1932

Abstract

Cilia and mitotic spindles are microtubule (MT)-based, macromolecular machines that consecutively assemble and disassemble during interphase and M phase of the cell cycle, respectively, and play fundamental roles in how eukaryotic cells swim through a fluid, sense their environment, and divide to reproduce themselves. The formation and function of these structures depend on several types of cytoskeletal motors, notably MT-based kinesins and dyneins, supplemented by actin-based myosins, which may function independently or collaboratively during specific steps in the pathway of mitosis or ciliogenesis. System-specific differences in these pathways occur because, instead of conforming to a simple one motor–one function rule, ciliary and mitotic motors can be deployed differently by different cell types. This reflects the well-known influence of natural selection on basic molecular processes, creating diversity at subcellular scales. Here we review our current understanding of motor function and cooperation during the assembly–disassembly, maintenance, and functions of cilia and mitotic spindles.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-121420-100107
2022-10-06
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/38/1/annurev-cellbio-121420-100107.html?itemId=/content/journals/10.1146/annurev-cellbio-121420-100107&mimeType=html&fmt=ahah

Literature Cited

  1. Acar S, Carlson DB, Budamagunta MS, Yarov-Yarovoy V, Correia JJ et al. 2013. The bipolar assembly domain of the mitotic motor kinesin-5. Nat. Commun. 4:1343
    [Google Scholar]
  2. Asbury CL. 2017. Anaphase A: disassembling microtubules move chromosomes toward spindle poles. Biology 6:15
    [Google Scholar]
  3. Barisic M, Rajendraprasad G. 2021. Mitotic poleward flux: finding balance between microtubule dynamics and sliding. BioEssays 43:e2100079
    [Google Scholar]
  4. Barisic M, Silva e Sousa R, Tripathy SK, Magiera MM, Zaytsev AV et al. 2015. Microtubule detyrosination guides chromosomes during mitosis. Science 348:799–803
    [Google Scholar]
  5. Bhogaraju S, Cajanek L, Fort C, Blisnick T, Weber K et al. 2013. Molecular basis of tubulin transport within the cilium by IFT74 and IFT81. Science 341:1009–12
    [Google Scholar]
  6. Blisnick T, Buisson J, Absalon S, Marie A, Cayet N, Bastin P 2014. The intraflagellar transport dynein complex of trypanosomes is made of a heterodimer of dynein heavy chains and of light and intermediate chains of distinct functions. Mol. Biol. Cell 25:2620–33
    [Google Scholar]
  7. Breslow DK, Holland AJ. 2019. Mechanism and regulation of centriole and cilium biogenesis. Annu. Rev. Biochem. 88:691–724
    [Google Scholar]
  8. Brust-Mascher I, Civelekoglu-Scholey G, Kwon M, Mogilner A, Scholey JM. 2004. Model for anaphase B: role of three mitotic motors in a switch from poleward flux to spindle elongation. PNAS 101:15938–43
    [Google Scholar]
  9. Brust-Mascher I, Sommi P, Cheerambathur DK, Scholey JM. 2009. Kinesin-5–dependent poleward flux and spindle length control in Drosophila embryo mitosis. Mol. Biol. Cell 20:1749–62
    [Google Scholar]
  10. Burute M, Kapitein LC. 2019. Cellular logistics: unraveling the interplay between microtubule organization and intracellular transport. Annu. Rev. Cell Dev. Biol. 35:29–54
    [Google Scholar]
  11. Cabernard C, Prehoda KE, Doe CQ. 2010. A spindle-independent cleavage furrow positioning pathway. Nature 467:91–94
    [Google Scholar]
  12. Cane S, Ye AA, Luks-Morgan SJ, Maresca TJ 2013. Elevated polar ejection forces stabilize kinetochore-microtubule attachments. J. Cell Biol. 200:203–18
    [Google Scholar]
  13. Cao M, Ning J, Hernandez-Lara CI, Belzile O, Wang Q et al. 2015. Uni-directional ciliary membrane protein trafficking by a cytoplasmic retrograde IFT motor and ciliary ectosome shedding. eLife 4:e05242
    [Google Scholar]
  14. Carpenter BS, Barry RL, Verhey KJ, Allen BL. 2015. The heterotrimeric kinesin-2 complex interacts with and regulates GLI protein function. J. Cell Sci. 128:1034–50
    [Google Scholar]
  15. Chapa-y-Lazo B, Hamanaka M, Wray A, Balasubramanian MK, Mishima M. 2020. Polar relaxation by dynein-mediated removal of cortical myosin II. J. Cell Biol. 219:e201903080
    [Google Scholar]
  16. Cheerambathur DK, Brust-Mascher I, Civelekoglu-Scholey G, Scholey JM. 2008. Dynamic partitioning of mitotic kinesin-5 cross-linkers between microtubule-bound and freely diffusing states. J. Cell Biol. 182:3429–36
    [Google Scholar]
  17. Chen Y, Hancock WO. 2015. Kinesin-5 is a microtubule polymerase. Nat. Commun. 6:8160
    [Google Scholar]
  18. Chien A, Shih SM, Bower R, Tritschler D, Porter ME, Yildiz A 2017. Dynamics of the IFT machinery at the ciliary tip. eLife 6:e28606
