1932

Abstract

The world's eastern boundary upwelling systems (EBUSs) contribute disproportionately to global ocean productivity and provide critical ecosystem services to human society. The impact of climate change on EBUSs and the ecosystems they support is thus a subject of considerable interest. Here, we review hypotheses of climate-driven change in the physics, biogeochemistry, and ecology of EBUSs; describe observed changes over recent decades; and present projected changes over the twenty-first century. Similarities in historical and projected change among EBUSs include a trend toward upwelling intensification in poleward regions, mitigatedwarming in near-coastal regions where upwelling intensifies, and enhanced water-column stratification and a shoaling mixed layer. However, there remains significant uncertainty in how EBUSs will evolve with climate change, particularly in how the sometimes competing changes in upwelling intensity, source-water chemistry, and stratification will affect productivity and ecosystem structure. We summarize the commonalities and differences in historical and projected change in EBUSs and conclude with an assessment of key remaining uncertainties and questions. Future studies will need to address these questions to better understand, project, and adapt to climate-driven changes in EBUSs.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-032122-021945
2023-01-16
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/marine/15/1/annurev-marine-032122-021945.html?itemId=/content/journals/10.1146/annurev-marine-032122-021945&mimeType=html&fmt=ahah

Literature Cited

  1. Abrahams A, Schlegel RW, Smit AJ. 2021. Variation and change of upwelling dynamics detected in the world's Eastern Boundary Upwelling Systems. Front. Mar. Sci. 29:626411
    [Google Scholar]
  2. Agostini VN, Bakun A. 2002. ‘Ocean triads’ in the Mediterranean Sea: physical mechanisms potentially structuring reproductive habitat suitability (with example application to European anchovy, Engraulis encrasicolus). Fish. Oceanogr. 11:129–42
    [Google Scholar]
  3. Aguirre C, Rojas M, Garreaud RD, Rahn DA. 2019. Role of synoptic activity on projected changes in upwelling-favourable winds at the ocean's eastern boundaries. NPJ Clim. Atmos. Sci. 2:44
    [Google Scholar]
  4. Arellano B, Rivas D. 2019. Coastal upwelling will intensify along the Baja California coast under climate change by mid-21st century: insights from a GCM-nested physical-NPZD coupled numerical ocean model. J. Mar. Syst. 199:103207
    [Google Scholar]
  5. Arístegui J, Barton ED, Álvarez-Salgado XA, Santos AMP, Figueiras FG et al. 2009. Sub-regional ecosystem variability in the Canary Current upwelling. Prog. Oceanogr. 83:33–48
    [Google Scholar]
  6. Auad G, Miller A, Di Lorenzo E. 2006. Long-term forecast of oceanic conditions off California and their biological implications. J. Geophys. Res. Oceans 111:C09008
    [Google Scholar]
  7. Bakun A. 1990. Global climate change and intensification of coastal ocean upwelling. Science 247:198–201
    [Google Scholar]
  8. Bakun A, Black BA, Bograd SJ, García-Reyes M, Miller AJ et al. 2015. Anticipated effects of climate change on coastal upwelling ecosystems. Curr. Clim. Change Rep. 1:85–93
    [Google Scholar]
  9. Barange M, Bahri T, Beveridge MCM, Cochrane K, Funge-Smith S, Poulain F, eds. 2018. Impacts of climate change on fisheries and aquaculture: synthesis of current knowledge, adaptation and mitigation options Fish. Aquac. Tech. Pap. 627 Food Agric. Organ. UN Rome:
  10. Barceló C, Ciannelli L, Brodeur RD. 2018. Pelagic marine refugia and climatically sensitive areas in an eastern boundary current upwelling system. Glob. Change Biol. 24:668–80
    [Google Scholar]
  11. Barton ED, Field DB, Roy C. 2013. Canary Current upwelling: more or less?. Prog. Oceanogr. 116:167–78
    [Google Scholar]
  12. Belmadani A, Echevin V, Codron F, Takahashi K, Junquas C. 2014. What dynamics drive future wind scenarios for coastal upwelling off Peru and Chile?. Clim. Dyn. 43:1893–914
    [Google Scholar]
  13. Benazzouz A, Demarcq H, González-Nuevo G. 2015. Recent changes and trends of the upwelling intensity in the Canary Current Large Marine Ecosystem. Oceanographic and Biological Features in the Canary Current Large Marine Ecosystem L Valdés, I Déniz-González 321–30 Paris: Intergov. Oceanogr. Comm. UN Educ. Sci. Cult. Organ.
