1932

Abstract

Transport of intracellular components relies on a variety of active and passive mechanisms, ranging from the diffusive spreading of small molecules over short distances to motor-driven motion across long distances. The cell-scale behavior of these mechanisms is fundamentally dependent on the morphology of the underlying cellular structures. Diffusion-limited reaction times can be qualitatively altered by the presence of occluding barriers or by confinement in complex architectures, such as those of reticulated organelles. Motor-driven transport is modulated by the architecture of cytoskeletal filaments that serve as transport highways. In this review, we discuss the impact of geometry on intracellular transport processes that fulfill a broad range of functional objectives, including delivery, distribution, and sorting of cellular components. By unraveling the interplay between morphology and transport efficiency, we aim to elucidate key structure–function relationships that govern the architecture of transport systems at the cellular scale.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-111121-103956
2022-05-09
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/biophys/51/1/annurev-biophys-111121-103956.html?itemId=/content/journals/10.1146/annurev-biophys-111121-103956&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abel SM, Roose JP, Groves JT, Weiss A, Chakraborty AK. 2012. The membrane environment can promote or suppress bistability in cell signaling networks. J. Phys. Chem. B 116:113630–40
    [Google Scholar]
  2. 2.
    Agrawal A, Koslover EF. 2021. Optimizing mitochondrial maintenance in extended neuronal projections. PLOS Comput. Biol. 17:6e1009073
    [Google Scholar]
  3. 3.
    Agrawal A, Pekkurnaz G, Koslover EF. 2018. Spatial control of neuronal metabolism through glucose-mediated mitochondrial transport regulation. eLife 7:e40986
    [Google Scholar]
  4. 4.
    Alim K. 2018. Fluid flows shaping organism morphology. Philos. Trans. R. Soc. B 373:174720170112
    [Google Scholar]
  5. 5.
    Alim K, Amselem G, Peaudecerf F, Brenner MP, Pringle A. 2013. Random network peristalsis in Physarum polycephalum organizes fluid flows across an individual. PNAS 110:3313306–11
    [Google Scholar]
  6. 6.
    Alim K, Andrew N, Pringle A, Brenner MP. 2017. Mechanism of signal propagation in Physarum polycephalum. PNAS 114:205136–41
    [Google Scholar]
  7. 7.
    Ando D, Korabel N, Huang KC, Gopinathan A. 2015. Cytoskeletal network morphology regulates intracellular transport dynamics. Biophys. J. 109:81574–82
    [Google Scholar]
  8. 8.
    Aon MA, Cortassa S. 2015. Function of metabolic and organelle networks in crowded and organized media. Front. Physiol. 5:523
    [Google Scholar]
  9. 9.
    Aris R. 1956. On the dispersion of a solute in a fluid flowing through a tube. Proc. R. Soc. A 235:120067–77
    [Google Scholar]
  10. 10.
    Bálint Š, Verdeny Vilanova I, Sandoval Álvarez Á, Lakadamyali M, Vilanova IV et al. 2013. Correlative live-cell and superresolution microscopy reveals cargo transport dynamics at microtubule intersections. PNAS 110:93375–80
    [Google Scholar]
  11. 11.
    Barlan K, Gelfand VI. 2017. Microtubule-based transport and the distribution, tethering, and organization of organelles. Cold Spring Harb. Perspect. Biol. 9:5a025817
    [Google Scholar]
  12. 12.
    Barlan K, Lu W, Gelfand VI 2013. The microtubule-binding protein ensconsin is an essential cofactor of kinesin-1. Curr. Biol. 23:4317–22
    [Google Scholar]
  13. 13.
    Barthélemy M. 2011. Spatial networks. Phys. Rep. 499:1–31–101
    [Google Scholar]
  14. 14.
    Bassingthwaighte JB, Liebovitch LS, West BJ. 2013. Fractal Physiology Berlin: Springer
  15. 15.
    Baum M, Erdel F, Wachsmuth M, Rippe K 2014. Retrieving the intracellular topology from multi-scale protein mobility mapping in living cells. Nat. Commun. 5:4494
    [Google Scholar]
  16. 16.
