1932

Abstract

Accurate decoding of spatial chemical landscapes is critical for many cell functions. Eukaryotic cells decode local chemical gradients to orient growth or movement in productive directions. Recent work on yeast model systems, whose gradient sensing pathways display much less complexity than those in animal cells, has suggested new paradigms for how these very small cells successfully exploit information in noisy and dynamic pheromone gradients to identify their mates. Pheromone receptors regulate a polarity circuit centered on the conserved Rho-family GTPase, Cdc42. The polarity circuit contains both positive and negative feedback pathways, allowing spontaneous symmetry breaking and also polarity site disassembly and relocation. Cdc42 orients the actin cytoskeleton, leading to focused vesicle traffic that promotes movement of the polarity site and also reshapes the cortical distribution of receptors at the cell surface. In this article, we review the advances from work on yeasts and compare them with the excitable signaling pathways that have been revealed in chemotactic animal cells.

Keyword(s): Cdc42chemotaxischemotropism

[Erratum, Closure]

An erratum has been published for this article:
Erratum: Orientation of Cell Polarity by Chemical Gradients
Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-110821-071250
2022-05-09
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/biophys/51/1/annurev-biophys-110821-071250.html?itemId=/content/journals/10.1146/annurev-biophys-110821-071250&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abdul-Ganiyu R, Venegas LA, Wang X, Puerner C, Arkowitz RA et al. 2021. Phosphorylated Gβ is a directional cue during yeast gradient tracking. Sci. Signal. 14:682eabf4710
    [Google Scholar]
  2. 2.
    Abu Shah E, Keren K 2014. Symmetry breaking in reconstituted actin cortices. eLife 3:e01433
    [Google Scholar]
  3. 3.
    Alvaro CG, Thorner J. 2016. Heterotrimeric G protein-coupled receptor signaling in yeast mating pheromone response. J. Biol. Chem. 291:157788–95
    [Google Scholar]
  4. 4.
    Andrew N, Insall RH 2007. Chemotaxis in shallow gradients is mediated independently of PtdIns 3-kinase by biased choices between random protrusions. Nat. Cell Biol. 9:2193–200
    [Google Scholar]
  5. 5.
    Artemenko Y, Lampert TJ, Devreotes PN. 2014. Moving towards a paradigm: common mechanisms of chemotactic signaling in Dictyostelium and mammalian leukocytes. Cell Mol. Life Sci. 71:193711–47
    [Google Scholar]
  6. 6.
    Bajaj A, Celić A, Ding F-X, Naider F, Becker JM, Dumont ME. 2004. A fluorescent alpha-factor analogue exhibits multiple steps on binding to its G protein coupled receptor in yeast. Biochemistry 43:4213564–78
    [Google Scholar]
  7. 7.
    Ballon DR, Flanary PL, Gladue DP, Konopka JB, Dohlman HG, Thorner J. 2006. DEP-domain-mediated regulation of GPCR signaling responses. Cell 126:61079–93
    [Google Scholar]
  8. 8.
    Bendezú FO, Martin SG. 2013. Cdc42 explores the cell periphery for mate selection in fission yeast. Curr. Biol. 23:142–47
    [Google Scholar]
  9. 9.
    Bendezú FO, Vincenzetti V, Vavylonis D, Wyss R, Vogel H, Martin SG. 2015. Spontaneous Cdc42 polarization independent of GDI-mediated extraction and actin-based trafficking. PLOS Biol 13:4e1002097
    [Google Scholar]
  10. 10.
    Berg HC, Purcell EM. 1977. Physics of chemoreception. Biophys. J. 20:2193–219
    [Google Scholar]
  11. 11.
    Bialek W, Setayeshgar S. 2005. Physical limits to biochemical signaling. PNAS 102:2910040–45
    [Google Scholar]
  12. 12.
    Bose I, Irazoqui JE, Moskow JJ, Bardes ES, Zyla TR, Lew DJ. 2001. Assembly of scaffold-mediated complexes containing Cdc42p, the exchange factor Cdc24p, and the effector Cla4p required for cell cycle-regulated phosphorylation of Cdc24p. J. Biol. Chem. 276:107176–86
    [Google Scholar]
  13. 13.