    [Google Scholar]
  14. Bindoff NL, Cheung WWL, Kairo JG, Arístegui J, Guinder VA et al. 2019. Changing ocean, marine ecosystems, and dependent communities. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate H-O Pörtner, DC Roberts, V Masson-Delmotte, P Zhai, M Tignor, et al. 447–587 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  15. Blamey LK, Shannon LJ, Bolton JJ, Crawford RJ, Dufois F et al. 2015. Ecosystem change in the southern Benguela and the underlying processes. J. Mar. Syst. 144:9–29
    [Google Scholar]
  16. Bode A, Álvarez M, Ruíz-Villarreal M, Varela MM. 2019. Changes in phytoplankton production and upwelling intensity off A Coruña (NW Spain) for the last 28 years. Ocean Dyn 69:861–73
    [Google Scholar]
  17. Bograd SJ, Castro CG, Di Lorenzo E, Palacios DM, Bailey H et al. 2008. Oxygen declines and the shoaling of the hypoxic boundary in the California Current. Geophys. Res. Lett. 35:L12607
    [Google Scholar]
  18. Bograd SJ, Checkley DM Jr., Wooster WS. 2003. CalCOFI: a half century of physical, chemical and biological research in the California Current System. Deep-Sea Res. II 50:2349–54
    [Google Scholar]
  19. Bograd SJ, Schroeder ID, Jacox MG. 2019. A water mass history of the Southern California current system. Geophys. Res. Lett. 46:6690–98
    [Google Scholar]
  20. Bograd SJ, Schroeder ID, Sarkar N, Qiu X, Sydeman WJ, Schwing FB. 2009. The phenology of coastal upwelling in the California Current. Geophys. Res. Lett. 36:L01602
    [Google Scholar]
  21. Bonino G, Di Lorenzo E, Masina S, Iovino D. 2019. Interannual to decadal variability within and across the major Eastern Boundary Upwelling Systems. Sci. Rep. 9:19949
    [Google Scholar]
  22. Bonino G, Lovecchio E, Gruber N, Münnich M, Masina S, Iovino D. 2021. Drivers and impact of the seasonal variability of the organic carbon offshore transport in the Canary upwelling system. Biogeosciences 18:2429–48
    [Google Scholar]
  23. Boyer TP, Garcia HE, Locarnini RA, Zweng MM, Mishonov AV et al. 2018. World Ocean Atlas 2018 Data Set, Natl. Cent. Environ. Inf., Natl. Oceanogr. Atmos. Adm. Washington, DC: https://accession.nodc.noaa.gov/NCEI-WOA18
  24. Brady RX, Alexander MA, Lovenduski NS, Rykaczewski RR. 2017. Emergent anthropogenic trends in California Current upwelling. Geophys. Res. Lett. 44:5044–52
    [Google Scholar]
  25. Brauman KA, Garibaldi LA, Polasky S, Aumeeruddy-Thomas Y, Brancalion PH et al. 2020. Global trends in nature's contributions to people. PNAS 117:32799–805
    [Google Scholar]
  26. Carr ME, Kearns EJ. 2003. Production regimes in four Eastern Boundary Current systems. Deep-Sea Res. II 50:3199–221
    [Google Scholar]
  27. Casabella N, Lorenzo MN, Taboada JJ. 2014. Trends of the Galician upwelling in the context of climate change. J. Sea Res. 93:23–27
    [Google Scholar]
  28. Chamorro A, Echevin V, Dutheil C, Tam J, Gutiérrez D, Colas F. 2021. Projection of upwelling-favorable winds in the Peruvian upwelling system under the RCP8.5 scenario using a high-resolution regional model. Clim. Dyn. 57:1–16
    [Google Scholar]
  29. Chan F, Barth JA, Lubchenco J, Kirincich A, Weeks H et al. 2008. Emergence of anoxia in the California Current large marine ecosystem. Science 319:920
    [Google Scholar]
  30. Chavez FP, Messié M. 2009. A comparison of eastern boundary upwelling ecosystems. Prog. Oceanogr. 83:80–96
    [Google Scholar]