    Ben-Avraham D, Havlin S 2000. Diffusion and Reactions in Fractals and Disordered Systems Cambridge, UK: Cambridge Univ. Press
  17. 17.
    Bénichou O, Chevalier C, Klafter J, Meyer B, Voituriez R. 2010. Geometry-controlled kinetics. Nat. Chem. 2:6472–77
    [Google Scholar]
  18. 18.
    Bénichou O, Voituriez R. 2008. Narrow-escape time problem: time needed for a particle to exit a confining domain through a small window. Phys. Rev. Lett. 100:16168105
    [Google Scholar]
  19. 19.
    Boergens KM, Kapfer C, Helmstaedter M, Denk W, Borst A 2018. Full reconstruction of large lobula plate tangential cells in Drosophila from a 3D EM dataset. PLOS ONE 13:11e0207828
    [Google Scholar]
  20. 20.
    Bracey KM, Ho KH, Yampolsky D, Gu G, Kaverina I, Holmes WR 2020. Microtubules regulate localization and availability of insulin granules in pancreatic beta cells. Biophys. J. 118:1193–206
    [Google Scholar]
  21. 21.
    Bressloff PC, Newby JM. 2013. Stochastic models of intracellular transport. Rev. Mod. Phys. 85:1135–96
    [Google Scholar]
  22. 22.
    Brown AI, Koslover EF. 2019. Drive, filter, and stick: a protein sorting conspiracy in photoreceptors. J. Cell Biol. 218:113533–34
    [Google Scholar]
  23. 23.
    Brown AI, Westrate LM, Koslover EF. 2020. Impact of global structure on diffusive exploration of organelle networks. Sci. Rep. 10:4984
    [Google Scholar]
  24. 24.
    Burute M, Kapitein LC. 2019. Cellular logistics: unraveling the interplay between microtubule organization and intracellular transport. Annu. Rev. Cell Dev. Biol. 35:29–54
    [Google Scholar]
  25. 25.
    Calvert PD, Schiesser WE, Pugh EN. 2010. Diffusion of a soluble protein, photoactivatable GFP, through a sensory cilium. J. Gen. Physiol. 135:3173–96
    [Google Scholar]
  26. 26.
    Chen K, Wang B, Granick S 2015. Memoryless self-reinforcing directionality in endosomal active transport within living cells. Nat. Mater. 14:6589–93
    [Google Scholar]
  27. 27.
    Chiu SY. 2011. Matching mitochondria to metabolic needs at nodes of Ranvier. Neuroscientist 17:4343–50
    [Google Scholar]
  28. 28.
    Chiurchiu V, Maccarrone M, Orlacchio A 2014. The role of reticulons in neurodegenerative diseases. Neuromol. Med. 16:13–15
    [Google Scholar]
  29. 29.
    Chubynsky MV, Slater GW. 2014. Diffusing diffusivity: a model for anomalous, yet Brownian, diffusion. Phys. Rev. Lett. 113:9098302
    [Google Scholar]
  30. 30.
    Condamin S, Bénichou O, Tejedor V, Voituriez R, Klafter J. 2007. First-passage times in complex scale-invariant media. Nature 450:716677–80
    [Google Scholar]
  31. 31.
    de la Rosa MAD, Koslover EF, Mulligan PJ, Spakowitz AJ. 2010. Dynamic strategies for target-site search by DNA-binding proteins. Biophys. J. 98:122943–53
    [Google Scholar]
  32. 32.
    Dieteren CE, Gielen SC, Nijtmans LG, Smeitink JA, Swarts HG et al. 2011. Solute diffusion is hindered in the mitochondrial matrix. PNAS 108:218657–62
    [Google Scholar]
  33. 33.
    Dix JA, Verkman A. 2008. Crowding effects on diffusion in solutions and cells. Annu. Rev. Biophys. 37:247–63
    [Google Scholar]
  34. 34.
    Dixit R, Ross JL, Goldman YE, Holzbaur EL. 2008. Differential regulation of dynein and kinesin motor proteins by tau. Science 319:58661086–89
    [Google Scholar]
  35. 35.
