholar]
  114. 114.
    Lekkerkerker HNW, Tuinier R. 2011. Colloids and the Depletion Interaction Berlin: Springer
  115. 115.
    Leslie M. 2021. Separation anxiety. Science 371:336–38
    [Google Scholar]
  116. 116.
    Lewis GN, Randall M. 1923. Thermodynamics New York: McGraw-Hill
  117. 117.
    Li C, Wang Y, Pielak GJ 2009. Translational and rotational diffusion of a small globular protein under crowded conditions. J. Phys. Chem. 113:13390–92
    [Google Scholar]
  118. 118.
    Linderstrøm-Lang KU. 1952. Proteins and Enzymes: Lane Medical Lectures, 1951 Stanford, CA: Stanford Univ. Press
  119. 119.
    Lohka MJ, Maller JL. 1985. Induction of nuclear envelope breakdown, chromosome condensation, and spindle formation in cell-free extracts. J. Cell Biol. 101:518–23
    [Google Scholar]
  120. 120.
    Lumry R, Rajender S. 1970. Enthalpy-entropy compensation and phenomena in water solutions of proteins and small molecules: a ubiquitous property of water. Biopolymers 9:1125–27
    [Google Scholar]
  121. 121.
    Maeder CI, Hink MA, Kinkhabwala A, Mayr R, Bastiaens PIH, Knop M. 2007. Spatial regulation of fus3 MAP kinase activity through a reaction-diffusion mechanism in yeast pheromone signalling. Nat. Cell Biol. 9:1319–26
    [Google Scholar]
  122. 122.
    Makhatadze GI, Privalov PL. 1992. Protein interactions with urea and guanidinium chloride: a calorimetric study. J. Mol. Biol. 226:491–505
    [Google Scholar]
  123. 123.
    Martorell G, Adrover M, Kelly G, Temussi PA, Pastore A. 2011. A natural and readily available crowding agent: NMR studies of proteins in hen egg white. Proteins 79:1408–15
    [Google Scholar]
  124. 124.
    McGee H. 2004. On Food and Cooking: The Science and Lore of the Kitchen New York: Scribner
  125. 125.
    McGuffee SR, Elcock AH. 2010. Diffusion, crowding & protein stability in a dynamic molecular model of the bacterial cytoplasm. PLOS Comput. Biol. 6:e1000694
    [Google Scholar]
  126. 126.
    McNulty BC, Young GB, Pielak GJ 2006. Macromolecular crowding in the Escherichia coli periplasm maintains α-synuclein disorder. J. Mol. Biol. 355:893–97
    [Google Scholar]
  127. 127.
    McPhie P, Ni Y-S, Minton AP. 2006. Macromolecular crowding stabilizes the molten globule form of apomyoglobin with respect to both cold and heat unfolding. J. Mol. Biol. 361:7–10
    [Google Scholar]
  128. 128.
    Miklos AC, Li C, Sharaf NG, Pielak GJ. 2010. Volume exclusion and soft interaction effects on protein stability under crowded conditions. Biochemistry 49:6984–91
    [Google Scholar]
  129. 129.
    Miklos AC, Li C, Sorrell CD, Lyon LA, Pielak GJ. 2011. An upper limit for macromolecular crowding effects. BMC Biophys 4:13
    [Google Scholar]
  130. 130.
    Miklos AC, Sarkar M, Wang Y, Pielak GJ. 2011. Protein crowding tunes protein stability. J. Am. Chem. Soc. 133:7116–20
    [Google Scholar]
  131. 131.
    Minton AP. 1981. Excluded volume as a determinant of macromolecular structure and reactivity. Biopolymers 20:2093–120
    [Google Scholar]
  132. 132.
    Minton AP. 2000. Effect of a concentrated “inert” macromolecular cosolute on the stability of a globular protein with respect to denaturation by heat and chaotropes: a statistical-thermodynamic model. Biophys. J. 78:101–9
    [Google Scholar]
  133. 133.