  31. Checkley DM Jr., Asch RG, Rykaczewski RR. 2017. Climate, anchovy, and sardine. Annu. Rev. Mar. Sci. 9:469–93
    [Google Scholar]
  32. Checkley DM Jr., Barth JA. 2009. Patterns and processes in the California Current System. Prog. Oceanogr. 83:49–64
    [Google Scholar]
  33. Cheresh J, Fiechter J. 2020. Physical and biogeochemical drivers of alongshore pH and oxygen variability in the California Current System. Geophys. Res. Lett. 47:e2020GL089553
    [Google Scholar]
  34. Cheung WW, Watson R, Pauly D 2013. Signature of ocean warming in global fisheries catch. Nature 497:365–68
    [Google Scholar]
  35. Chevallier A, Stotz W, Ramos M, Mendo J 2021. The Humboldt Current Large Marine Ecosystem (HCLME), a challenging scenario for modelers and their contribution for the manager. Marine Coastal Ecosystems Modelling and Conservation M Ortiz, F Jordán 27–51 Cham, Switz: Springer
    [Google Scholar]
  36. City of Monterey 2022. Cannery row. City of Monterey https://cityofmonterey.oncell.com/en/300-cannery-row-97652.html
    [Google Scholar]
  37. Conejero C, Dewitte B, Garçon V, Sudre J, Montes I. 2020. ENSO diversity driving low-frequency change in mesoscale activity off Peru and Chile. Sci. Rep. 10:17902
    [Google Scholar]
  38. Cordeiro Pires A, Nolasco R, Rocha A, Ramos AM, Dubert J. 2016. Climate change in the Iberian Upwelling System: a numerical study using GCM downscaling. Clim. Dyn. 47:451–64
    [Google Scholar]
  39. Cropper TE, Hanna E, Bigg GR. 2014. Spatial and temporal seasonal trends in coastal upwelling off Northwest Africa, 1981–2012. Deep-Sea Res. I 86:94–111
    [Google Scholar]
  40. Cury PM, Bakun A, Crawford RJM, Jarre A, Quiñones RA et al. 2000. Small pelagics in upwelling systems: patterns of interaction and structural changes in “wasp-waist” ecosystems. ICES J. Mar. Sci. 57:603–18
    [Google Scholar]
  41. Cury PM, Boyd IL, Bonhommeau S, Anker-Nilssen T, Crawford RJ et al. 2011. Global seabird response to forage fish depletion—one-third for the birds. Science 334:1703–6
    [Google Scholar]
  42. Demarcq H. 2009. Trends in primary production, sea surface temperature and wind in upwelling systems (1998–2007). Prog. Oceanogr. 83:376–85
    [Google Scholar]
  43. Dewitte B, Vazquez-Cuervo J, Goubanova K, Illig S, Takahashi K et al. 2012. Change in El Niño flavours over 1958–2008: implications for the long-term trend of the upwelling off Peru. Deep-Sea Res. II 77:143–56
    [Google Scholar]
  44. Ding H, Alexander MA, Jacox MG. 2021. Role of geostrophic currents in future changes of coastal upwelling in the California Current System. Geophys. Res. Lett. 48:e2020GL090768
    [Google Scholar]
  45. Dunn RJH, Stanitski DM, Cobron N, Willett KM, eds. 2018. Global climate. Bull. Am. Meteorol. Soc. 99:S5–68
    [Google Scholar]
  46. Dussin R, Curchitser EN, Stock CA, Van Oostende N. 2019. Biogeochemical drivers of changing hypoxia in the California Current ecosystem. Deep-Sea Res. II 169–70:104590
    [Google Scholar]
  47. Eby LA, Crowder LB, McClellan CM, Peterson CH, Powers MJ. 2005. Habitat degradation from intermittent hypoxia: impacts on demersal fishes. Mar. Ecol. Prog. Ser. 291:249–62
    [Google Scholar]
  48. Echevin V, Gévaudan M, Espinoza-Morriberón D, Tam J, Aumont O et al. 2020. Physical and biogeochemical impacts of RCP8.5 scenario in the Peru upwelling system. Biogeosciences 17:3317–41
    [Google Scholar]