    Dora M, Holcman D. 2020. Active flow network generates molecular transport by packets: case of the endoplasmic reticulum. Proc. R. Soc. B 287:193020200493
    [Google Scholar]
  36. 36.
    Doyle M, Kiebler MA 2011. Mechanisms of dendritic mRNA transport and its role in synaptic tagging. EMBO J. 30:173540–52
    [Google Scholar]
  37. 37.
    Faras GG, Guardia CM, Britt DJ, Guo X, Bonifacino JS 2015. Sorting of dendritic and axonal vesicles at the pre-axonal exclusion zone. Cell Rep. 13:61221–32
    [Google Scholar]
  38. 38.
    Ferrante M, Migliore M, Ascoli GA 2013. Functional impact of dendritic branch-point morphology. J. Neurosci. 33:52156–65
    [Google Scholar]
  39. 39.
    Ferree AW, Trudeau K, Zik E, Benador IY, Twig G et al. 2013. Mitotimer probe reveals the impact of autophagy, fusion, and motility on subcellular distribution of young and old mitochondrial protein and on relative mitochondrial protein age. Autophagy 9:111887–96
    [Google Scholar]
  40. 40.
    Fodor É, Guo M, Gov N, Visco P, Weitz D, van Wijland F. 2015. Activity-driven fluctuations in living cells. Europhys. Lett. 110:448005
    [Google Scholar]
  41. 41.
    Fonkeu Y, Kraynyukova N, Hafner AS, Kochen L, Sartori F et al. 2019. How mRNA localization and protein synthesis sites influence dendritic protein distribution and dynamics. Neuron 103:61109–22
    [Google Scholar]
  42. 42.
    Frey T, Renken C, Perkins G. 2002. Insight into mitochondrial structure and function from electron tomography. Biochim. Biophys. Acta 1555:1–3196–203
    [Google Scholar]
  43. 43.
    Fricker MD, Heaton LL, Jones NS, Boddy L. 2017. The mycelium as a network. Microbiol. Spectr. 5:3 https://doi.org/10.1128/microbiolspec.FUNK-0033-2017
    [Crossref] [Google Scholar]
  44. 44.
    Friedman JR, Voeltz GK. 2011. The ER in 3D: a multifunctional dynamic membrane network. Trends Cell Biol. 21:12709–17
    [Google Scholar]
  45. 45.
    Fu MM, Holzbaur EL. 2014. Integrated regulation of motor-driven organelle transport by scaffolding proteins. Trends Cell Biol. 24:10564–74
    [Google Scholar]
  46. 46.
    Gagnon JA, Mowry KL. 2011. Molecular motors: directing traffic during RNA localization. Crit. Rev. Biochem. Mol. 46:3229–39
    [Google Scholar]
  47. 47.
    Gastner MT, Newman ME. 2006. The spatial structure of networks. Eur. Phys. J. B 49:2247–52
    [Google Scholar]
  48. 48.
    Glock C, Heumüller M, Schuman EM. 2017. mRNA transport & local translation in neurons. Curr. Opin. Neurobiol. 45:169–77
    [Google Scholar]
  49. 49.
    Godec A, Metzler R. 2015. Signal focusing through active transport. Phys. Rev. E 92:1010701
    [Google Scholar]
  50. 50.
    Goldstein RE, van de Meent JW. 2015. A physical perspective on cytoplasmic streaming. Interface Focus 5:420150030
    [Google Scholar]
  51. 51.
    Grebenkov DS, Tupikina L. 2018. Heterogeneous continuous-time random walks. Phys. Rev. E 97:1012148
    [Google Scholar]
  52. 52.
    Guedes-Dias P, Nirschl JJ, Abreu N, Tokito MK, Janke C et al. 2019. Kinesin-3 responds to local microtubule dynamics to target synaptic cargo delivery to the presynapse. Curr. Biol. 29:2268–82
    [Google Scholar]
  53. 53.
    Guo M, Ehrlicher AJ, Jensen MH, Renz M, Moore JR et al. 2014. Probing the stochastic, motor-driven properties of the cytoplasm using force spectrum microscopy. Cell 158:4822–32
    [Google Scholar]
  54. 54.