    Minton AP. 2005. Models for excluded volume interaction between an unfolded protein and rigid macromolecular cosolutes: macromolecular crowding and protein stability revisited. Biophys. J. 88:971–85
    [Google Scholar]
  134. 134.
    Minton AP, Wilf J. 1981. Effect of macromolecular crowding upon the structure and function of an enzyme: glyceraldehyde-3-phosphate dehydrogenase. Biochemistry 20:4821–26
    [Google Scholar]
  135. 135.
    Mittal J, Best RB. 2008. Thermodynamics and kinetics of protein folding under confinement. PNAS 105:20233–38
    [Google Scholar]
  136. 136.
    Moeser B, Horinek D. 2014. Unified description of urea denaturation: Backbone and side chains contribute equally in the transfer model. J. Phys. Chem. B 118:107–14
    [Google Scholar]
  137. 137.
    Monteith WB, Pielak GJ. 2014. Residue level quantification of protein stability in living cells. PNAS 111:11335–40
    [Google Scholar]
  138. 138.
    Morar AS, Olteanu A, Young GB, Pielak GJ 2001. Solvent-induced collapse of α-synuclein and acid denatured cytochrome c. Protein Sci 10:2195–99
    [Google Scholar]
  139. 139.
    Morrow T, Felcone LH. 2004. Defining the difference: what makes biologics unique. Biotechnol. Healthc. 1:24–29
    [Google Scholar]
  140. 140.
    Mu X, Choi S, Lang L, Mowray D, Dokholyan NV et al. 2017. Physicochemical code for quinary protein interactions in Escherichia coli. PNAS 114:E4556–63
    [Google Scholar]
  141. 141.
    Nakano S-I, Miyoshi D, Sugimoto N 2014. Effects of molecular crowding on the structures, interactions, and functions of nucleic acids. Chem. Rev. 114:2733–58
    [Google Scholar]
  142. 142.
    Nose T. 1986. Chain dimension of a guest polymer in the semidilute solution of compatible and incompatible polymers. J. Phys. 47:517–27
    [Google Scholar]
  143. 143.
    O'Brien EP, Ziv G, Haran G, Brooks BR, Thirumalai D. 2008. Effects of denaturants and osmolytes on proteins are accurately predicted by the molecular transfer model. PNAS 105:13403–8
    [Google Scholar]
  144. 144.
    Ogston AG, Phelps CF. 1961. The partition of solutes between buffer solutions and solutions containing hyaluronic acid. Biochem. J. 78:827–33
    [Google Scholar]
  145. 145.
    Parsegian VA. 2002. Protein-water interactions. Int. Rev. Cytol. 215:1–31
    [Google Scholar]
  146. 146.
    Parsegian VA, Rand RP, Rau DC 2000. Osmotic stress, preferential hydration, and binding: a comparison of perspectives. PNAS 97:3987–92
    [Google Scholar]
  147. 147.
    Perez CP, Elmore DE, Radhakrishnan ML 2019. Computationally modeling electrostatic binding energetics in a crowded, dynamic environment: physical insights from a peptide-DNA system. J. Phys. Chem. B 123:10718–34
    [Google Scholar]
  148. 148.
    Phillip Y, Kiss V, Schreiber G. 2012. Protein-binding dynamics imaged in a living cell. PNAS 109:1461–66
    [Google Scholar]
  149. 149.
    Piszkiewicz S, Pielak G. 2019. Protecting enzymes from stress-induced inactivation. Biochemistry 58:3825–33
    [Google Scholar]
  150. 150.
    Politi R, Harries D. 2010. Enthalpically driven peptide stabilization by protective osmolytes. Chem. Commun. 46:6449–51
    [Google Scholar]
  151. 151.
    Politou A, Temussi PA. 2015. Revisiting a dogma: the effect of volume exclusion in molecular crowding. Curr. Opin. Struct. Biol. 30:1–6
    [Google Scholar]
  152. 152.