  49. Essington TE, Moriarty PE, Froehlich HE, Hodgson EE, Koehn LE et al. 2015. Fishing amplifies forage fish population collapses. PNAS 112:6648–52
    [Google Scholar]
  50. Fiechter J, Pozo Buil M, Jacox MG, Alexander MA, Rose KA 2021. Projected shifts in 21st century sardine distribution and catch in the California Current. Front. Mar. Sci. 8:685241
    [Google Scholar]
  51. Foreman MGG, Pal B, Merryfield WJ. 2011. Trends in upwelling and downwelling winds along the British Columbia shelf. J. Geophys. Res. Oceans 116:C10023
    [Google Scholar]
  52. Franco AC, Gruber N, Frölicher TL, Kropuenske Artman L. 2018. Contrasting impact of future CO2 emission scenarios on the extent of CaCO3 mineral undersaturation in the Humboldt Current System. J. Geophys. Res. Oceans 123:2018–36
    [Google Scholar]
  53. Fréon P, Arístegui J, Bertrand A, Crawford RJ, Field JC et al. 2009. Functional group biodiversity in Eastern Boundary Upwelling Ecosystems questions the wasp-waist trophic structure. Prog. Oceanogr. 83:97–106
    [Google Scholar]
  54. Fu W, Randerson JT, Moore JK. 2016. Climate change impacts on net primary production (NPP) and export production (EP) regulated by increasing stratification and phytoplankton community structure in the CMIP5 models. Biogeosciences 13:5151–70
    [Google Scholar]
  55. García-Reyes M, Largier J. 2010. Observations of increased wind-driven coastal upwelling off central California. J. Geophys. Res. Oceans 115:C04010
    [Google Scholar]
  56. García-Reyes M, Sydeman WJ, Schoeman DS, Rykaczewski RR, Black BA et al. 2015. Under pressure: climate change, upwelling and eastern boundary upwelling ecosystems. Front. Mar. Sci. 2:109
    [Google Scholar]
  57. Garçon V, Dewitte B, Montes I, Goubanova K 2019. Land-sea-atmosphere interactions exacerbating ocean deoxygenation in Eastern Boundary Upwelling Systems (EBUS). Ocean Deoxygenation: Everyone's Problem D Laffoley, JM Baxter 155–70 Gland, Switz: IUCN
    [Google Scholar]
  58. Garnesson P, Mangin A, Fanton d'Andon O, Demaria J, Bretagnon M. 2019. The CMEMS GlobColour chlorophyll a product based on satellite observation: multi-sensor merging and flagging strategies. Ocean Sci 15:819–30
    [Google Scholar]
  59. Gillett NP, Fyfe JC. 2013. Annular mode changes in the CMIP5 simulations. Geophys. Res. Lett. 40:1189–93
    [Google Scholar]
  60. Gómez-Gesteira M, deCastro M, Álvarez I, Lorenzo MN, Gesteira JLG, Crespo AJC 2008. Spatio-temporal upwelling trends along the Canary upwelling system (1967–2006). Ann. N.Y. Acad. Sci. 1146.320–37
    [Google Scholar]
  61. Goubanova K, Echevin V, Dewitte B, Codron F, Takahashi K. 2011. Statistical downscaling of sea-surface wind over the Peru–Chile upwelling region: diagnosing the impact of climate change from the IPSL-CM4 model. Clim. Dyn. 36:1365–78
    [Google Scholar]
  62. Grados C, Chaigneau A, Echevin V, Dominguez N. 2018. Upper ocean hydrology of the Northern Humboldt Current System at seasonal, interannual and interdecadal scales. Prog. Oceanogr. 165:123–44
    [Google Scholar]
  63. Gutiérrez D, Bouloubassi I, Sifeddine A, Purca S, Goubanova K et al. 2011. Coastal cooling and increased productivity in the main upwelling zone off Peru since the mid-twentieth century. Geophys. Res. Lett. 38:L07603
    [Google Scholar]
  64. Hauri C, Gruber N, Vogt M, Doney SC, Feely RA et al. 2013. Spatiotemporal variability and long-term trends of ocean acidification in the California Current System. Biogeosciences 10:193–216