    [Google Scholar]
  19. Civelekoglu-Scholey G, Sharp DJ, Mogilner A, Scholey JM. 2006. Model of chromosome motility in Drosophila embryos: adaptation of a general mechanism for rapid mitosis. Biophys. J. 90:3966–82
    [Google Scholar]
  20. Civelekoglu-Scholey G, Tao L, Brust-Mascher I, Wollman R, Scholey JM. 2010. Prometaphase spindle maintenance by an antagonistic motor-dependent force balance made robust by a disassembling lamin-B envelope. J. Cell Biol. 188:49–68
    [Google Scholar]
  21. Cochran JC, Sindelar CV, Mulko NK, Collins KA, Kong SE et al. 2009. ATPase cycle of the nonmotile kinesin NOD allows microtubule end tracking and drives chromosome movement. Cell 136:110–22
    [Google Scholar]
  22. Cole DG, Chinn SW, Wedaman KP, Hall K, Vuong T, Scholey JM. 1993. Novel heterotrimeric kinesin-related protein purified from sea urchin eggs. Nature 366:268–70
    [Google Scholar]
  23. Cole DG, Diener DR, Himelblau AL, Beech PL, Fuster JC, Rosenbaum JL. 1998. Chlamydomonas kinesin-II–dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons. J. Cell Biol. 141:993–1008
    [Google Scholar]
  24. Craft JM, Harris JA, Hyman S, Kner P, Lechtreck KF. 2015. Tubulin transport by IFT is upregulated during ciliary growth by a cilium-autonomous mechanism. J. Cell Biol. 208:223–37
    [Google Scholar]
  25. Croft JT, Zabeo D, Subramanian R, Hoog JL. 2018. Composition, structure and function of the eukaryotic flagellum distal tip. Essays Biochem. 62:815–28
    [Google Scholar]
  26. Cross RA, McAinsh A. 2014. Prime movers: the mechanochemistry of mitotic kinesins. Nat. Rev. Mol. Cell Biol. 15:257–71
    [Google Scholar]
  27. Cytrynbaum EN, Scholey JM, Mogilner A. 2003. A force balance model of early spindle pole separation in Drosophila embryos. Biophys. J. 84:757–69
    [Google Scholar]
  28. Dai J, Barbieri F, Mitchell DR, Lechtreck KF. 2018. In vivo analysis of outer arm dynein transport reveals cargo-specific intraflagellar transport properties. Mol. Biol. Cell 29:2553–65
    [Google Scholar]
  29. Dalton BA, Oriola D, Decker F, Jülicher F, Brugués J. 2022. A gelation transition enables the self-organization of bipolar metaphase spindles. Nat. Phys. 18:32331 https://doi.org/10.1038/s41567-021-01467-x
    [Crossref] [Google Scholar]
  30. Dawson SC, Sagolla MS, Mancuso JJ, Woessner DJ, House SA et al. 2007. Kinesin-13 regulates flagellar, interphase, and mitotic microtubule dynamics in Giardia intestinalis. Eukaryot. Cell 6:2354–64
    [Google Scholar]
  31. De-Castro ARG, Rodrigues DRM, De-Castro MJG, Vieira N, Vieira C et al. 2022. WDR60-mediated dynein-2 loading into cilia powers retrograde IFT and transition zone crossing. J. Cell Biol. 221:e202010178
    [Google Scholar]
  32. de Keijzer J, Kieft H, Ketelaar T, Goshima G, Janson ME. 2017. Shortening of microtubule overlap regions defines membrane delivery sites during plant cytokinesis. Curr. Biol. 27:514–20
    [Google Scholar]
  33. Decarreau J, Wagenbach M, Lynch E, Halpern AR, Vaughan JC et al. 2017. The tetrameric kinesin Kif25 suppresses pre-mitotic centrosome separation to establish proper spindle orientation. Nat. Cell Biol. 19:384–90
    [Google Scholar]
  34. Derivery E, Seum C, Daeden A, Loubery S, Holtzer L et al. 2015. Polarized endosome dynamics by spindle asymmetry during asymmetric cell division. Nature 528:280–85
    [Google Scholar]
  35. Dishinger JF, Kee HL, Jenkins PM, Fan S, Hurd TW et al. 2010. Ciliary entry of the kinesin-2 motor KIF17 is regulated by importin-β2 and RanGTP. Nat. Cell Biol. 12:703–10
    [Google Scholar]
  36. Douglas RL, Haltiwanger BM, Albisetti A, Wu H, Jeng RL et al. 2020. Trypanosomes have divergent kinesin-2 proteins that function differentially in flagellum biosynthesis and cell viability. J. Cell Sci. 133:jcs129213
    [Google Scholar]
  37. Drechsler H, McAinsh AD. 2012. Exotic mitotic mechanisms. Open Biol 2:120140
    [Google Scholar]
  38. Edelmaier C, Lamson AR, Gergely ZR, Ansari S, Blackwell R et al. 2020. Mechanisms of chromosome biorientation and bipolar spindle assembly analyzed by computational modeling. eLife 9:e48787
    [Google Scholar]
  39. Ems-McClung SC, Emch M, Zhang S, Mahnoor S, Weaver LN, Walczak CE. 2020. RanGTP induces an effector gradient of XCTK2 and importin α/β for spindle microtubule cross-linking. J. Cell Biol. 219:e201906045
    [Google Scholar]
  40. Endow SA, Kang SJ, Satterwhite LL, Rose MD, Skeen VP, Salmon ED. 1994. Yeast Kar3 is a minus-end microtubule motor protein that destabilizes microtubules preferentially at the minus ends. EMBO J. 13:2708–13
    [Google Scholar]