    Bosgraaf L, Van Haastert PJM. 2009. The ordered extension of pseudopodia by amoeboid cells in the absence of external cues. PLOS ONE 4:4e5253
    [Google Scholar]
  14. 14.
    Buller A. 1958. Researches on Fungi. London: Longmans Green & Co:.
    [Google Scholar]
  15. 15.
    Bush A, Vasen G, Constantinou A, Dunayevich P, Patop IL et al. 2016. Yeast GPCR signaling reflects the fraction of occupied receptors, not the number. Mol. Syst. Biol. 12:12898
    [Google Scholar]
  16. 16.
    Butty A-C, Perrinjaquet N, Petit A, Jaquenoud M, Segall JE et al. 2002. A positive feedback loop stabilizes the guanine-nucleotide exchange factor Cdc24 at sites of polarization. EMBO J 21:71565–76
    [Google Scholar]
  17. 17.
    Butty AC, Pryciak PM, Huang LS, Herskowitz I, Peter M 1998. The role of Far1p in linking the heterotrimeric G protein to polarity establishment proteins during yeast mating. Science 282:53931511–16
    [Google Scholar]
  18. 18.
    Chiou J-G, Balasubramanian MK, Lew DJ. 2017. Cell polarity in yeast. Annu. Rev. Cell Dev. Biol. 33:77–101
    [Google Scholar]
  19. 19.
    Chiou J-G, Moran KD, Lew DJ. 2021. How cells determine the number of polarity sites. eLife 10:e58768
    [Google Scholar]
  20. 20.
    Chiou J-G, Ramirez SA, Elston TC, Witelski TP, Schaeffer DG, Lew DJ. 2018. Principles that govern competition or co-existence in Rho-GTPase driven polarization. PLOS Comput. Biol. 14:4e1006095
    [Google Scholar]
  21. 21.
    Clark-Cotton MR, Henderson NT, Pablo M, Ghose D, Elston TC, Lew DJ. 2021. Exploratory polarization facilitates mating partner selection in Saccharomyces cerevisiae. Mol. Biol. Cell 32:101048–63
    [Google Scholar]
  22. 22.
    Conlon P, Gelin-Licht R, Ganesan A, Zhang J, Levchenko A. 2016. Single-cell dynamics and variability of MAPK activity in a yeast differentiation pathway. PNAS 113:40E5896–905
    [Google Scholar]
  23. 23.
    Das M, Drake T, Wiley DJ, Buchwald P, Vavylonis D, Verde F. 2012. Oscillatory dynamics of Cdc42 GTPase in the control of polarized growth. Science 337:6091239–43
    [Google Scholar]
  24. 24.
    Deflorio R, Brett M-E, Waszczak N, Apollinari E, Metodiev MV et al. 2013. Phosphorylation of Gβ is crucial for efficient chemotropism in yeast. J. Cell Sci. 126:Pt. 142997–3009
    [Google Scholar]
  25. 25.
    Devreotes PN, Bhattacharya S, Edwards M, Iglesias PA, Lampert T, Miao Y 2017. Excitable signal transduction networks in directed cell migration. Annu. Rev. Cell Dev. Biol. 33:103–25
    [Google Scholar]
  26. 26.
    Dotti CG, Sullivan CA, Banker GA. 1988. The establishment of polarity by hippocampal neurons in culture. J. Neurosci. 8:41454–68
    [Google Scholar]
  27. 27.
    Dyer JM, Savage NS, Jin M, Zyla TR, Elston TC, Lew DJ 2013. Tracking shallow chemical gradients by actin-driven wandering of the polarization site. Curr. Biol. 23:132–41
    [Google Scholar]
  28. 28.
    Endo M, Shirouzu M, Yokoyama S. 2003. The Cdc42 binding and scaffolding activities of the fission yeast adaptor protein Scd2. J. Biol. Chem. 278:2843–52
    [Google Scholar]
  29. 29.
    Endres RG, Wingreen NS. 2008. Accuracy of direct gradient sensing by single cells. PNAS 105:4115749–54
    [Google Scholar]
  30. 30.
    Errede B, Hladyshau S, Nivedita N, Tsygankov D, Elston TC 2021. Bistability in the polarity circuit of yeast. Mol. Biol. Cell. In press
    [Google Scholar]
  31. 31.