    [Google Scholar]
  65. Hazen EL, Jorgensen S, Rykaczewski RR, Bograd SJ, Foley DG et al. 2013. Predicted habitat shifts of Pacific top predators in a changing climate. Nat. Clim. Change 3:234–38
    [Google Scholar]
  66. Helly JJ, Levin LA. 2004. Global distribution of naturally occurring marine hypoxia on continental margins. Deep-Sea Res. I 51:1159–68
    [Google Scholar]
  67. Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A et al. 2020. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146:1999–2049
    [Google Scholar]
  68. Howard EM, Frenzel H, Kessouri F, Renault L, Bianchi D et al. 2020. Attributing causes of future climate change in the California Current System with multimodel downscaling. Glob. Biogeochem. Cycles 34:6646
    [Google Scholar]
  69. Hu ZM, Guillemin ML. 2016. Coastal upwelling areas as safe havens during climate warming. J. Biogeogr. 43:2513–14
    [Google Scholar]
  70. Hutchings L, Augustyn CJ, Cockcroft A, Van der Lingen C, Coetzee J et al. 2009a. Marine fisheries monitoring programmes in South Africa. S. Afr. J. Sci. 105:182–92
    [Google Scholar]
  71. Hutchings L, Pitcher GC, Probyn TA, Bailey GW 1995. The chemical and biological consequences of coastal upwelling. Upwelling in the Ocean: Modern Processes and Ancient Records CP Summerhayes, K-C Emeis, MV Angel, RL Smith, B Zeitzschel 65–82 Chichester, UK: Wiley
    [Google Scholar]
  72. Hutchings L, Roberts MR, Verheye HM. 2009b. Marine environmental monitoring programmes in South Africa: a review. S. Afr. J. Sci. 105:94–102
    [Google Scholar]
  73. IPCC (Intergov. Panel Clim. Change) 2014. Climate Change 2014: Impacts, Adaptation and Vulnerability, Vol. 2 Regional Aspects Cambridge, UK: Cambridge Univ. Press
  74. Jacox MG, Bograd SJ, Hazen EL, Fiechter J. 2015. Sensitivity of the California Current nutrient supply to wind, heat, and remote ocean forcing. Geophys. Res. Lett. 42:5950–57
    [Google Scholar]
  75. Jacox MG, Edwards CA. 2011. Effects of stratification and shelf slope on nutrient supply in coastal upwelling regions. J. Geophys. Res. Oceans 116:C03019
    [Google Scholar]
  76. Jacox MG, Edwards CA, Hazen EL, Bograd SJ. 2018. Coastal upwelling revisited: Ekman, Bakun, and improved upwelling indices for the U.S. West Coast. J. Geophys. Res. Oceans 123:7332–50
    [Google Scholar]
  77. Jacox MG, Hazen EL, Bograd SJ. 2016. Optimal environmental conditions and anomalous ecosystem responses: constraining bottom-up controls of phytoplankton biomass in the California Current System. Sci. Rep. 6:27612
    [Google Scholar]
  78. Jacox MG, Moore AM, Edwards CA, Fiechter J. 2014. Spatially resolved upwelling in the California Current System and its connections to climate variability. Geophys. Res. Lett. 41:3189–96
    [Google Scholar]
  79. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D et al. 1996. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77:437–71
    [Google Scholar]
  80. Kämpf J, Chapman P. 2016. Upwelling Systems of the World: A Scientific Journey to the Most Productive Marine Ecosystems Cham, Switz: Springer
  81. Kessouri F, McWilliams JC, Bianchi D, Sutula M, Renault L et al. 2021. Coastal eutrophication drives acidification, oxygen loss, and ecosystem change in a major oceanic upwelling system. PNAS 118:e2018856118
    [Google Scholar]