  41. Engelke MF, Waas B, Kearns SE, Suber A, Boss A et al. 2019. Acute inhibition of heterotrimeric kinesin-2 function reveals mechanisms of intraflagellar transport in mammalian cilia. Curr. Biol. 29:1137–48.e4
    [Google Scholar]
  42. Enos AP, Morris NR. 1990. Mutation of a gene that encodes a kinesin-like protein blocks nuclear division in A. nidulans. Cell 60:1019–27
    [Google Scholar]
  43. Evans JE, Snow JJ, Gunnarson AL, Ou G, Stahlberg H et al. 2006. Functional modulation of IFT kinesins extends the sensory repertoire of ciliated neurons in Caenorhabditis elegans. J. Cell Biol. 172:663–69
    [Google Scholar]
  44. Fai TG, Park Y. 2021. Global asymptotic stability of the active disassembly model of flagellar length control. J. Math. Biol. 84:8
    [Google Scholar]
  45. Fink G, Hajdo L, Skowronek KJ, Reuther C, Kasprzak AA, Diez S. 2009. The mitotic kinesin-14 Ncd drives directional microtubule-microtubule sliding. Nat. Cell Biol. 11:717–23
    [Google Scholar]
  46. Fu C, Ward JJ, Loiodice I, Velve-Casquillas G, Nedelec FJ, Tran PT. 2009. Phospho-regulated interaction between kinesin-6 Klp9p and microtubule bundler Ase1p promotes spindle elongation. Dev. Cell 17:257–67
    [Google Scholar]
  47. Funabashi T, Katoh Y, Michisaka S, Terada M, Sugawa M, Nakayama K. 2017. Ciliary entry of KIF17 is dependent on its binding to the IFT-B complex via IFT46-IFT56 as well as on its nuclear localization signal. Mol. Biol. Cell 28:624–33
    [Google Scholar]
  48. Goldstein LS. 1993. Functional redundancy in mitotic force generation. J. Cell Biol. 120:1–3
    [Google Scholar]
  49. Goodman B, Channels W, Qiu M, Iglesias P, Yang G, Zheng Y 2010. Lamin B counteracts the kinesin Eg5 to restrain spindle pole separation during spindle assembly. J. Biol. Chem. 285:35238–44
    [Google Scholar]
  50. Goshima G, Scholey JM. 2010. Control of mitotic spindle length. Annu. Rev. Cell Dev. Biol. 26:21–57
    [Google Scholar]
  51. Goshima G, Wollman R, Stuurman N, Scholey JM, Vale RD. 2005. Length control of the metaphase spindle. Curr. Biol. 15:1979–88
    [Google Scholar]
  52. Grishchuk EL, Molodtsov MI, Ataullakhanov FI, McIntosh JR. 2005. Force production by disassembling microtubules. Nature 438:384–88
    [Google Scholar]
  53. Guardia CM, Farias GG, Jia R, Pu J, Bonifacino JS. 2016. BORC functions upstream of kinesins 1 and 3 to coordinate regional movement of lysosomes along different microtubule tracks. Cell Rep. 17:1950–61
    [Google Scholar]
  54. Hancock WO. 2014. Bidirectional cargo transport: moving beyond tug of war. Nat. Rev. Mol. Cell Biol. 15:615–28
    [Google Scholar]
  55. Hannabuss J, Lera-Ramirez M, Cade NI, Fourniol FJ, Nedelec F, Surrey T. 2019. Self-organization of minimal anaphase spindle midzone bundles. Curr. Biol. 29:2120–30.e7
    [Google Scholar]
  56. Hao L, Thein M, Brust-Mascher I, Civelekoglu-Scholey G, Lu Y et al. 2011. Intraflagellar transport delivers tubulin isotypes to sensory cilium middle and distal segments. Nat. Cell Biol. 13:790–98
    [Google Scholar]
  57. Hata S, Pastor Peidro A, Panic M, Liu P, Atorino E et al. 2019. The balance between KIFC3 and EG5 tetrameric kinesins controls the onset of mitotic spindle assembly. Nat. Cell Biol. 21:1138–51
    [Google Scholar]
  58. He M, Agbu S, Anderson KV. 2017. Microtubule motors drive Hedgehog signaling in primary cilia. Trends Cell Biol. 27:110–25
    [Google Scholar]
  59. He M, Subramanian R, Bangs F, Omelchenko T, Liem KF Jr. et al. 2014. The kinesin-4 protein Kif7 regulates mammalian Hedgehog signalling by organizing the cilium tip compartment. Nat. Cell Biol. 16:663–72
    [Google Scholar]
  60. Heald R, Gibeaux R. 2018. Subcellular scaling: Does size matter for cell division?. Curr. Opin. Cell Biol. 52:88–95
    [Google Scholar]
  61. Hou Y, Witman GB. 2015. Dynein and intraflagellar transport. Exp. Cell. Res. 334:26–34
    [Google Scholar]
  62. Hu Z, Liang Y, Meng D, Wang L, Pan J 2015. Microtubule-depolymerizing kinesins in the regulation of assembly, disassembly, and length of cilia and flagella. Int. Rev. Cell Mol. Biol. 317:241–65
    [Google Scholar]
  63. Huang S, Dougherty LL, Avasthi P. 2020. Separable roles for RanGTP in nuclear and ciliary trafficking of a kinesin-2 subunit. J. Biol. Chem. 296:100117
    [Google Scholar]
  64. Hyman AA, Weber CA, Julicher F. 2014. Liquid-liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 30:39–58
    [Google Scholar]
  65. Inoue S, Salmon ED. 1995. Force generation by microtubule assembly/disassembly in mitosis and related movements. Mol. Biol. Cell 6:1619–40
    [Google Scholar]
  66. Ishikawa H, Marshall WF. 2011. Ciliogenesis: building the cell's antenna. Nat. Rev. Mol. Cell Biol. 12:222–34
    [Google Scholar]