    Errede B, Vered L, Ford E, Pena MI, Elston TC 2015. Pheromone-induced morphogenesis and gradient tracking are dependent on the MAPK Fus3 binding to Gα. Mol. Biol. Cell 26:183343–58
    [Google Scholar]
  32. 32.
    Etienne-Manneville S. 2004. Cdc42—the centre of polarity. J. Cell Sci. 117:Pt. 81291–300
    [Google Scholar]
  33. 33.
    Fu Y, Gu Y, Zheng Z, Wasteneys G, Yang Z 2005. Arabidopsis interdigitating cell growth requires two antagonistic pathways with opposing action on cell morphogenesis. Cell 120:5687–700
    [Google Scholar]
  34. 34.
    Gamba A, de Candia A, Di Talia S, Coniglio A, Bussolino F, Serini G. 2005. Diffusion-limited phase separation in eukaryotic chemotaxis. PNAS 102:4716927–32
    [Google Scholar]
  35. 35.
    Ghose D, Jacobs K, Ramirez S, Elston T, Lew D. 2021. Chemotactic movement of a polarity site enables yeast cells to find their mates. PNAS 118:22e2025445118
    [Google Scholar]
  36. 36.
    Ghose D, Lew D. 2020. Mechanistic insights into actin-driven polarity site movement in yeast. Mol. Biol. Cell 31:101085–102
    [Google Scholar]
  37. 37.
    Gierer A, Meinhardt H. 1972. A theory of biological pattern formation. Kybernetik 12:130–39
    [Google Scholar]
  38. 38.
    Gladfelter AS, Moskow JJ, Zyla TR, Lew DJ. 2001. Isolation and characterization of effector-loop mutants of CDC42 in yeast. Mol. Biol. Cell 12:51239–55
    [Google Scholar]
  39. 39.
    Goryachev AB, Leda M. 2017. Many roads to symmetry breaking: molecular mechanisms and theoretical models of yeast cell polarity. Mol. Biol. Cell 28:3370–80
    [Google Scholar]
  40. 40.
    Gov NS. 2018. Guided by curvature: shaping cells by coupling curved membrane proteins and cytoskeletal forces. Philos. Trans. R. Soc. Lond. B 373:174720170115
    [Google Scholar]
  41. 41.
    Graziano BR, Town JP, Sitarska E, Nagy TL, Fošnarič M et al. 2019. Cell confinement reveals a branched-actin independent circuit for neutrophil polarity. PLOS Biol 17:10e3000457
    [Google Scholar]
  42. 42.
    Halatek J, Brauns F, Frey E. 2018. Self-organization principles of intracellular pattern formation. Philos. Trans. R. Soc. Lond. B 373:174720170107
    [Google Scholar]
  43. 43.
    Halatek J, Frey E. 2018. Rethinking pattern formation in reaction-diffusion systems. Nat. Phys. 14:507–14
    [Google Scholar]
  44. 44.
    Hegemann B, Unger M, Lee SS, Stoffel-Studer I, van den Heuvel J et al. 2015. A cellular system for spatial signal decoding in chemical gradients. Dev. Cell 35:4458–70
    [Google Scholar]
  45. 45.
    Henderson NT, Pablo M, Ghose D, Clark-Cotton MR, Zyla TR et al. 2019. Ratiometric GPCR signaling enables directional sensing in yeast. PLOS Biol 17:10e3000484
    [Google Scholar]
  46. 46.
    Houk AR, Jilkine A, Mejean CO, Boltyanskiy R, Dufresne ER et al. 2012. Membrane tension maintains cell polarity by confining signals to the leading edge during neutrophil migration. Cell 148:1–2175–88
    [Google Scholar]
  47. 47.
    Howell AS, Jin M, Wu C-F, Zyla TR, Elston TC, Lew DJ. 2012. Negative feedback enhances robustness in the yeast polarity establishment circuit. Cell 149:2322–33
    [Google Scholar]
  48. 48.
    Hu B, Chen W, Rappel W-J, Levine H. 2010. Physical limits on cellular sensing of spatial gradients. Phys. Rev. Lett. 105:4048104
    [Google Scholar]
  49. 49.
    Iijima M, Huang YE, Devreotes P. 2002. Temporal and spatial regulation of chemotaxis. Dev. Cell 3:4469–78
    [Google Scholar]
  50. 50.