  82. Lachkar Z. 2014. Effects of upwelling increase on ocean acidification in the California and Canary Current Systems. Geophys. Res. Lett. 41:90–95
    [Google Scholar]
  83. Lamont T, Barlow RG, Kyewalyanga MS. 2014. Physical drivers of phytoplankton production in the southern Benguela upwelling system. Deep-Sea Res. I 90:1–16
    [Google Scholar]
  84. Lamont T, García-Reyes M, Bograd SJ, Van Der Lingen CD, Sydeman WJ. 2018. Upwelling indices for comparative ecosystem studies: variability in the Benguela Upwelling System. J. Mar. Syst. 188:3–16
    [Google Scholar]
  85. Lemos RT, Pires HO. 2004. The upwelling regime off the west Portuguese coast, 1941–2000. Int. J. Climatol. 24:511–24
    [Google Scholar]
  86. Lentz SJ, Chapman DC. 2004. The importance of nonlinear cross-shelf momentum flux during wind-driven coastal upwelling. J. Phys. Oceanogr. 34:2444–57
    [Google Scholar]
  87. Li H, Kanamitsu M, Hong S-Y, Yoshimura K, Cayan DR et al. 2014. Projected climate change scenario over California by a regional ocean-atmosphere coupled model system. Clim. Change 122:609–19
    [Google Scholar]
  88. Li W, Li L, Ting M, Deng Y, Kushnir Y et al. 2013. Intensification of the Southern Hemisphere summertime subtropical anticyclones in a warming climate. Geophys. Res. Lett. 40:5959–64
    [Google Scholar]
  89. Lluch-Cota SE, Hoegh-Guldberg O, Karl D, Pörtner H-O, Sundby S, Gattuso J-P 2014. Uncertain trends in major upwelling ecosystems. Climate Change 2014: Impacts, Adaptation, and Vulnerability, Part A: Global and Sectoral Aspects CB Field, VR Barros, DJ Dokken, KJ Mach, MD Mastrandrea, et al. 149–52 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  90. Lockerbie EM, Shannon LJ. 2019. Toward exploring possible future states of the southern Benguela. Front. Mar. Sci. 6:380
    [Google Scholar]
  91. Lopes JF, Ferreira JA, Cardoso AC, Rocha AC. 2014. Variability of temperature and chlorophyll of the Iberian Peninsula near costal ecosystem during an upwelling event for the present climate and a future climate scenario. J. Mar. Syst. 129:271–88
    [Google Scholar]
  92. Lourenço CR, Zardi GI, McQuaid CD, Serrão EA, Pearson GA et al. 2016. Upwelling areas as climate change refugia for the distribution and genetic diversity of a marine macroalga. J. Biogeogr. 43:1595–607
    [Google Scholar]
  93. Lu J, Vecchi GA, Reichler T. 2007. Expansion of the Hadley cell under global warming. Geophys. Res. Lett. 34:L06805
    [Google Scholar]
  94. Mackas DL, Strub PT, Thomas AC, Montecino V. 2006. Eastern regional ocean boundaries pan-regional overview. The Sea: Ideas and Observations on Progress in the Study of the Seas, Vol. 14 The Global Coastal Ocean: Interdisciplinary Regional Studies and Syntheses AR Robinson, R Brink 21–60 Cambridge, MA: Harvard Univ. Press
    [Google Scholar]
  95. Madigan DJ, Carlisle AB, Dewar H, Snodgrass OE, Litvin SY et al. 2012. Stable isotope analysis challenges wasp-waist food web assumptions in an upwelling pelagic ecosystem. Sci. Rep. 2:654
    [Google Scholar]
  96. Marchesiello P, Estrade P. 2010. Upwelling limitation by onshore geostrophic flow. J. Mar. Res. 68:37–62
    [Google Scholar]
  97. Marshall KN, Kaplan IC, Hodgson EE, Hermann A, Busch DS et al. 2017. Risks of ocean acidification in the California Current food web and fisheries: ecosystem model projections. Glob. Change Biol. 23:1525–39
    [Google Scholar]