  67. Jana SC, Dutta P, Jain A, Singh A, Adusumilli L et al. 2021. Kinesin-2 transports Orco into the olfactory cilium of Drosophila melanogaster at specific developmental stages. PLoS Genet. 17:e1009752
    [Google Scholar]
  68. Jana SC, Girotra M, Ray K. 2011. Heterotrimeric kinesin-II is necessary and sufficient to promote different stepwise assembly of morphologically distinct bipartite cilia in Drosophila antenna. Mol. Biol. Cell 22:769–81
    [Google Scholar]
  69. Jiang L, Wei Y, Ronquillo CC, Marc RE, Yoder BK et al. 2015. Heterotrimeric kinesin-2 (KIF3) mediates transition zone and axoneme formation of mouse photoreceptors. J. Biol. Chem. 290:12765–78
    [Google Scholar]
  70. Jordan MA, Diener DR, Stepanek L, Pigino G. 2018. The cryo-EM structure of intraflagellar transport trains reveals how dynein is inactivated to ensure unidirectional anterograde movement in cilia. Nat. Cell Biol. 20:1250–55
    [Google Scholar]
  71. Jordan MA, Pigino G. 2021. The structural basis of intraflagellar transport at a glance. J. Cell Sci. 134:jcs.247163
    [Google Scholar]
  72. Kanamaru T, Neuner A, Kurtulmus B, Pereira G. 2022. Balancing the length of the distal tip by septins is key for stability and signalling function of primary cilia. EMBO J. 41:e108843
    [Google Scholar]
  73. Kapitein LC, Peterman EJ, Kwok BH, Kim JH, Kapoor TM, Schmidt CF. 2005. The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks. Nature 435:114–18
    [Google Scholar]
  74. Kapoor TM, Lampson MA, Hergert P, Cameron L, Cimini D et al. 2006. Chromosomes can congress to the metaphase plate before biorientation. Science 311:388–91
    [Google Scholar]
  75. Kasahara K, Inagaki M. 2021. Primary ciliary signaling: links with the cell cycle. Trends Cell Biol. 31:954–64
    [Google Scholar]
  76. Kim S, Lee K, Choi J-H, Ringstad N, Dynlacht BD. 2015. Nek2 activation of Kif24 ensures cilium disassembly during the cell cycle. Nat. Commun. 6:8087
    [Google Scholar]
  77. King SM. 2021. Cytoplasmic factories for axonemal dynein assembly. J. Cell Sci. 134:jcs258626
    [Google Scholar]
  78. Kobayashi T, Tsang WY, Li J, Lane W, Dynlacht BD. 2011. Centriolar kinesin Kif24 interacts with CP110 to remodel microtubules and regulate ciliogenesis. Cell 145:914–25
    [Google Scholar]
  79. Kozminski KG, Johnson KA, Forscher P, Rosenbaum JL. 1993. A motility in the eukaryotic flagellum unrelated to flagellar beating. PNAS 90:5519–23
    [Google Scholar]
  80. Krüger LK, Gélin M, Ji L, Kikuti C, Houdusse A et al. 2021. Kinesin-6 Klp9 orchestrates spindle elongation by regulating microtubule sliding and growth. eLife 10:e67489
    [Google Scholar]
  81. Krüger LK, Tran PT. 2020. Spindle scaling mechanisms. Essays Biochem. 64:383–96
    [Google Scholar]
  82. Laan L, Pavin N, Husson J, Romet-Lemonne G, van Duijn M et al. 2012. Cortical dynein controls microtubule dynamics to generate pulling forces that position microtubule asters. Cell 148:502–14
    [Google Scholar]
  83. Leaf A, Von Zastrow M 2015. Dopamine receptors reveal an essential role of IFT-B, KIF17, and Rab23 in delivering specific receptors to primary cilia. eLife 4:e06996
    [Google Scholar]
  84. Lee S-H, Joo K, Jung EJ, Hong H, Seo J, Kim J. 2018. Export of membrane proteins from the Golgi complex to the primary cilium requires the kinesin motor, KIFC1. FASEB J. 32:957–68
    [Google Scholar]
  85. Li M, He W, Li W, Ou G 2019. Ciliopathy-associated proteins are involved in vesicle distribution in sensory cilia. J. Genet. Genom. 46:269–71
    [Google Scholar]
  86. Li S, Wan KY, Chen W, Tao H, Liang X, Pan J 2020. Functional exploration of heterotrimeric kinesin-II in IFT and ciliary length control in Chlamydomonas. eLife 9:e58868
    [Google Scholar]
  87. Li W, Yi P, Zhu Z, Zhang X, Li W, Ou G. 2017. Centriole translocation and degeneration during ciliogenesis in Caenorhabditis elegans neurons. EMBO J. 36:2553–66
    [Google Scholar]
  88. Liang Y, Pang Y, Wu Q, Hu Z, Han X et al. 2014. FLA8/KIF3B phosphorylation regulates kinesin-II interaction with IFT-B to control IFT entry and turnaround. Dev. Cell 30:585–97
    [Google Scholar]
  89. Liang Y, Zhu X, Wu Q, Pan J. 2018. Ciliary length sensing regulates IFT entry via changes in FLA8/KIF3B phosphorylation to control ciliary assembly. Curr. Biol. 28:2429–35.e3
    [Google Scholar]
  90. Louka P, Vasudevan KK, Guha M, Joachimiak E, Wloga D et al. 2018. Proteins that control the geometry of microtubules at the ends of cilia. J. Cell Biol. 217:4298–313
    [Google Scholar]
  91. Ludington WB, Ishikawa H, Serebrenik YV, Ritter A, Hernandez-Lopez RA et al. 2015. A systematic comparison of mathematical models for inherent measurement of ciliary length: how a cell can measure length and volume. Biophys. J. 108:1361–79