    Irazoqui JE, Gladfelter AS, Lew DJ. 2003. Scaffold-mediated symmetry breaking by Cdc42p. Nat. Cell Biol. 5:121062–70
    [Google Scholar]
  51. 51.
    Ismael A, Tian W, Waszczak N, Wang X, Cao Y et al. 2016. Gβ promotes pheromone receptor polarization and yeast chemotropism by inhibiting receptor phosphorylation. Sci. Signal. 9:423ra38
    [Google Scholar]
  52. 52.
    Jacobs B, Molenaar J, Deinum EE. 2019. Small GTPase patterning: how to stabilise cluster coexistence. PLOS ONE 14:3e0213188
    [Google Scholar]
  53. 53.
    Janetopoulos C, Ma L, Devreotes PN, Iglesias PA. 2004. Chemoattractant-induced phosphatidylinositol 3,4,5-trisphosphate accumulation is spatially amplified and adapts, independent of the actin cytoskeleton. PNAS 101:248951–56
    [Google Scholar]
  54. 54.
    Jenness DD, Burkholder AC, Hartwell LH. 1983. Binding of alpha-factor pheromone to yeast a cells: chemical and genetic evidence for an alpha-factor receptor. Cell 35:2 Pt. 1521–29
    [Google Scholar]
  55. 55.
    Jilkine A, Angenent SB, Wu LF, Altschuler SJ. 2011. A density-dependent switch drives stochastic clustering and polarization of signaling molecules. PLOS Comput. Biol. 7:11e1002271
    [Google Scholar]
  56. 56.
    Jilkine A, Edelstein-Keshet L. 2011. A comparison of mathematical models for polarization of single eukaryotic cells in response to guided cues. PLOS Comput. Biol. 7:4e1001121
    [Google Scholar]
  57. 57.
    Kelley JB, Dixit G, Sheetz JB, Venkatapurapu SP, Elston TC, Dohlman HG. 2015. RGS proteins and septins cooperate to promote chemotropism by regulating polar cap mobility. Curr. Biol. 25:3275–85
    [Google Scholar]
  58. 58.
    King JS, Insall RH. 2009. Chemotaxis: finding the way forward with Dictyostelium. Trends Cell Biol 19:10523–30
    [Google Scholar]
  59. 59.
    Klünder B, Freisinger T, Wedlich-Söldner R, Frey E. 2013. GDI-mediated cell polarization in yeast provides precise spatial and temporal control of Cdc42 signaling. PLOS Comput. Biol. 9:12e1003396
    [Google Scholar]
  60. 60.
    Kozubowski L, Saito K, Johnson JM, Howell AS, Zyla TR, Lew DJ. 2008. Symmetry-breaking polarization driven by a Cdc42p GEF-PAK complex. Curr. Biol. 18:221719–26
    [Google Scholar]
  61. 61.
    Krause M, Gautreau A. 2014. Steering cell migration: lamellipodium dynamics and the regulation of directional persistence. Nat. Rev. Mol. Cell Biol. 15:9577–90
    [Google Scholar]
  62. 62.
    Kuo C-C, Savage NS, Chen H, Wu C-F, Zyla TR, Lew DJ. 2014. Inhibitory GEF phosphorylation provides negative feedback in the yeast polarity circuit. Curr. Biol. 24:7753–59
    [Google Scholar]
  63. 63.
    Lakhani V, Elston TC. 2017. Testing the limits of gradient sensing. PLOS Comput. Biol. 13:2e1005386
    [Google Scholar]
  64. 64.
    Lamas I, Merlini L, Vještica A, Vincenzetti V, Martin SG. 2020. Optogenetics reveals Cdc42 local activation by scaffold-mediated positive feedback and Ras GTPase. PLOS Biol 18:1e3000600
    [Google Scholar]
  65. 65.
    Levine H, Rappel W-J. 2013. The physics of eukaryotic chemotaxis. Phys. Today 66:2):10.1063–PT.3.1884
    [Google Scholar]
  66. 66.
    Machacek M, Hodgson L, Welch C, Elliott H, Pertz O et al. 2009. Coordination of Rho GTPase activities during cell protrusion. Nature 461:726099–103
    [Google Scholar]
  67. 67.