    Hafner AE, Rieger H. 2018. Spatial cytoskeleton organization supports targeted intracellular transport. Biophys. J. 114:61420–32
    [Google Scholar]
  55. 55.
    Hancock WO. 2014. Bidirectional cargo transport: moving beyond tug of war. Nat. Rev. Mol. Cell Biol. 15:9615–28
    [Google Scholar]
  56. 56.
    Harris JJ, Jolivet R, Attwell D. 2012. Synaptic energy use and supply. Neuron 75:5762–77
    [Google Scholar]
  57. 57.
    Hirokawa N, Noda Y, Tanaka Y, Niwa S. 2009. Kinesin superfamily motor proteins and intracellular transport. Nat. Rev. Mol. Cell Biol. 10:10682–96
    [Google Scholar]
  58. 58.
    Holcman D, Parutto P, Chambers JE, Fantham M, Young LJ et al. 2018. Single particle trajectories reveal active endoplasmic reticulum luminal flow. Nat. Cell Biol. 20:101118–25
    [Google Scholar]
  59. 59.
    Huber G, Wilkinson M. 2019. Terasaki spiral ramps and intracellular diffusion. Phys. Biol. 16:6065002
    [Google Scholar]
  60. 60.
    Jose R, Santen L, Shaebani MR. 2018. Trapping in and escape from branched structures of neuronal dendrites. Biophys. J. 115:102014–25
    [Google Scholar]
  61. 61.
    Jung W, Tabatabai AP, Thomas JJ, Tabei SA, Murrell MP, Kim T. 2019. Dynamic motions of molecular motors in the actin cytoskeleton. Cytoskeleton 76:11–12517–31
    [Google Scholar]
  62. 62.
    Kapitein LC, Hoogenraad CC. 2011. Which way to go? Cytoskeletal organization and polarized transport in neurons. Mol. Cell Neurosci. 46:19–20
    [Google Scholar]
  63. 63.
    Kapitein LC, Hoogenraad CC. 2015. Building the neuronal microtubule cytoskeleton. Neuron 87:3492–506
    [Google Scholar]
  64. 64.
    Kapitein LC, Schlager MA, Kuijpers M, Wulf PS, van Spronsen M et al. 2010. Mixed microtubules steer dynein-driven cargo transport into dendrites. Curr. Biol. 20:4290–99
    [Google Scholar]
  65. 65.
    Klafter J, Lim S, Metzler R. 2012. Fractional Dynamics: Recent Advances Singapore: World Sci.
  66. 66.
    Konno T, Parutto P, Bailey DM, Dav V, Crapart C et al. 2021. Endoplasmic reticulum morphological regulation by RTN4/NOGO modulates neuronal regeneration by curbing luminal transport. bioRxiv 2021.05.10.441946. https://doi.org/10.1101/2021.05.10.441946
    [Crossref]
  67. 67.
    Kühn T, Ihalainen TO, Hyväluoma J, Dross N, Willman SF et al. 2011. Protein diffusion in mammalian cell cytoplasm. PLOS ONE 6:8e22962
    [Google Scholar]
  68. 68.
    Lampo TJ, Stylianidou S, Backlund MP, Wiggins PA, Spakowitz AJ. 2017. Cytoplasmic RNA-protein particles exhibit non-Gaussian subdiffusive behavior. Biophys. J. 112:3532–42
    [Google Scholar]
  69. 69.
    Li H, Dou SX, Liu YR, Li W, Xie P et al. 2015. Mapping intracellular diffusion distribution using single quantum dot tracking: compartmentalized diffusion defined by endoplasmic reticulum. J. Am. Chem. Soc. 137:1436–44
    [Google Scholar]
  70. 70.
    Li L, Gervasi N, Girault JA 2015. Dendritic geometry shapes neuronal camp signalling to the nucleus. Nat. Commun. 6:6319
    [Google Scholar]
  71. 71.
