1932

Abstract

Mitochondrial function depends on the efficient import of proteins synthesized in the cytosol. When cells experience stress, the efficiency and faithfulness of the mitochondrial protein import machinery are compromised, leading to homeostatic imbalances and damage to the organelle. Yeast Msp1 (mitochondrial sorting of proteins 1) and mammalian ATAD1 (ATPase family AAA domain–containing 1) are orthologous AAA proteins that, fueled by ATP hydrolysis, recognize and extract mislocalized membrane proteins from the outer mitochondrial membrane. Msp1 also extracts proteins that have become stuck in the import channel. The extracted proteins are targeted for proteasome-dependent degradation or, in the case of mistargeted tail-anchored proteins, are given another chance to be routed correctly. In addition, ATAD1 is implicated in the regulation of synaptic plasticity, mediating the release of neurotransmitter receptors from postsynaptic scaffolds to allow their trafficking. Here we discuss how structural and functional specialization imparts the unique properties that allow Msp1/ATAD1 ATPases to fulfill these diverse functions and also highlight outstanding questions in the field.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-031220-015840
2020-10-06
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/36/1/annurev-cellbio-031220-015840.html?itemId=/content/journals/10.1146/annurev-cellbio-031220-015840&mimeType=html&fmt=ahah

Literature Cited

  1. Ahrens-Nicklas RC, Umanah GKE, Sondheimer N, Deardorff MA, Wilkens AB et al. 2017. Precision therapy for a new disorder of AMPA receptor recycling due to mutations in ATAD1. Neurol. Genet 3:1e130
    [Google Scholar]
  2. Akopian D, Shen K, Zhang X, Shan S 2013. Signal recognition particle: an essential protein-targeting machine. Annu. Rev. Biochem. 82:693–721
    [Google Scholar]
  3. Augustin S, Gerdes F, Lee S, Tsai FTF, Langer T, Tatsuta T 2009. An intersubunit signaling network coordinates ATP hydrolysis by m-AAA proteases. Mol. Cell 35:5574–85
    [Google Scholar]
  4. Basch M, Wagner M, Rolland S, Carbonell A, Zeng R et al. 2020. Msp1 cooperates with the proteasome for extraction of arrested mitochondrial import intermediates. Mol. Biol. Cell 31:8753–67
    [Google Scholar]
  5. Bausewein T, Mills DJ, Langer JD, Nitschke B, Nussberger S, Kühlbrandt W 2017. Cryo-EM structure of the TOM core complex from Neurospora crassa. . Cell 170:4693–700.e7
    [Google Scholar]
  6. Beilharz T, Egan B, Silver PA, Hofmann K, Lithgow T 2003. Bipartite signals mediate subcellular targeting of tail-anchored membrane proteins in Saccharomyces cerevisiae. J. Biol. Chem 278:108219–23
    [Google Scholar]
  7. Boos F, Krämer L, Groh C, Jung F, Haberkant P et al. 2019. Mitochondrial protein-induced stress triggers a global adaptive transcriptional programme. Nat. Cell Biol. 21:4442–51
    [Google Scholar]
  8. Borgese N, Fasana E. 2011. Targeting pathways of C-tail-anchored proteins. Biochim. Biophys. Acta Biomembr. 1808:3937–46
    [Google Scholar]
  9. Burri L, Lithgow T. 2004. A complete set of SNAREs in yeast. Traffic 5:145–52
    [Google Scholar]
  10. Chen Y, Umanah GKE, Dephoure N, Andrabi SA, Gygi SP et al. 2014. Msp1/ATAD1 maintains mitochondrial function by facilitating the degradation of mislocalized tail‐anchored proteins. EMBO J 33:141548–64
    [Google Scholar]