    Privalov PL, Khechinashvili NN. 1974. A thermodynamic approach to the problem of stabilization of globular protein structure: a calorimetric study. J. Mol. Biol. 86:665–84
    [Google Scholar]
  153. 153.
    Qu Y, Bolen CL, Bolen DW. 1998. Osmolyte-driven contraction of a random coil protein. PNAS 95:9268–73
    [Google Scholar]
  154. 154.
    Record MT Jr., Courtenay ES, Cayley DS, Guttman HJ. 1998. Biophysical compensation mechanisms buffering E. coli protein-nucleic acid interactions against changing environments. Trends Biochem. Sci. 23:190–94
    [Google Scholar]
  155. 155.
    Record MT Jr., Courtenay ES, Cayley DS, Guttman HJ. 1998. Response of E. coli to osmotic stress: large changes in amounts of cytoplasmic solutes and water. Trends Biochem. Sci. 23:143–48
    [Google Scholar]
  156. 156.
    Reiss H, Frisch HL, Lebowitz JL. 1959. Statistical mechanics of rigid spheres. J. Chem. Phys. 31:369–80
    [Google Scholar]
  157. 157.
    Richards FM. 1977. Areas, volumes, packing, and protein structure. Annu. Rev. Biophys. Bioeng. 6:151–76
    [Google Scholar]
  158. 158.
    Rivas G, Fernandez JA, Minton AP. 2001. Direct observation of the enhancement of noncooperative protein self-assembly by macromolecular crowding: indefinite linear self-association of bacterial cell division protein FtsZ. PNAS 98:3150–55
    [Google Scholar]
  159. 159.
    Rivas G, Minton AP. 2017. Toward an understanding of biochemical equilibria within living cells. Biophys. Rev. 10:241–53
    [Google Scholar]
  160. 160.
    Rodríguez-Ropero F, Rötzscher P, van der Vegt NFA. 2016. Comparison of different TMAO force fields and their impact on the folding equilibrium of a hydrophobic polymer. J. Phys. Chem. B 120:8757–67
    [Google Scholar]
  161. 161.
    Rubinstein M, Colby RH. 2003. Polymer Physics Oxford, UK: Oxford Univ. Press
  162. 162.
    Rydeen AE, Brustad EM, Pielak GJ. 2018. Osmolytes and protein−protein interactions. J. Am. Chem. Soc. 140:7441–44
    [Google Scholar]
  163. 163.
    Sacanna S, Irvine WTM, Chaikin PM, Pine DJ. 2010. Lock and key colloids. Nature 464:575–78
    [Google Scholar]
  164. 164.
    Sahni N, Yi S, Taipale M, Fuxman Bass JI, Coulombe-Huntington J et al. 2015. Widespread macromolecular interaction perturbations in human genetic disorders. Cell 161:647–60
    [Google Scholar]
  165. 165.
    Sanfelice D, Politou A, Martin SR, Rios PDL, Temussi P, Pastore A 2013. The effect of crowding and confinement: a comparison of Yfh1 stability in different environments. Phys. Biol. 10:045002
    [Google Scholar]
  166. 166.
    Sapir L, Harries D. 2014. Origin of enthalpic depletion forces. J. Phys. Chem. Lett. 5:1061–65
    [Google Scholar]
  167. 167.
    Sapir L, Harries D. 2015. Is the depletion force entropic? Molecular crowding beyond steric interactions. Curr. Opin. Colloid Interface Sci 20:3–10
    [Google Scholar]
  168. 168.
    Sapir L, Harries D. 2015. Macromolecular stabilization by excluded cosolutes: mean field theory of crowded solutions. J. Chem. Theory Comput. 11:3478–90
    [Google Scholar]
  169. 169.
    Sapir L, Harries D. 2016. Macromolecular compaction by mixed solutions: bridging versus depletion attraction. Curr. Opin. Colloid Interface Sci. 22:80–87
    [Google Scholar]
  170. 170.