    Li R, Fowler JA, Todd BA. 2014. Calculated rates of diffusion-limited reactions in a three-dimensional network of connected compartments: application to porous catalysts and biological systems. Phys. Rev. Lett. 113:2028303
    [Google Scholar]
  72. 72.
    Liao M, Liang X, Howard J. 2021. The narrowing of dendrite branches across nodes follows a well-defined scaling law. PNAS 118:27e2022395118
    [Google Scholar]
  73. 73.
    Lin C, Zhang Y, Sparkes I, Ashwin P. 2014. Structure and dynamics of ER: minimal networks and biophysical constraints. Biophys. J. 107:3763–72
    [Google Scholar]
  74. 74.
    Lizana L, Konkoli Z. 2005. Diffusive transport in networks built of containers and tubes. Phys. Rev. E 72:2026305
    [Google Scholar]
  75. 75.
    Lizana L, Konkoli Z, Bauer B, Jesorka A, Orwar O 2009. Controlling chemistry by geometry in nanoscale systems. Annu. Rev. Phys. Chem. 60:449–68
    [Google Scholar]
  76. 76.
    Lombardo AT, Nelson SR, Kennedy GG, Trybus KM, Walcott S, Warshaw DM 2019. Myosin VA transport of liposomes in three-dimensional actin networks is modulated by actin filament density, position, and polarity. PNAS 116:178326–35
    [Google Scholar]
  77. 77.
    Maday S, Twelvetrees AE, Moughamian AJ, Holzbaur EL. 2014. Axonal transport: cargo-specific mechanisms of motility and regulation. Neuron 84:2292–309
    [Google Scholar]
  78. 78.
    Maday S, Wallace KE, Holzbaur EL 2012. Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons. J. Cell Biol. 196:4407–17
    [Google Scholar]
  79. 79.
    Maelfeyt B, Tabei SA, Gopinathan A. 2019. Anomalous intracellular transport phases depend on cytoskeletal network features. Phys. Rev. E 99:6062404
    [Google Scholar]
  80. 80.
    Marbach S, Alim K, Andrew N, Pringle A, Brenner MP 2016. Pruning to increase Taylor dispersion in Physarum polycephalum networks. Phys. Rev. Lett. 117:17178103
    [Google Scholar]
  81. 81.
    Masuda N, Porter MA, Lambiotte R. 2017. Random walks and diffusion on networks. Phys. Rep. 716:1–58
    [Google Scholar]
  82. 82.
    Maza NA, Schiesser WE, Calvert PD. 2019. An intrinsic compartmentalization code for peripheral membrane proteins in photoreceptor neurons. J. Cell Biol. 218:113753–72
    [Google Scholar]
  83. 83.
    Meigel FJ, Alim K. 2018. Flow rate of transport network controls uniform metabolite supply to tissue. J. R. Soc. Interface 15:14220180075
    [Google Scholar]
  84. 84.
    Millecamps S, Julien JP. 2013. Axonal transport deficits and neurodegenerative diseases. Nat. Rev. Neurosci. 14:3161–76
    [Google Scholar]
  85. 85.
    Milo R, Phillips R 2015. Cell Biology by the Numbers New York: Garland Sci.
  86. 86.
    Mlynarczyk PJ, Abel SM. 2019. First passage of molecular motors on networks of cytoskeletal filaments. Phys. Rev. E 99:2022406
    [Google Scholar]
  87. 87.
    Mogre SS, Brown AI, Koslover EF. 2020. Getting around the cell: physical transport in the intracellular world. Phys. Biol. 17:6061003
    [Google Scholar]
  88. 88.
    Mogre SS, Christensen JR, Niman CS, Reck-Peterson SL, Koslover EF. 2020. Hitching a ride: mechanics of transport initiation through linker-mediated hitchhiking. Biophys. J. 118:61357–69
    [Google Scholar]
  89. 89.
    Mogre SS, Christensen JR, Reck-Peterson SL, Koslover EF. 2021. Optimizing microtubule arrangements for rapid cargo capture. Biophys. J. 120:22491831
    [Google Scholar]
  90. 90.