  11. Chio US, Cho H, Shan S-O 2017. Mechanisms of tail-anchored membrane protein targeting and insertion. Annu. Rev. Cell Dev. Biol. 33:417–38
    [Google Scholar]
  12. Cooney I, Han H, Stewart MG, Carson RH, Hansen DT et al. 2019. Structure of the Cdc48 segregase in the act of unfolding an authentic substrate. Science 365:6452502–5
    [Google Scholar]
  13. Dai C, Liang D, Li H, Sasaki M, Dawson TM, Dawson VL 2010. Functional identification of neuroprotective molecules. PLOS ONE 5:11e15008
    [Google Scholar]
  14. de la Peña AH, Goodall EA, Gates SN, Lander GC, Martin A 2018. Substrate-engaged 26S proteasome structures reveal mechanisms for ATP-hydrolysis–driven translocation. Science 362:6418eaav0725
    [Google Scholar]
  15. Dederer V, Khmelinskii A, Huhn AG, Okreglak V, Knop M, Lemberg MK 2019. Cooperation of mitochondrial and ER factors in quality control of tail-anchored proteins. eLife 8:e45506
    [Google Scholar]
  16. Denic V. 2012. A portrait of the GET pathway as a surprisingly complicated young man. Trends Biochem. Sci. 37:10411–17
    [Google Scholar]
  17. Doan KN, Grevel A, Mårtensson CU, Ellenrieder L, Thornton N et al. 2020. The mitochondrial import complex MIM functions as main translocase for α-helical outer membrane proteins. Cell Rep 31:4107567
    [Google Scholar]
  18. Dong Y, Zhang S, Wu Z, Li X, Wang WL et al. 2018. Cryo-EM structures and dynamics of substrate-engaged human 26S proteasome. Nature 565:773749–55
    [Google Scholar]
  19. Fresenius HL, Wohlever ML. 2019. Sorting out how Msp1 maintains mitochondrial membrane proteostasis. Mitochondrion 49:128–34
    [Google Scholar]
  20. Frickey T, Lupas AN. 2004. Phylogenetic analysis of AAA proteins. J. Struct. Biol. 146:1–22–10
    [Google Scholar]
  21. Gates SN, Yokom AL, Lin J, Jackrel ME, Rizo AN et al. 2017. Ratchet-like polypeptide translocation mechanism of the AAA+ disaggregase Hsp104. Science 357:6348273–79
    [Google Scholar]
  22. Han H, Fulcher JM, Dandey VP, Iwasa JH, Sundquist WI et al. 2019. Structure of Vps4 with circular peptides and implications for translocation of two polypeptide chains by AAA+ ATPases. eLife 8:e44071
    [Google Scholar]
  23. Han H, Monroe N, Sundquist WI, Shen PS, Hill CP 2017. The AAA ATPase Vps4 binds ESCRT-III substrates through a repeating array of dipeptide-binding pockets. eLife 6:e31324
    [Google Scholar]
  24. Hanley JG, Khatri L, Hanson PI, Ziff EB 2002. NSF ATPase and α-/β-SNAPs disassemble the AMPA receptor-PICK1 complex. Neuron 34:153–67
    [Google Scholar]
  25. Hanson PI, Whiteheart SW. 2005. AAA+ proteins: have engine, will work. Nat. Rev. Mol. Cell Biol. 6:7519–29
    [Google Scholar]
  26. Kalbfleisch T, Cambon A, Wattenberg BW 2007. A bioinformatics approach to identifying tail-anchored proteins in the human genome. Traffic 8:121687–94
    [Google Scholar]
  27. Kornmann B, Currie E, Collins SR, Schuldiner M, Nunnari J et al. 2009. An ER-mitochondria tethering complex revealed by a synthetic biology screen. Science 325:5939477–81
    [Google Scholar]
  28. Kriechbaumer V, Shaw R, Mukherjee J, Bowsher CG, Harrison A-M, Abell BM 2009. Subcellular distribution of tail-anchored proteins in Arabidopsis. . Traffic 10:121753–64
    [Google Scholar]
  29. Lee J, Kim DH, Hwang I 2014. Specific targeting of proteins to outer envelope membranes of endosymbiotic organelles, chloroplasts, and mitochondria. Front. Plant Sci. 5:173
    [Google Scholar]