    Sapir L, Harries D. 2017. Wisdom of the crowd. Bunsen-Magazin 19:152–62
    [Google Scholar]
  171. 171.
    Sarkar M, Li C, Pielak GJ. 2013. Soft interactions and crowding. Biophys. Rev. 5:187–94
    [Google Scholar]
  172. 172.
    Sarkar M, Pielak GJ. 2014. An osmolyte mitigates the destabilizing effect of protein crowding. Protein Sci 23:1161–64
    [Google Scholar]
  173. 173.
    Sarkar M, Smith AE, Pielak GJ. 2013. Impact of reconstituted cytosol on protein stability. PNAS 110:19342–47
    [Google Scholar]
  174. 174.
    Sasahara K, McPhie P, Minton AP 2003. Effect of dextran on protein stability and conformation attributed to macromolecular crowding. J. Mol. Biol. 326:1227–37
    [Google Scholar]
  175. 175.
    Saunders AJ, Davis-Searles PR, Allen DL, Pielak GJ, Erie DA. 2000. Osmolyte-induced changes in protein conformational equilibria. Biopolymers 53:293–307
    [Google Scholar]
  176. 176.
    Scatchard G. 1946. Physical chemistry of protein solutions. I. Derivation of the equations for the osmotic pressure. J. Am. Chem. Soc. 68:2315–19
    [Google Scholar]
  177. 177.
    Schellman JA. 1997. Temperature, stability, and the hydrophobic interaction. Biophys. J. 73:2960–64
    [Google Scholar]
  178. 178.
    Schlesinger AP, Wang Y, Tadeo X, Millet O, Pielak GJ. 2011. Macromolecular crowding fails to fold a globular protein in cells. J. Am. Chem. Soc. 133:8082–85
    [Google Scholar]
  179. 179.
    Schneck E, Horinek D, Netz RR. 2013. Insight into the molecular mechanisms of protein stabilizing osmolytes from global force-field variations. J. Phys. Chem. B 117:8310–21
    [Google Scholar]
  180. 180.
    Senske M, Smith A, Pielak GJ 2016. Protein stability in reverse micelles. Angew. Chem. Int. Ed. 55:3586–89
    [Google Scholar]
  181. 181.
    Senske M, Törk L, Born B, Havenith M, Herrmann C, Ebbinghaus S. 2014. Protein stabilization by macromolecular crowding through enthalpy rather than entropy. J. Am. Chem. Soc. 136:9036–41
    [Google Scholar]
  182. 182.
    Shahid S, Hasan I, Ahmad F, Hassan IM, Islam A 2019. Carbohydrate-based macromolecular crowding-induced stabilization of proteins: towards understanding the significance of the size of the crowder. Biomolecules 9:477
    [Google Scholar]
  183. 183.
    Sharp KA. 2015. Analysis of the size dependence of macromolecular crowding shows that smaller is better. PNAS 112:7990–95
    [Google Scholar]
  184. 184.
    Shi X, Foo YH, Sudhaharan T, Chong S-W, Korzh V et al. 2009. Determination of dissociation constants in living zebrafish embryos with single wavelength fluorescence cross-correlation spectroscopy. Biophys. J. 97:678–86
    [Google Scholar]
  185. 185.
    Shimizu S. 2004. Estimating hydration changes upon biomolecular reactions from osmotic stress, high pressure, and preferential hydration experiments. PNAS 101:1195–99
    [Google Scholar]
  186. 186.
    Shimizu S, Matubayasi N. 2014. Preferential solvation: dividing surface versus excess numbers. J. Phys. Chem. B 118:3922–30
    [Google Scholar]
  187. 187.
    Shimizu S, Matubayasi N. 2017. Osmolyte depletion viewed in terms of the dividing membrane and its work of expansion against osmotic pressure. Biophys. Chem. 231:111–15
    [Google Scholar]
  188. 188.