    Moughamian AJ, Osborn GE, Lazarus JE, Maday S, Holzbaur EL 2013. Ordered recruitment of dynactin to the microtubule plus-end is required for efficient initiation of retrograde axonal transport. J. Neurosci. 33:3213190–203
    [Google Scholar]
  91. 91.
    Najafi M, Maza NA, Calvert PD. 2012. Steric volume exclusion sets soluble protein concentrations in photoreceptor sensory cilia. PNAS 109:1203–8
    [Google Scholar]
  92. 92.
    Nirschl JJ, Ghiretti AE, Holzbaur EL. 2017. The impact of cytoskeletal organization on the local regulation of neuronal transport. Nat. Rev. Neurosci. 18:10585–97
    [Google Scholar]
  93. 93.
    Noh JD, Rieger H. 2004. Random walks on complex networks. Phys. Rev. Lett. 92:11118701
    [Google Scholar]
  94. 94.
    Oberhofer A, Reithmann E, Spieler P, Stepp WL, Zimmermann D et al. 2020. Molecular underpinnings of cytoskeletal cross-talk. PNAS 117:83944–52
    [Google Scholar]
  95. 95.
    Parton RM, Hamilton RS, Ball G, Yang L, Cullen CF et al. 2011. A PAR-1-dependent orientation gradient of dynamic microtubules directs posterior cargo transport in the Drosophila oocyte. J. Cell Biol. 194:1121–35
    [Google Scholar]
  96. 96.
    Pekkurnaz G, Trinidad JC, Wang X, Kong D, Schwarz TL. 2014. Glucose regulates mitochondrial motility via Milton modification by O-GlcNAc transferase. Cell 158:154–68
    [Google Scholar]
  97. 97.
    Quinlan ME. 2016. Cytoplasmic streaming in the Drosophila oocyte. Annu. Rev. Cell Dev. Biol. 32:173–95
    [Google Scholar]
  98. 98.
    Rangaraju V, Calloway N, Ryan TA. 2014. Activity-driven local ATP synthesis is required for synaptic function. Cell 156:4825–35
    [Google Scholar]
  99. 99.
    Rangaraju V, Lauterbach M, Schuman EM. 2019. Spatially stable mitochondrial compartments fuel local translation during plasticity. Cell 176:1–273–84
    [Google Scholar]
  100. 100.
    Reck-Peterson SL, Redwine WB, Vale RD, Carter AP. 2018. The cytoplasmic dynein transport machinery and its many cargoes. Nat. Rev. Mol. Cell Biol. 19:6382–98
    [Google Scholar]
  101. 101.
    Ronellenfitsch H, Katifori E. 2016. Global optimization, local adaptation, and the role of growth in distribution networks. Phys. Rev. Lett. 117:13138301
    [Google Scholar]
  102. 102.
    Sadegh S, Higgins JL, Mannion PC, Tamkun MM, Krapf D. 2017. Plasma membrane is compartmentalized by a self-similar cortical actin meshwork. Phys. Rev. X 7:1011031
    [Google Scholar]
  103. 103.
    Sallee MD, Feldman JL. 2021. Microtubule organization across cell types and states. Curr. Biol. 31:10R506–11
    [Google Scholar]
  104. 104.
    Salogiannis J, Reck-Peterson SL. 2017. Hitchhiking: a non-canonical mode of microtubule-based transport. Trends Cell Biol. 27:2141–50
    [Google Scholar]
  105. 105.
    Santamaria F, Wils S, De Schutter E, Augustine GJ. 2006. Anomalous diffusion in Purkinje cell dendrites caused by spines. Neuron 52:4635–48
    [Google Scholar]
  106. 106.
    Sartori F, Hafner AS, Karimi A, Nold A, Fonkeu Y et al. 2020. Statistical laws of protein motion in neuronal dendritic trees. Cell Rep. 33:7108391
    [Google Scholar]
  107. 107.
    Scholz M, Burov S, Weirich KL, Scholz BJ, Tabei SA et al. 2016. Cycling state that can lead to glassy dynamics in intracellular transport. Phys. Rev. X 6:1011037
    [Google Scholar]
  108. 108.