    Martin SG. 2019. Molecular mechanisms of chemotropism and cell fusion in unicellular fungi. J. Cell Sci. 132:11jcs230706
    [Google Scholar]
  68. 68.
    Matheos D, Metodiev M, Muller E, Stone D, Rose MD. 2004. Pheromone-induced polarization is dependent on the Fus3p MAPK acting through the formin Bni1p. J. Cell Biol. 165:199–109
    [Google Scholar]
  69. 69.
    McClure AW, Minakova M, Dyer JM, Zyla TR, Elston TC, Lew DJ. 2015. Role of polarized G protein signaling in tracking pheromone gradients. Dev. Cell 35:4471–82
    [Google Scholar]
  70. 70.
    McCudden CR, Hains MD, Kimple RJ, Siderovski DP, Willard FS. 2005. G-protein signaling: back to the future. Cell Mol. Life Sci. 62:5551–77
    [Google Scholar]
  71. 71.
    Meinhardt H. 1999. Orientation of chemotactic cells and growth cones: models and mechanisms. J. Cell Sci. 112:Pt. 172867–74
    [Google Scholar]
  72. 72.
    Meinhardt H, Gierer A. 1974. Applications of a theory of biological pattern formation based on lateral inhibition. J. Cell Sci. 15:2321–46
    [Google Scholar]
  73. 73.
    Merlini L, Khalili B, Bendezú FO, Hurwitz D, Vincenzetti V et al. 2016. Local pheromone release from dynamic polarity sites underlies cell-cell pairing during yeast mating. Curr. Biol. 26:81117–25
    [Google Scholar]
  74. 74.
    Metodiev MV, Matheos D, Rose MD, Stone DE 2002. Regulation of MAPK function by direct interaction with the mating-specific Gα in yeast. Science 296:55721483–86
    [Google Scholar]
  75. 75.
    Miyanaga Y, Matsuoka S, Yanagida T, Ueda M. 2007. Stochastic signal inputs for chemotactic response in Dictyostelium cells revealed by single molecule imaging techniques. Biosystems 88:3251–60
    [Google Scholar]
  76. 76.
    Mogilner A, Zhu J. 2012. Cell polarity: Tension quenches the rear. Curr. Biol. 22:2R48–51
    [Google Scholar]
  77. 77.
    Mori Y, Jilkine A, Edelstein-Keshet L. 2008. Wave-pinning and cell polarity from a bistable reaction-diffusion system. Biophys. J. 94:93684–97
    [Google Scholar]
  78. 78.
    Mullins RD. 2010. Cytoskeletal mechanisms for breaking cellular symmetry. Cold Spring Harb. Perspect. Biol. 2:1a003392
    [Google Scholar]
  79. 79.
    Munro E, Nance J, Priess JR 2004. Cortical flows powered by asymmetrical contraction transport PAR proteins to establish and maintain anterior-posterior polarity in the early C. elegans embryo. Dev. Cell 7:3413–24
    [Google Scholar]
  80. 80.
    Nern A, Arkowitz RA. 1998. A GTP-exchange factor required for cell orientation. Nature 391:6663195–98
    [Google Scholar]
  81. 81.
    Nern A, Arkowitz RA. 1999. A Cdc24p-Far1p-Gβγ protein complex required for yeast orientation during mating. J. Cell Biol. 144:61187–202
    [Google Scholar]
  82. 82.
    Nern A, Arkowitz RA. 2000. G proteins mediate changes in cell shape by stabilizing the axis of polarity. Mol. Cell 5:5853–64
    [Google Scholar]
  83. 83.
    Nguyen TTT, Park WS, Park BO, Kim CY, Oh Y et al. 2016. PLEKHG3 enhances polarized cell migration by activating actin filaments at the cell front. PNAS 113:3610091–96
    [Google Scholar]
  84. 84.
    Okada S, Leda M, Hanna J, Savage NS, Bi E, Goryachev AB 2013. Daughter cell identity emerges from the interplay of Cdc42, septins, and exocytosis. Dev. Cell 26:2148–61
    [Google Scholar]
  85. 85.