    Silverstein TP, Slade K. 2019. Effects of macromolecular crowding on biochemical systems. J. Chem. Educ. 96:2476–87
    [Google Scholar]
  189. 189.
    Singh LR, Dar TA, Rahman S, Jamal S, Ahmad F 2009. Glycine betaine may have opposite effects on protein stability at high and low pH values. Biochim. Biophys. Acta Proteins Proteom. 1794:929–35
    [Google Scholar]
  190. 190.
    Smith AE, Zhou LZ, Gorensek AH, Senske M, Pielak GJ 2016. In-cell thermodynamics and a new role for protein surfaces. PNAS 113:1725–30
    [Google Scholar]
  191. 191.
    Soranno A, Koenig I, Borgia MB, Hofmann H, Zosel F et al. 2014. Single-molecule spectroscopy reveals polymer effects of disordered proteins in crowded environments. PNAS 111:4874–79
    [Google Scholar]
  192. 192.
    Sorensen T, Leeb S, Danielsson J, Oliveberg M 2021. Polyanions cause protein destabilization similar to that in live cells. Biochemistry 60:735–46
    [Google Scholar]
  193. 193.
    Speer SL, Zheng W, Jiang X, Chu I-T, Guseman A et al. 2021. The intracellular environment affects protein-protein interactions. PNAS 118:e2019918118
    [Google Scholar]
  194. 194.
    Stadmiller SS, Aguilar JS, Parnham S, Pielak GJ. 2020. Protein-peptide binding energetics under crowded conditions. J. Phys. Chem. B 124:9297–309
    [Google Scholar]
  195. 195.
    Stadmiller SS, Gorensek-Benitez AH, Guseman AJ, Pielak GJ. 2017. Osmotic-shock induced protein destabilization in living cells and its reversal by glycine betaine. J. Mol. Biol. 429:1155–61
    [Google Scholar]
  196. 196.
    Stadmiller SS, Pielak GJ. 2018. The expanding zoo of in-cell protein NMR. Biophys. J. 115:1628–29
    [Google Scholar]
  197. 197.
    Stadmiller SS, Pielak GJ. 2021. Protein-complex stability in cells and in vitro under crowded conditions. Curr. Opin. Struct. Biol. 66:183–92
    [Google Scholar]
  198. 198.
    Street TO, Bolen DW, Rose GD 2006. A molecular mechanism for osmolyte-induced protein stability. PNAS 103:13997–4002
    [Google Scholar]
  199. 199.
    Sudhaharan T, Liu P, Foo YH, Bu W, Lim KB et al. 2009. Determination of in vivo dissociation constant, KD, of Cdc42-effector complexes in live mammalian cells using single wavelength fluorescence cross-correlation spectroscopy. J. Biol. Chem. 284:13602–9
    [Google Scholar]
  200. 200.
    Sukenik S, Politi R, Ziserman L, Danino D, Friedler A, Harries D. 2011. Crowding alone cannot account for cosolute effect on amyloid aggregation. PLOS ONE 6:e15608
    [Google Scholar]
  201. 201.
    Sukenik S, Ren P, Gruebele M. 2017. Weak protein-protein interactions in live cells are quantified by cell-volume modulation. PNAS 114:6776–81
    [Google Scholar]
  202. 202.
    Sukenik S, Sapir L, Harries D. 2013. Balance of enthalpy and entropy in depletion forces. Curr. Opin. Colloid Interface Sci. 18:495–501
    [Google Scholar]
  203. 203.
    Sukenik S, Sapir L, Politi R, Harries D 2013. Diversity in the mechanisms of cosolute action on biomolecular processes. Faraday Discuss 160:225–37
    [Google Scholar]
  204. 204.
    Sung H-L, Sengupta A, Nesbitt D. 2021. Smaller molecules crowd better: crowder size dependence revealed by single-molecule FRET studies and depletion force modeling analysis. J. Chem. Phys. 154:155101
    [Google Scholar]
  205. 205.