    [Google Scholar]
  92. Maiato H, Gomes AM, Sousa F, Barisic M. 2017. Mechanisms of chromosome congression during mitosis. Biology 6:13
    [Google Scholar]
  93. Mali GR, Ali FA, Lau CK, Begum F, Boulanger J et al. 2021. Shulin packages axonemal outer dynein arms for ciliary targeting. Science 371:910–16
    [Google Scholar]
  94. Marshall WF, Rosenbaum JL. 2001. Intraflagellar transport balances continuous turnover of outer doublet microtubules: implications for flagellar length control. J. Cell Biol. 155:405–14
    [Google Scholar]
  95. McDonald HB, Stewart RJ, Goldstein LS. 1990. The kinesin-like ncd protein of Drosophila is a minus end-directed microtubule motor. Cell 63:1159–65
    [Google Scholar]
  96. McIntosh JR, Molodtsov MI, Ataullakhanov FI. 2012. Biophysics of mitosis. Q. Rev. Biophys. 45:147–207
    [Google Scholar]
  97. McIntosh JR, Volkov V, Ataullakhanov FI, Grishchuk EL. 2010. Tubulin depolymerization may be an ancient biological motor. J. Cell Sci. 123:3425–34
    [Google Scholar]
  98. Mercadante DL, Manning AL, Olson SD. 2021. Modeling reveals cortical dynein-dependent fluctuations in bipolar spindle length. Biophys. J. 120:3192–210
    [Google Scholar]
  99. Mijalkovic J, van Krugten J, Oswald F, Acar S, Peterman EJG. 2018. Single-molecule turnarounds of intraflagellar transport at the C. elegans ciliary tip. Cell Rep. 25:1701–7.e2
    [Google Scholar]
  100. Milic B, Andreasson JOL, Hogan DW, Block SM. 2017. Intraflagellar transport velocity is governed by the number of active KIF17 and KIF3AB motors and their motility properties under load. PNAS 114:E6830–38
    [Google Scholar]
  101. Mitchison TJ. 1989. Polewards microtubule flux in the mitotic spindle: evidence from photoactivation of fluorescence. J. Cell Biol. 109:637–52
    [Google Scholar]
  102. Miyamoto T, Hosoba K, Ochiai H, Royba E, Izumi H et al. 2015. The microtubule-depolymerizing activity of a mitotic kinesin protein KIF2A drives primary cilia disassembly coupled with cell proliferation. Cell Rep. 10:664–73
    [Google Scholar]
  103. Mohamed MAA, Stepp WL, Okten Z. 2018. Reconstitution reveals motor activation for intraflagellar transport. Nature 557:387–91
    [Google Scholar]
  104. Morris RL, Scholey JM. 1997. Heterotrimeric kinesin-II is required for the assembly of motile 9+2 ciliary axonemes on sea urchin embryos. J. Cell Biol. 138:1009–22
    [Google Scholar]
  105. Morthorst SK, Christensen ST, Pedersen LB. 2018. Regulation of ciliary membrane protein trafficking and signalling by kinesin motor proteins. FEBS J. 285:4535–64
    [Google Scholar]
  106. Mukhopadhyay S, Lu Y, Qin H, Lanjuin A, Shaham S, Sengupta P. 2007. Distinct IFT mechanisms contribute to the generation of ciliary structural diversity in C. elegans. EMBO J. 26:2966–80
    [Google Scholar]
  107. Neahring L, Cho NH, Dumont S. 2021. Opposing motors provide mechanical and functional robustness in the human spindle. Dev. Cell 56:3006–18.e5
    [Google Scholar]
  108. Niwa S, Nakajima K, Miki H, Minato Y, Wang D, Hirokawa N 2012. KIF19A is a microtubule-depolymerizing kinesin for ciliary length control. Dev. Cell 23:1167–75
    [Google Scholar]
  109. Ogren A, Parmar S, Mukherjee S, Gonzalez SJ, Plooster M et al. 2022. Kinesin-14 motors participate in a force balance at microtubule plus-ends to regulate dynamic instability. PNAS 119:8e2108046119
    [Google Scholar]
  110. Ou G, Stuurman N, D'Ambrosio M, Vale RD 2010. Polarized myosin produces unequal-size daughters during asymmetric cell division. Science 330:677–80
    [Google Scholar]
  111. Pan X, Ou G, Civelekoglu-Scholey G, Blacque OE, Endres NF et al. 2006. Mechanism of transport of IFT particles in C. elegans cilia by the concerted action of kinesin-II and OSM-3 motors. J. Cell Biol. 174:1035–45
    [Google Scholar]
  112. Pandey H, Popov M, Goldstein-Levitin A, Gheber L. 2021. Mechanisms by which kinesin-5 motors perform their multiple intracellular functions. Int. J. Mol. Sci. 22:6420
    [Google Scholar]
  113. Patel MM, Tsiokas L. 2021. Insights into the regulation of ciliary disassembly. Cells 10:2977
    [Google Scholar]
  114. Pavin N, Tolic IM. 2021. Mechanobiology of the mitotic spindle. Dev. Cell 56:192–201
    [Google Scholar]
  115. Pazour GJ, Dickert BL, Witman GB. 1999. The DHC1b (DHC2) isoform of cytoplasmic dynein is required for flagellar assembly. J. Cell Biol. 144:473–81
    [Google Scholar]
  116. Peden EM, Barr MM. 2005. The KLP-6 kinesin is required for male mating behaviors and polycystin localization in Caenorhabditis elegans. Curr. Biol. 15:394–404
    [Google Scholar]