    Otsuji M, Ishihara S, Co C, Kaibuchi K, Mochizuki A, Kuroda S 2007. A mass conserved reaction-diffusion system captures properties of cell polarity. PLOS Comput. Biol. 3:6e108
    [Google Scholar]
  86. 86.
    Ozbudak EM, Becskei A, van Oudenaarden A. 2005. A system of counteracting feedback loops regulates Cdc42p activity during spontaneous cell polarization. Dev. Cell 9:4565–71
    [Google Scholar]
  87. 87.
    Pablo M, Ramirez SA, Elston TC. 2018. Particle-based simulations of polarity establishment reveal stochastic promotion of Turing pattern formation. PLOS Comput. Biol. 14:3e1006016
    [Google Scholar]
  88. 88.
    Paluch E, van der Gucht J, Sykes C. 2006. Cracking up: symmetry breaking in cellular systems. J. Cell Biol. 175:5687–92
    [Google Scholar]
  89. 89.
    Parent CA, Blacklock BJ, Froehlich WM, Murphy DB, Devreotes PN 1998. G protein signaling events are activated at the leading edge of chemotactic cells. Cell 95:181–91
    [Google Scholar]
  90. 90.
    Park H-O, Bi E. 2007. Central roles of small GTPases in the development of cell polarity in yeast and beyond. Microbiol. Mol. Biol. Rev. 71:148–96
    [Google Scholar]
  91. 91.
    Phillips R, Milo R. 2009. A feeling for the numbers in biology. PNAS 106:5121465–71
    [Google Scholar]
  92. 92.
    Pryciak PM, Huntress FA. 1998. Membrane recruitment of the kinase cascade scaffold protein Ste5 by the Gβγ complex underlies activation of the yeast pheromone response pathway. Genes Dev 12:172684–97
    [Google Scholar]
  93. 93.
    Qin Y, Yang Z 2011. Rapid tip growth: insights from pollen tubes. Semin. Cell Dev. Biol. 22:8816–24
    [Google Scholar]
  94. 94.
    Ramirez SA, Pablo M, Burk S, Lew DJ, Elston TC 2021. A novel stochastic simulation approach enables exploration of mechanisms for regulating polarity site movement. PLOS Comput. Biol. 17:7e1008525
    [Google Scholar]
  95. 95.
    Rappel W-J, Levine H. 2008. Receptor noise and directional sensing in eukaryotic chemotaxis. Phys. Rev. Lett. 100:22228101
    [Google Scholar]
  96. 96.
    Rappel W-J, Loomis WF. 2009. Eukaryotic chemotaxis. Wiley Interdiscip. Rev. Syst. Biol. Med. 1:1141–49
    [Google Scholar]
  97. 97.
    Raths SK, Naider F, Becker JM. 1988. Peptide analogues compete with the binding of alpha-factor to its receptor in Saccharomyces cerevisiae. J. Biol. Chem. 263:3317333–41
    [Google Scholar]
  98. 98.
    Raz E, Reichman-Fried M. 2006. Attraction rules: germ cell migration in zebrafish. Curr. Opin. Genet. Dev. 16:4355–59
    [Google Scholar]
  99. 99.
    Roca MG, Arlt J, Jeffree CE, Read ND. 2005. Cell biology of conidial anastomosis tubes in Neurospora crassa. Eukaryot. Cell 4:5911–19
    [Google Scholar]
  100. 100.
    Roussos ET, Condeelis JS, Patsialou A. 2011. Chemotaxis in cancer. Nat. Rev. Cancer 11:8573–87
    [Google Scholar]
  101. 101.
    Schnorrer F, Dickson BJ. 2004. Axon guidance: Morphogens show the way. Curr. Biol. 14:1R19–21
    [Google Scholar]
  102. 102.
    Servant G, Weiner OD, Herzmark P, Balla T, Sedat JW, Bourne HR. 2000. Polarization of chemoattractant receptor signaling during neutrophil chemotaxis. Science 287:54551037–40
    [Google Scholar]
  103. 103.
    Shi Z, Graber ZT, Baumgart T, Stone HA, Cohen AE. 2018. Cell membranes resist flow. Cell 175:71769–79.e13
    [Google Scholar]
  104. 104.
    Skoge M, Yue H, Erickstad M, Bae A, Levine H et al. 2014. Cellular memory in eukaryotic chemotaxis. PNAS 111:4014448–53
    [Google Scholar]
  105. 105.