    Scholz M, Weirich KL, Gardel ML, Dinner AR. 2020. Tuning molecular motor transport through cytoskeletal filament network organization. Soft Matter 16:82135–40
    [Google Scholar]
  109. 109.
    Schroeder LK, Barentine AE, Merta H, Schweighofer S, Zhang Y et al. 2019. Dynamic nanoscale morphology of the ER surveyed by STED microscopy. J. Cell Biol. 218:183–96
    [Google Scholar]
  110. 110.
    Schuss Z, Singer A, Holcman D. 2007. The narrow escape problem for diffusion in cellular microdomains. PNAS 104:4116098–103
    [Google Scholar]
  111. 111.
    Schuster M, Kilaru S, Ashwin P, Lin C, Severs NJ, Steinberg G. 2011. Controlled and stochastic retention concentrates dynein at microtubule ends to keep endosomes on track. EMBO J. 30:4652–64
    [Google Scholar]
  112. 112.
    Schwarz K, Schröder Y, Qu B, Hoth M, Rieger H. 2016. Optimality of spatially inhomogeneous search strategies. Phys. Rev. Lett. 117:6068101
    [Google Scholar]
  113. 113.
    Schwarz TL. 2013. Mitochondrial trafficking in neurons. Cold Spring Harb. Perspect. Biol. 5:6a011304
    [Google Scholar]
  114. 114.
    Scott ZC, Brown AI, Mogre SS, Westrate LM, Koslover EF. 2021. Diffusive search and trajectories on tubular networks: a propagator approach. Eur. Phys. J. E 44:680
    [Google Scholar]
  115. 115.
    Shen L, Chen Z. 2007. Critical review of the impact of tortuosity on diffusion. Chem. Eng. Sci. 62:143748–55
    [Google Scholar]
  116. 116.
    Slepchenko BM, Semenova I, Zaliapin I, Rodionov V 2007. Switching of membrane organelles between cytoskeletal transport systems is determined by regulation of the microtubule-based transport. J. Cell Biol. 179:4635–41
    [Google Scholar]
  117. 117.
    Smith DL, Pozueta J, Gong B, Arancio O, Shelanski M 2009. Reversal of long-term dendritic spine alterations in Alzheimer disease models. PNAS 106:3916877–82
    [Google Scholar]
  118. 118.
    Snider J, Lin F, Zahedi N, Rodionov V, Clare CY, Gross SP 2004. Intracellular actin-based transport: How far you go depends on how often you switch. PNAS 101:3613204–9
    [Google Scholar]
  119. 119.
    Song AH, Wang D, Chen G, Li Y, Luo J et al. 2009. A selective filter for cytoplasmic transport at the axon initial segment. Cell 136:61148–60
    [Google Scholar]
  120. 120.
    Stauffer D, Aharony A. 1994. Introduction to Percolation Theory Boca Raton, FL: CRC Press
  121. 121.
    Stepanek L, Pigino G. 2016. Microtubule doublets are double-track railways for intraflagellar transport trains. Science 352:6286721–24
    [Google Scholar]
  122. 122.
    Sukhorukov VM, Dikov D, Reichert AS, Meyer-Hermann M. 2012. Emergence of the mitochondrial reticulum from fission and fusion dynamics. PLOS Comput. Biol. 8:10e1002745
    [Google Scholar]
  123. 123.
    Takahashi K, Tănase-Nicola S, Ten Wolde PR. 2010. Spatio-temporal correlations can drastically change the response of a MAPK pathway. PNAS 107:62473–78
    [Google Scholar]
  124. 124.
    Tas RP, Chazeau A, Cloin BM, Lambers ML, Hoogenraad CC, Kapitein LC. 2017. Differentiation between oppositely oriented microtubules controls polarized neuronal transport. Neuron 96:61264–71
    [Google Scholar]
  125. 125.
    Taschner M, Lorentzen E. 2016. The intraflagellar transport machinery. Cold Spring Harb. Perspect. Biol. 8:10a028092
    [Google Scholar]
  126. 126.