  117. Piao T, Luo M, Wang L, Guo Y, Li D et al. 2009. A microtubule depolymerizing kinesin functions during both flagellar disassembly and flagellar assembly in Chlamydomonas. PNAS 106:4713–18
    [Google Scholar]
  118. Piperno G, Mead K, Henderson S 1996. Inner dynein arms but not outer dynein arms require the activity of kinesin homologue protein KHP1FLA10 to reach the distal part of flagella in Chlamydomonas. J. Cell Biol. 133:371–79
    [Google Scholar]
  119. Pollard TD, O'Shaughnessy B. 2019. Molecular mechanism of cytokinesis. Annu. Rev. Biochem. 88:661–89
    [Google Scholar]
  120. Pooranachandran N, Malicki JJ. 2016. Unexpected roles for ciliary kinesins and intraflagellar transport proteins. Genetics 203:771–85
    [Google Scholar]
  121. Prevo B, Mangeol P, Oswald F, Scholey JM, Peterman EJ. 2015. Functional differentiation of cooperating kinesin-2 motors orchestrates cargo import and transport in C. elegans cilia. Nat. Cell Biol. 17:1536–45
    [Google Scholar]
  122. Prevo B, Scholey JM, Peterman EJG. 2017. Intraflagellar transport: mechanisms of motor action, cooperation, and cargo delivery. FEBS J. 284:2905–31
    [Google Scholar]
  123. Prosser SL, Pelletier L. 2017. Mitotic spindle assembly in animal cells: a fine balancing act. Nat. Rev. Mol. Cell Biol. 18:187–201
    [Google Scholar]
  124. Raaijmakers JA, Medema RH. 2014. Function and regulation of dynein in mitotic chromosome segregation. Chromosoma 123:407–22
    [Google Scholar]
  125. Rappaport R. 1986. Establishment of the mechanism of cytokinesis in animal cells. Int. Rev. Cytol. 105:245–81
    [Google Scholar]
  126. Razzauti A, Laurent P 2021. Ectocytosis prevents accumulation of ciliary cargo in C. elegans sensory neurons. eLife 10:e67670
    [Google Scholar]
  127. Reilly ML, Benmerah A. 2019. Ciliary kinesins beyond IFT: cilium length, disassembly, cargo transport and signalling. Biol. Cell. 111:79–94
    [Google Scholar]
  128. Rieder CL, Salmon ED. 1994. Motile kinetochores and polar ejection forces dictate chromosome position on the vertebrate mitotic spindle. J. Cell Biol. 124:223–33
    [Google Scholar]
  129. Rogers GC, Rogers SL, Schwimmer TA, Ems-McClung SC, Walczak CE et al. 2004. Two mitotic kinesins cooperate to drive sister chromatid separation during anaphase. Nature 427:364–70
    [Google Scholar]
  130. Rohatgi R, Snell WJ. 2010. The ciliary membrane. Curr. Opin. Cell Biol. 22:541–46
    [Google Scholar]
  131. Rosenbaum JL, Cole DG, Diener DR. 1999. Intraflagellar transport: The eyes have it. J. Cell Biol. 144:385–88
    [Google Scholar]
  132. Rosenblatt J, Cramer LP, Baum B, McGee KM. 2004. Myosin II-dependent cortical movement is required for centrosome separation and positioning during mitotic spindle assembly. Cell 117:361–72
    [Google Scholar]
  133. Sandquist JC, Kita AM, Bement WM. 2011. And the dead shall rise: Actin and myosin return to the spindle. Dev. Cell 21:410–19
    [Google Scholar]
  134. Saunders AM, Powers J, Strome S, Saxton WM. 2007. Kinesin-5 acts as a brake in anaphase spindle elongation. Curr. Biol. 17:R453–54
    [Google Scholar]
  135. Saunders WS, Hoyt MA. 1992. Kinesin-related proteins required for structural integrity of the mitotic spindle. Cell 70:451–58
    [Google Scholar]
  136. Scholey JE, Nithianantham S, Scholey JM, Al-Bassam J 2014. Structural basis for the assembly of the mitotic motor Kinesin-5 into bipolar tetramers. eLife 3:e02217
    [Google Scholar]
  137. Scholey JM. 2013. Kinesin-2: a family of heterotrimeric and homodimeric motors with diverse intracellular transport functions. Annu. Rev. Cell Dev. Biol. 29:443–69
    [Google Scholar]
  138. Scholey JM, Civelekoglu-Scholey G, Brust-Mascher I 2016. Anaphase B. Biology 5:51
    [Google Scholar]
  139. Schwarz N, Lane A, Jovanovic K, Parfitt DA, Aguila M et al. 2017. Arl3 and RP2 regulate the trafficking of ciliary tip kinesins. Hum. Mol. Genet. 26:2480–92
    [Google Scholar]
  140. Schweiggert J, Habeck G, Hess S, Mikus F, Beloshistov R et al. 2021. SCF(Fbxw5) targets kinesin-13 proteins to facilitate ciliogenesis. EMBO J. 40:e107735
    [Google Scholar]
  141. Serra-Marques A, Martin M, Katrukha EA, Grigoriev I, Peeters CA et al. 2020. Concerted action of kinesins KIF5B and KIF13B promotes efficient secretory vesicle transport to microtubule plus ends. eLife 9:e61302
    [Google Scholar]
  142. Sharp DJ, Rogers GC, Scholey JM. 2000a. Cytoplasmic dynein is required for poleward chromosome movement during mitosis in Drosophila embryos. Nat. Cell Biol. 2:922–30
    [Google Scholar]
  143. Sharp DJ, Rogers GC, Scholey JM. 2000b. Microtubule motors in mitosis. Nature 407:41–47
    [Google Scholar]