    Snetselaar KM, Bolker M, Kahmann R. 1996. Ustilago maydis mating hyphae orient their growth toward pheromone sources. Fungal Genet. Biol. 20:4299–312
    [Google Scholar]
  106. 106.
    Swaney KF, Huang C-H, Devreotes PN. 2010. Eukaryotic chemotaxis: A network of signaling pathways controls motility, directional sensing, and polarity. Annu. Rev. Biophys. 39:265–89
    [Google Scholar]
  107. 107.
    Tessier-Lavigne M, Placzek M, Lumsden AG, Dodd J, Jessell TM. 1988. Chemotropic guidance of developing axons in the mammalian central nervous system. Nature 336:6201775–78
    [Google Scholar]
  108. 108.
    Thomson TM, Benjamin KR, Bush A, Love T, Pincus D et al. 2011. Scaffold number in yeast signaling system sets tradeoff between system output and dynamic range. PNAS 108:5020265–70
    [Google Scholar]
  109. 109.
    Turing AM. 1952. The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B 237:64137–72
    [Google Scholar]
  110. 110.
    Valtz N, Peter M, Herskowitz I 1995. FAR1 is required for oriented polarization of yeast cells in response to mating pheromones. J. Cell Biol. 131:4863–73
    [Google Scholar]
  111. 111.
    Venkatapurapu SP, Kelley JB, Dixit G, Pena M, Errede B et al. 2015. Modulation of receptor dynamics by the regulator of G protein signaling Sst2. Mol. Biol. Cell 26:224124–34
    [Google Scholar]
  112. 112.
    von Philipsborn A, Bastmeyer M. 2007. Mechanisms of gradient detection: a comparison of axon pathfinding with eukaryotic cell migration. Int. Rev. Cytol. 263:1–62
    [Google Scholar]
  113. 113.
    Wang X, Tian W, Banh BT, Statler B-M, Liang J, Stone DE. 2019. Mating yeast cells use an intrinsic polarity site to assemble a pheromone-gradient tracking machine. J. Cell Biol. 218:113730–52
    [Google Scholar]
  114. 114.
    Wedlich-Soldner R, SC Wai, Schmidt T, Li R. 2004. Robust cell polarity is a dynamic state established by coupling transport and GTPase signaling. J. Cell Biol. 166:6889–900
    [Google Scholar]
  115. 115.
    Witte K, Strickland D, Glotzer M. 2017. Cell cycle entry triggers a switch between two modes of Cdc42 activation during yeast polarization. eLife 6:e26722
    [Google Scholar]
  116. 116.
    Wu C-F, Chiou J-G, Minakova M, Woods B, Tsygankov D et al. 2015. Role of competition between polarity sites in establishing a unique front. eLife 4:e11611
    [Google Scholar]
  117. 117.
    Wu C-F, Lew DJ. 2013. Beyond symmetry-breaking: competition and negative feedback in GTPase regulation. Trends Cell Biol 23:10476–83
    [Google Scholar]
  118. 118.
    Xiong Y, Kabacoff C, Franca-Koh J, Devreotes PN, Robinson DN, Iglesias PA 2010. Automated characterization of cell shape changes during amoeboid motility by skeletonization. BMC Syst. Biol. 4:33
    [Google Scholar]
  119. 119.
    Xu J, Wang F, Van Keymeulen A, Herzmark P, Straight A et al. 2003. Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils. Cell 114:2201–14
    [Google Scholar]
  120. 120.
    Yang HW, Collins SR, Meyer T. 2016. Locally excitable Cdc42 signals steer cells during chemotaxis. Nat. Cell Biol. 18:2191–201
    [Google Scholar]
  121. 121.
    Yi T-M, Kitano H, Simon MI 2003. A quantitative characterization of the yeast heterotrimeric G protein cycle. PNAS 100:1910764–69
    [Google Scholar]
  122. 122.
    Zigmond SH, Levitsky HI, Kreel BJ. 1981. Cell polarity: an examination of its behavioral expression and its consequences for polymorphonuclear leukocyte chemotaxis. J. Cell Biol. 89:3585–92
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-110821-071250
Loading
/content/journals/10.1146/annurev-biophys-110821-071250
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error