    Terasaki M, Shemesh T, Kasthuri N, Klemm RW, Schalek R et al. 2013. Stacked endoplasmic reticulum sheets are connected by helicoidal membrane motifs. Cell 154:2285–96
    [Google Scholar]
  127. 127.
    Tønnesen J, Nägerl UV. 2016. Dendritic spines as tunable regulators of synaptic signals. Front. Psychiatry 7:101
    [Google Scholar]
  128. 128.
    Trong PK, Doerflinger H, Dunkel J, St Johnston D, Goldstein RE 2015. Cortical microtubule nucleation can organise the cytoskeleton of Drosophila oocytes to define the anteroposterior axis. eLife 4:e06088
    [Google Scholar]
  129. 129.
    Vale RD. 2003. The molecular motor toolbox for intracellular transport. Cell 112:4467–80
    [Google Scholar]
  130. 130.
    Verdeny-Vilanova I, Wehnekamp F, Mohan N, Álvarez ÁS, Borbely JS et al. 2017. 3D motion of vesicles along microtubules helps them to circumvent obstacles in cells. J. Cell Sci. 130:111904–16
    [Google Scholar]
  131. 131.
    Viana MP, Brown AI, Mueller IA, Goul C, Koslover EF, Rafelski SM. 2020. Mitochondrial fission and fusion dynamics generate efficient, robust, and evenly distributed network topologies in budding yeast cells. Cell Syst. 10:3287–97.e5
    [Google Scholar]
  132. 132.
    Volland S, Hughes LC, Kong C, Burgess BL, Linberg KA et al. 2015. Three-dimensional organization of nascent rod outer segment disk membranes. PNAS 112:4814870–75
    [Google Scholar]
  133. 133.
    Wang B, Kuo J, Bae SC, Granick S. 2012. When Brownian diffusion is not Gaussian. Nat. Mater. 11:6481–85
    [Google Scholar]
  134. 134.
    Wang Z, Thurmond DC 2009. Mechanisms of biphasic insulin-granule exocytosis—roles of the cytoskeleton, small GTPases and snare proteins. J. Cell Sci. 122:7893–903
    [Google Scholar]
  135. 135.
    Westrate L, Lee J, Prinz W, Voeltz G 2015. Form follows function: the importance of endoplasmic reticulum shape. Annu. Rev. Biochem. 84:791–811
    [Google Scholar]
  136. 136.
    Williams AH, O'Donnell C, Sejnowski TJ, O'Leary T. 2016. Dendritic trafficking faces physiologically critical speed-precision tradeoffs. eLife 5:e20556
    [Google Scholar]
  137. 137.
    Wong MY, Zhou C, Shakiryanova D, Lloyd TE, Deitcher DL, Levitan ES. 2012. Neuropeptide delivery to synapses by long-range vesicle circulation and sporadic capture. Cell 148:51029–38
    [Google Scholar]
  138. 138.
    Yau KW, Schätzle P, Tortosa E, Pagès S, Holtmaat A et al. 2016. Dendrites in vitro and in vivo contain microtubules of opposite polarity and axon formation correlates with uniform plus-end-out microtubule orientation. J. Neurosci. 36:41071–85
    [Google Scholar]
  139. 139.
    Yogev S, Cooper R, Fetter R, Horowitz M, Shen K. 2016. Microtubule organization determines axonal transport dynamics. Neuron 92:2449–60
    [Google Scholar]
  140. 140.
    Zamponi N, Zamponi E, Cannas SA, Billoni OV, Helguera PR, Chialvo DR. 2018. Mitochondrial network complexity emerges from fission/fusion dynamics. Sci. Rep. 8:363
    [Google Scholar]
  141. 141.
    Zhu X, Hu R, Brissova M, Stein RW, Powers AC et al. 2015. Microtubules negatively regulate insulin secretion in pancreatic β cells. Dev. Cell 34:6656–68
    [Google Scholar]
  142. 142.
    Zwanzig R. 1992. Diffusion past an entropy barrier. J. Phys. Chem. 96:103926–30
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-111121-103956
Loading
/content/journals/10.1146/annurev-biophys-111121-103956
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error