  144. Sharp DJ, Yu KR, Sisson JC, Sullivan W, Scholey JM. 1999. Antagonistic microtubule-sliding motors position mitotic centrosomes in Drosophila early embryos. Nat. Cell Biol. 1:51–54
    [Google Scholar]
  145. Silverman MA, Leroux MR. 2009. Intraflagellar transport and the generation of dynamic, structurally and functionally diverse cilia. Trends Cell Biol. 19:306–16
    [Google Scholar]
  146. Snow JJ, Ou G, Gunnarson AL, Walker MR, Zhou HM et al. 2004. Two anterograde intraflagellar transport motors cooperate to build sensory cilia on C. elegans neurons. Nat. Cell Biol. 6:1109–13
    [Google Scholar]
  147. So C, Menelaou K, Uraji J, Harasimov K, Steyer AM et al. 2022. Mechanism of spindle pole organization and instability in human oocytes. Science 375:6581eabj3944
    [Google Scholar]
  148. Sonar P, Youyen W, Cleetus A, Wisanpitayakorn P, Mousavi SI et al. 2020. Kinesin-2 from C. reinhardtii is an atypically fast and auto-inhibited motor that is activated by heterotrimerization for intraflagellar transport. Curr. Biol. 30:1160–66.e5
    [Google Scholar]
  149. Steblyanko Y, Rajendraprasad G, Osswald M, Eibes S, Jacome A et al. 2020. Microtubule poleward flux in human cells is driven by the coordinated action of four kinesins. EMBO J. 39:e105432
    [Google Scholar]
  150. Stepanek L, Pigino G. 2016. Microtubule doublets are double-track railways for intraflagellar transport trains. Science 352:721–24
    [Google Scholar]
  151. Stepp WL, Merck G, Mueller-Planitz F, Okten Z. 2017. Kinesin-2 motors adapt their stepping behavior for processive transport on axonemes and microtubules. EMBO Rep. 18:1947–56
    [Google Scholar]
  152. Straight AF, Sedat JW, Murray AW. 1998. Time-lapse microscopy reveals unique roles for kinesins during anaphase in budding yeast. J. Cell Biol. 143:687–94
    [Google Scholar]
  153. Strauss T, Schattner S, Hoth S, Walter WJ. 2021. The Arabidopsis thaliana kinesin-5 AtKRP125b is a processive, microtubule-sliding motor protein with putative plant-specific functions. Int. J. Mol. Sci. 22:11361
    [Google Scholar]
  154. Stumpff J, Wagenbach M, Franck A, Asbury CL, Wordeman L. 2012. Kif18A and chromokinesins confine centromere movements via microtubule growth suppression and spatial control of kinetochore tension. Dev. Cell 22:1017–29
    [Google Scholar]
  155. Su X, Arellano-Santoyo H, Portran D, Gaillard J, Vantard M et al. 2013. Microtubule-sliding activity of a kinesin-8 promotes spindle assembly and spindle-length control. Nat. Cell Biol. 15:948–57
    [Google Scholar]
  156. Sun M, Jia M, Ren H, Yang B, Chi W et al. 2021. NuMA regulates mitotic spindle assembly, structural dynamics and function via phasae separation. Nat. Commun. 12:7157
    [Google Scholar]
  157. Sweeney HL, Holzbaur ELF. 2018. Motor proteins. Cold Spring Harb. Perspect. Biol. 10:a021931
    [Google Scholar]
  158. Tanenbaum ME, Macůrek L, Galjart N, Medema RH. 2008. Dynein, Lis1 and CLIP-170 counteract Eg5-dependent centrosome separation during bipolar spindle assembly. EMBO J. 27:3235–45
    [Google Scholar]
  159. Tanenbaum ME, Macůrek L, Janssen A, Geers EF, Alvarez-Fernández M, Medema RH. 2009. Kif15 cooperates with eg5 to promote bipolar spindle assembly. Curr. Biol. 19:1703–11
    [Google Scholar]
  160. Toropova K, Mladenov M, Roberts AJ. 2017. Intraflagellar transport dynein is autoinhibited by trapping of its mechanical and track-binding elements. Nat. Struct. Mol. Biol. 24:461–68
    [Google Scholar]
  161. Toropova K, Zalyte R, Mukhopadhyay AG, Mladenov M, Carter AP, Roberts AJ. 2019. Structure of the dynein-2 complex and its assembly with intraflagellar transport trains. Nat. Struct. Mol. Biol. 26:823–29
    [Google Scholar]
  162. Vale RD. 2003. The molecular motor toolbox for intracellular transport. Cell 112:467–80
    [Google Scholar]
  163. van Heesbeen RG, Tanenbaum ME, Medema RH. 2014. Balanced activity of three mitotic motors is required for bipolar spindle assembly and chromosome segregation. Cell Rep. 8:948–56
    [Google Scholar]
  164. Varga V, Helenius J, Tanaka K, Hyman AA, Tanaka TU, Howard J. 2006. Yeast kinesin-8 depolymerizes microtubules in a length-dependent manner. Nat. Cell Biol. 8:957–62
    [Google Scholar]
  165. Verma V, Maresca TJ. 2022. A celebration of the 25th anniversary of chromatin-mediated spindle assembly. Mol. Biol. Cell 33:2rt1
    [Google Scholar]
  166. Vukusic K, Ponjavic I, Buda R, Risteski P, Tolic IM. 2021. Microtubule-sliding modules based on kinesins EG5 and PRC1-dependent KIF4A drive human spindle elongation. Dev. Cell 56:1253–67.e10
    [Google Scholar]
  167. Vukusic K, Tolic IM. 2021. Anaphase B: long-standing models meet new concepts. Semin. Cell Dev. Biol. 117:127–39
    [Google Scholar]