    Szasz C, Alexa A, Toth K, Rakacs M, Langowski J, Tompa P 2011. Protein disorder prevails under crowded conditions. Biochemistry 50:5834–44
    [Google Scholar]
  206. 206.
    Takagi F, Koga N, Takada S. 2003. How protein thermodynamics and folding mechanisms are altered by the chaperonin cage: molecular simulations. PNAS 100:11367–72
    [Google Scholar]
  207. 207.
    Tanford C. 1969. Extension of the theory of linked functions to incorporate the effects of protein hydration. J. Mol. Biol. 39:539–44
    [Google Scholar]
  208. 208.
    Tang KES, Bloomfield VA. 2000. Excluded volume in solvation: sensitivity of scaled-particle theory to solvent size and density. Biophys. J. 79:2222–34
    [Google Scholar]
  209. 209.
    Taylor MA, Smith LD 1987. Accumulation of free amino acids in growing Xenopus laevis oocytes. Dev. Biol. 124:287–90
    [Google Scholar]
  210. 210.
    Theillet F-X, Binolfi A, Bekei B, Martorana A, Rose HM et al. 2016. Structural disorder of monomeric α-synuclein persists in mammalian cells. Nature 530:45–50
    [Google Scholar]
  211. 211.
    Theillet F-X, Binolfi A, Frembgen-Kesner T, Hingorani K, Sarkar M et al. 2014. Physicochemical properties of cells and their effects on intrinsically disordered proteins (IDPs). Chem. Rev. 114:6661–714
    [Google Scholar]
  212. 212.
    Thirumalai D, Klimov DK, Lorimer GH. 2003. Caging helps proteins fold. PNAS 100:11195–97
    [Google Scholar]
  213. 213.
    Thole J, Fadero T, Bonin J, Stadmiller S, Giudice J, Pielak G 2021. Danio rerio oocytes for eukaryotic in-cell NMR. Biochemistry 60:451–59
    [Google Scholar]
  214. 214.
    Timasheff SN. 2002. Protein hydration, thermodynamic binding, and preferential hydration. Biochemistry 41:13473–81
    [Google Scholar]
  215. 215.
    Uversky VN, Gillespie JR, Fink AL. 2000. Why are “natively unfolded” proteins unstructured under physiologic conditions?. Proteins Struct. Funct. Genet. 41:415–27
    [Google Scholar]
  216. 216.
    Wang H, Hosoda K, Ishii T, Arai R, Kohno T et al. 2016. Protein stabilizer, NDSB-195, enhances the dynamics of the β4-α2 loop of ubiquitin. J. Pept. Sci. 22:174–80
    [Google Scholar]
  217. 217.
    Wang W. 2005. Protein aggregation and its inhibition in biopharmaceutics. Int. J. Pharm. 289:1–30
    [Google Scholar]
  218. 218.
    Wang XH, Pielak GJ. 1991. Temperature-sensitive variants of Saccharomyces cerevisiae iso-1-cytochrome c produced by random mutagenesis of codons 43 to 54. J. Mol. Biol. 221:97–105
    [Google Scholar]
  219. 219.
    Wang Y, Benton LA, Singh V, Pielak GJ. 2012. Disordered protein diffusion under crowded conditions. J. Phys. Chem. Lett. 3:27036
    [Google Scholar]
  220. 220.
    Wang Y, Li C, Pielak GJ 2010. Effects of proteins on protein diffusion. J. Am. Chem. Soc. 132:9392–97
    [Google Scholar]
  221. 221.
    Wang Y, Sarkar M, Smith A, Krois A, Pielak G. 2012. Macromolecular crowding and protein stability. J. Am. Chem. Soc. 134:16614–18
    [Google Scholar]
  222. 222.
    Weerasinghe S, Smith PE 2003. A Kirkwood−Buff derived force field for mixtures of urea and water. J. Phys. Chem. B 107:3891–98
    [Google Scholar]
  223. 223.