  30. Li L, Zheng J, Wu X, Jiang H 2019. Mitochondrial AAA‐ATPase Msp1 detects mislocalized tail‐anchored proteins through a dual‐recognition mechanism. EMBO Rep 20:4e46989
    [Google Scholar]
  31. Losón OC, Song Z, Chen H, Chan DC 2013. Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol. Biol. Cell 24:5659–67
    [Google Scholar]
  32. Mast FD, Rachubinski RA, Aitchison JD 2020. Peroxisome prognostications: exploring the birth, life, and death of an organelle. J. Cell Biol. 219:3e201912100
    [Google Scholar]
  33. Mårtensson CU, Priesnitz C, Song J, Ellenrieder L, Doan KN et al. 2019. Mitochondrial protein translocation-associated degradation. Nature 569:7758679–83
    [Google Scholar]
  34. Matsumoto S, Nakatsukasa K, Kakuta C, Tamura Y, Esaki M, Endo T 2019. Msp1 clears mistargeted proteins by facilitating their transfer from mitochondria to the ER. Mol. Cell 76:1191–205.e10
    [Google Scholar]
  35. Nakai M, Endo T, Hase T, Matsubara H 1993. Intramitochondrial protein sorting. Isolation and characterization of the yeast MSP1 gene which belongs to a novel family of putative ATPases. J. Biol. Chem. 268:3224262–69
    [Google Scholar]
  36. Neupert W, Herrmann JM. 2007. Translocation of proteins into mitochondria. Annu. Rev. Biochem. 76:723–49
    [Google Scholar]
  37. Ogura T, Wilkinson AJ. 2001. AAA+ superfamily ATPases: common structure-diverse function. Genes Cells 6:7575–97
    [Google Scholar]
  38. Okreglak V, Walter P. 2014. The conserved AAA-ATPase Msp1 confers organelle specificity to tail-anchored proteins. PNAS 111:228019–24
    [Google Scholar]
  39. Paupe V, Prudent J, Dassa EP, Rendon OZ, Shoubridge EA 2015. CCDC90A (MCUR1) is a cytochrome c oxidase assembly factor and not a regulator of the mitochondrial calcium uniporter. Cell Metab 21:1109–16
    [Google Scholar]
  40. Pfanner N, Warscheid B, Wiedemann N 2019. Mitochondrial proteins: from biogenesis to functional networks. Nat. Rev. Mol. Cell Biol. 20:5267–84
    [Google Scholar]
  41. Piard J, Umanah GKE, Harms FL, Abalde-Atristain L, Amram D et al. 2018. A homozygous ATAD1 mutation impairs postsynaptic AMPA receptor trafficking and causes a lethal encephalopathy. Brain 141:3651–61
    [Google Scholar]
  42. Puchades C, Ding B, Song A, Wiseman RL, Lander GC, Glynn SE 2019. Unique structural features of the mitochondrial AAA+ protease AFG3L2 reveal the molecular basis for activity in health and disease. Mol. Cell 75:51073–85.e6
    [Google Scholar]
  43. Puchades C, Rampello AJ, Shin M, Giuliano CJ, Wiseman RL et al. 2017. Structure of the mitochondrial inner membrane AAA+ protease YME1 gives insight into substrate processing. Science 358:6363eaao0464
    [Google Scholar]
  44. Puchades C, Sandate CR, Lander GC 2020. The molecular principles governing the activity and functional diversity of AAA+ proteins. Nat. Rev. Mol. Cell Biol. 21:143–58
    [Google Scholar]
  45. Rao M, Okreglak V, Chio US, Cho H, Walter P et al. 2016. Multiple selection filters ensure accurate tail-anchored membrane protein targeting. eLife 5:e21301
    [Google Scholar]
  46. Rodriguez-Aliaga P, Ramirez L, Kim F, Bustamante C, Martin A 2016. Substrate-translocating loops regulate mechanochemical coupling and power production in AAA+ protease ClpXP. Nat. Struct. Mol. Biol. 23:11974–81
    [Google Scholar]
  47. Rogawski MA. 2013. AMPA receptors as a molecular target in epilepsy therapy. Acta Neurol. Scand. Suppl. 127:197918