  168. Walczak CE, Cai S, Khodjakov A. 2010. Mechanisms of chromosome behaviour during mitosis. Nat. Rev. Mol. Cell Biol. 11:91–102
    [Google Scholar]
  169. Walczak CE, Gayek S, Ohi R. 2013. Microtubule-depolymerizing kinesins. Annu. Rev. Cell Dev. Biol. 29:417–41
    [Google Scholar]
  170. Walczak CE, Vernos I, Mitchison TJ, Karsenti E, Heald R. 1998. A model for the proposed roles of different microtubule-based motor proteins in establishing spindle bipolarity. Curr. Biol. 8:903–13
    [Google Scholar]
  171. Walker RA, Salmon ED, Endow SA. 1990. The Drosophila claret segregation protein is a minus-end directed motor molecule. Nature 347:780–82
    [Google Scholar]
  172. Wang H, Brust-Mascher I, Civelekoglu-Scholey G, Scholey JM. 2013. Patronin mediates a switch from kinesin-13-dependent poleward flux to anaphase B spindle elongation. J. Cell Biol. 203:35–46
    [Google Scholar]
  173. Wang J, Barr MM. 2018. Cell-cell communication via ciliary extracellular vesicles: clues from model systems. Essays Biochem. 62:205–13
    [Google Scholar]
  174. Wang J, Nikonorova IA, Silva M, Walsh JD, Tilton PE et al. 2021. Sensory cilia act as a specialized venue for regulated extracellular vesicle biogenesis and signaling. Curr. Biol. 31:3943–51.e3
    [Google Scholar]
  175. Wang L, Piao T, Cao M, Qin T, Huang L et al. 2013. Flagellar regeneration requires cytoplasmic microtubule depolymerization and kinesin-13. J. Cell Sci. 126:1531–40
    [Google Scholar]
  176. Webb S, Mukhopadhyay AG, Roberts AJ. 2020. Intraflagellar transport trains and motors: insights from structure. Semin. Cell Dev. Biol. 107:82–90
    [Google Scholar]
  177. Wedaman KP, Meyer DW, Rashid DJ, Cole DG, Scholey JM. 1996. Sequence and submolecular localization of the 115-kD accessory subunit of the heterotrimeric kinesin-II (KRP85/95) complex. J. Cell Biol. 132:371–80
    [Google Scholar]
  178. Welburn JP. 2013. The molecular basis for kinesin functional specificity during mitosis. Cytoskeleton 70:476–93
    [Google Scholar]
  179. Wijeratne S, Subramanian R 2018. Geometry of antiparallel microtubule bundles regulates relative sliding and stalling by PRC1 and Kif4A. eLife 7:e32595
    [Google Scholar]
  180. Wingfield JL, Mekonnen B, Mengoni I, Liu P, Jordan M et al. 2021. In vivo imaging shows continued association of several IFT-A, IFT-B and dynein complexes while IFT trains U-turn at the tip. J. Cell Sci. 134:jcs259010
    [Google Scholar]
  181. Woolner S, O'Brien LL, Wiese C, Bement WM. 2008. Myosin-10 and actin filaments are essential for mitotic spindle function. J. Cell Biol. 182:77–88
    [Google Scholar]
  182. Wu C-T, Chen H-Y, Tang TK. 2018. Myosin-Va is required for preciliary vesicle transportation to the mother centriole during ciliogenesis. Nat. Cell Biol. 20:175–85
    [Google Scholar]
  183. Xie C, Li L, Li M, Shao W, Zuo Q et al. 2020. Optimal sidestepping of intraflagellar transport kinesins regulates structure and function of sensory cilia. EMBO J. 39:e103955
    [Google Scholar]
  184. Yi P, Xie C, Ou G. 2018. The kinases male germ cell-associated kinase and cell cycle-related kinase regulate kinesin-2 motility in Caenorhabditis elegans neuronal cilia. Traffic 19:522–35
    [Google Scholar]
  185. Yoshida MW, Yamada M, Goshima G. 2019. Moss Kinesin-14 KCBP accelerates chromatid motility in anaphase. Cell Struct. Funct. 44:95–104
    [Google Scholar]
  186. Yu C-H, Redemann S, Wu H-Y, Kiewisz R, Yoo TY et al. 2019. Central-spindle microtubules are strongly coupled to chromosomes during both anaphase A and anaphase B. Mol. Biol. Cell 30:2503–14
    [Google Scholar]
  187. Yue Y, Engelke MF, Blasius TL, Verhey KJ. 2021. Hedgehog-induced ciliary trafficking of kinesin-4 motor KIF7 requires intraflagellar transport but not KIF7’s microtubule binding. Mol. Biol. Cell 33:1 https://doi.org/10.1091/mbc.E21-04-0215
    [Crossref] [Google Scholar]
  188. Yukawa M, Yamada Y, Yamauchi T, Toda T. 2018. Two spatially distinct kinesin-14 proteins, Pkl1 and Klp2, generate collaborative inward forces against kinesin-5 Cut7 in S. pombe. J. Cell Sci. 131:jcs210740
    [Google Scholar]
  189. Zhang Z, Danné N, Meddens B, Heller I, Peterman EJG. 2021. Direct imaging of intraflagellar-transport turnarounds reveals that motors detach, diffuse, and reattach to opposite-direction trains. PNAS 118:e2115089118
    [Google Scholar]
  190. Zhao Q, Li S, Shao S, Wang Z, Pan J 2020. FLS2 is a CDK-like kinase that directly binds IFT70 and is required for proper ciliary disassembly in Chlamydomonas. PLoS Genet. 16:e1008561
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-121420-100107
Loading
/content/journals/10.1146/annurev-cellbio-121420-100107
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error