    Wennerstrom H, Vallina Estrada E, Danielsson J, Oliveberg M 2020. Colloidal stability of the living cell. PNAS 117:10113–21
    [Google Scholar]
  224. 224.
    Winnik FM, Ringsdorf H, Venzmer J. 1990. Methanol-water as a co-nonsolvent system for poly(N-isopropylacrylamide). Macromolecules 23:2415–16
    [Google Scholar]
  225. 225.
    Wyman J. 1964. Linked functions and reciprocal effects in hemoglobin: a second look. Adv. Protein Chem. 19:223–86
    [Google Scholar]
  226. 226.
    Xavier KA, Shick KA, Smith-Gill SJ, Wilson RC. 1997. Involvement of water molecules in the association of monoclonal antibody HyHEL-5 with bovine quail lysozyme. Biophys. J. 73:2116–25
    [Google Scholar]
  227. 227.
    Xie G, Timasheff SN. 1997. The thermodynamic mechanism of protein stabilization by trehalose. Biophys. Chem. 64:25–43
    [Google Scholar]
  228. 228.
    Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN. 1982. Living with water stress: evolution of osmolyte systems. Science 217:1214–22
    [Google Scholar]
  229. 229.
    Yang Y, Chen S-N, Yang F, Li X-Y, Feintuch A et al. 2020. In-cell destabilization of a homodimeric protein complex detected by DEER spectroscopy. PNAS 117:20566–75
    [Google Scholar]
  230. 230.
    Ye Y, Liu X, Zhang Z, Wu Q, Jiang B et al. 2013. 19FNMR spectroscopy as a probe of cytoplasmic viscosity and weak protein interactions in living cells. Chem. Eur. J 19:12705–10
    [Google Scholar]
  231. 231.
    Ye Y, Wu Q, Zheng W, Jiang B, Pielak GJ et al. 2017. Quantification of size effect on protein rotational mobility in cells by 19F NMR spectroscopy. Anal. Bioanal. Chem. 410:869–74
    [Google Scholar]
  232. 232.
    Ye Y, Wu Q, Zheng W, Jiang B, Pielak G et al. 2019. Positively-charged tags impede protein mobility in cells as quantified by 19F NMR. J. Phys. Chem. 123:4527–33
    [Google Scholar]
  233. 233.
    Zeskind BJ, Jordan CD, Timp W, Trapani L, Waller G et al. 2007. Nucleic acid and protein mass mapping by live-cell deep-ultraviolet microscopy. Nat. Methods 4:567–69
    [Google Scholar]
  234. 234.
    Zhang D-L, Wu L-J, Chen J, Liang Y 2012. Effects of macromolecular crowding on the structural stability of human α-lactalbumin. Acta Biochim. Biophys. Sin. 44:703–11
    [Google Scholar]
  235. 235.
    Zhou H-X. 2008. Effect of mixed macromolecular crowding agents on protein folding. Proteins 72:1109–13
    [Google Scholar]
  236. 236.
    Zhou H-X. 2013. Polymer crowders and protein crowders act similarly on protein folding stability. FEBS Lett 587:394–97
    [Google Scholar]
  237. 237.
    Zhou H-X, Rivas G, Minton AP. 2008. Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu. Rev. Biophys. 37:353–73
    [Google Scholar]
  238. 238.
    Ziebacz N, Wieczorek SA, Kalwarczyk T, Fialkowski M, Holyst R 2011. Crossover regime for the diffusion of nanoparticles in polyethylene glycol solutions: influence of the depletion layer. Soft Matter 7:7181–86
    [Google Scholar]
  239. 239.
    Zimmerman SB, Trach SO. 1991. Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli. J. Mol. Biol. 222:599–620
    [Google Scholar]
  240. 240.
    Zosel F, Soranno A, Buholzer KJ, Nettels D, Schuler B 2020. Depletion interactions modulate the binding between disordered proteins in crowded environments. PNAS 117:13480–89
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-091321-071829
Loading
/content/journals/10.1146/annurev-biophys-091321-071829
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error