    [Google Scholar]
  48. Rubio MD, Drummond JB, Meador-Woodruff JH 2012. Glutamate receptor abnormalities in schizophrenia: implications for innovative treatments. Biomol. Ther. 20:11–18
    [Google Scholar]
  49. Sato Y, Shibata H, Nakatsu T, Nakano H, Kashiwayama Y et al. 2010. Structural basis for docking of peroxisomal membrane protein carrier Pex19p onto its receptor Pex3p. EMBO J 29:244083–93
    [Google Scholar]
  50. Schmidt F, Treiber N, Zocher G, Bjelic S, Steinmetz MO et al. 2010. Insights into peroxisome function from the structure of PEX3 in complex with a soluble fragment of PEX19. J. Biol. Chem. 285:3325410–17
    [Google Scholar]
  51. Schuldiner M, Metz J, Schmid V, Denic V, Rakwalska M et al. 2008. The GET complex mediates insertion of tail-anchored proteins into the ER membrane. Cell 134:4634–45
    [Google Scholar]
  52. Sekine S, Youle RJ. 2018. PINK1 import regulation; a fine system to convey mitochondrial stress to the cytosol. BMC Biol 16:2
    [Google Scholar]
  53. Söllner T, Griffiths G, Pfaller R, Pfanner N, Neupert W 1989. MOM19, an import receptor for mitochondrial precursor proteins. Cell 59:61061–70
    [Google Scholar]
  54. Twomey EC, Ji Z, Wales TE, Bodnar NO, Ficarro SB et al. 2019. Substrate processing by the Cdc48 ATPase complex is initiated by ubiquitin unfolding. Science 365:6452eaax1033
    [Google Scholar]
  55. Umanah GKE, Pignatelli M, Yin X, Chen R, Crawford J et al. 2017. Thorase variants are associated with defects in glutamatergic neurotransmission that can be rescued by Perampanel. Sci. Transl. Med. 9:420eaah4985
    [Google Scholar]
  56. Wallin E, Heijne GV. 2008. Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci 7:41029–38
    [Google Scholar]
  57. Wang L, Myasnikov A, Pan X, Walter P 2020. Structure of the AAA protein Msp1 reveals mechanism of mislocalized membrane protein extraction. eLife 9:e54031
    [Google Scholar]
  58. Weidberg H, Amon A. 2018. MitoCPR—a surveillance pathway that protects mitochondria in response to protein import stress. Science 360:6385eaan4146
    [Google Scholar]
  59. Weir NR, Kamber RA, Martenson JS, Denic V 2017. The AAA protein Msp1 mediates clearance of excess tail-anchored proteins from the peroxisomal membrane. eLife 6:e28507
    [Google Scholar]
  60. Wiedemann N, Pfanner N. 2017. Mitochondrial machineries for protein import and assembly. Annu. Rev. Biochem. 86:685–714
    [Google Scholar]
  61. Wohlever ML, Mateja A, McGilvray PT, Day KJ, Keenan RJ 2017. Msp1 is a membrane protein dislocase for tail-anchored proteins. Mol. Cell 67:2194–202.e6
    [Google Scholar]
  62. Zehr E, Szyk A, Piszczek G, Szczesna E, Zuo X, Roll-Mecak A 2017. Katanin spiral and ring structures shed light on power stroke for microtubule severing. Nat. Struct. Mol. Biol. 24:9717–25
    [Google Scholar]
  63. Zhang J, Yang J, Wang H, Sherbini O, Keuss MJ et al. 2011a. The AAA+ ATPase thorase is neuroprotective against ischemic injury. J. Cereb. Blood Flow Metab. 39:91836–48
    [Google Scholar]
  64. Zhang J, Wang Y, Chi Z, Keuss MJ, Pai Y-ME et al. 2011b. The AAA+ ATPase thorase regulates AMPA receptor-dependent synaptic plasticity and behavior. Cell 145:2284–99
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-031220-015840
Loading
/content/journals/10.1146/annurev-cellbio-031220-015840
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error