  98. McGregor HV, Dima M, Fischer HW, Mulitza S. 2007. Rapid 20th-century increase in coastal upwelling off northwest Africa. Science 315:637–39
    [Google Scholar]
  99. Mignot J, Mejia C, Sorror C, Sylla A, Crépon M, Thiria S. 2020. Towards an objective assessment of climate multi-model ensembles – a case study: the Senegalo-Mauritanian upwelling region. Geosci. Model Dev. 13:2723–42
    [Google Scholar]
  100. Miranda PMA, Alves JMR, Serra N. 2013. Climate change and upwelling: response of Iberian upwelling to atmospheric forcing in a regional climate scenario. Clim. Dyn. 40:2813–24
    [Google Scholar]
  101. Monterey Bay Aquar 2022. About us. Monterey Bay Aquarium. https://www.montereybayaquarium.org/about-us
    [Google Scholar]
  102. Montes I, Schneider W, Colas F, Blanke B. 2011. Subsurface connections in the Eastern Tropical Pacific during La Niña 1999–2001 and El Niño 2002–2003. J. Geophys. Res. Oceans 116:C12022
    [Google Scholar]
  103. Narayan N, Paul A, Mulitza S, Schulz M. 2010. Trends in coastal upwelling intensity during the late 20th century. Ocean Sci 6:815–23
    [Google Scholar]
  104. Oerder V, Colas F, Echevin V, Codron F, Tam J, Belmadani A. 2015. Peru-Chile upwelling dynamics under climate change. J. Geophys. Res. Oceans 120:1152–72
    [Google Scholar]
  105. Ortega-Cisneros K, Cochrane KL, Fulton EA, Gorton R, Popova E. 2018. Evaluating the effects of climate change in the southern Benguela upwelling system using the Atlantis modelling framework. Fish. Oceanogr. 27:489–503
    [Google Scholar]
  106. Oyarzún D, Brierley CM. 2019. The future of coastal upwelling in the Humboldt Current from model projections. Clim. Dyn. 52:599–615
    [Google Scholar]
  107. Pardo P, Padín X, Gilcoto M, Farina-Busto L, Pérez F. 2011. Evolution of upwelling systems coupled to the long term variability in sea surface temperature and Ekman transport. . Clim. Res. 48:231–46
    [Google Scholar]
  108. Parrish RH. 2000. A Monterey sardine story. JB Phillips Hist. Fish. Rep. 1:2–4
    [Google Scholar]
  109. Pauly D, Christensen V 1995. Primary production required to sustain global fisheries. Nature 374:255–57
    [Google Scholar]
  110. Petatán-Ramírez D, Ojeda-Ruiz , Sánchez-Velasco L, Rivas D, Reyes-Bonilla H et al. 2019. Potential changes in the distribution of suitable habitat for Pacific sardine (Sardinops sagax) under climate change scenarios. Deep-Sea Res. II 169:104632
    [Google Scholar]
  111. Pickett MH, Paduan JD. 2003. Ekman transport and pumping in the California Current based on the US Navy's high-resolution atmospheric model (COAMPS). J. Geophys. Res. Oceans 108:3327
    [Google Scholar]
  112. Pikitch EK, Rountos KJ, Essington TE, Santora C, Pauly D et al. 2014. The global contribution of forage fish to marine fisheries and ecosystems. Fish Fish. 15:43–64
    [Google Scholar]
  113. Pinsky ML, Reygondeau G, Caddell R, Palacios-Abrantes J, Spijkers J, Cheung WW. 2018. Preparing ocean governance for species on the move. Science 360:1189–91
    [Google Scholar]
  114. Pitcher GC, Aguirre-Velarde A, Breitburg D, Cardich J, Carstensen J et al. 2021. System controls of coastal and open ocean oxygen depletion. Prog. Oceanogr. 197:102613
    [Google Scholar]
  115. Pozo Buil M, Jacox MJ, Fiechter J, Alexander MA, Bograd SJ et al. 2021. Dynamically downscaled ensemble projections for the California Current System. Front. Mar. Sci. 8:612874
    [Google Scholar]
  116. Reinstedt RA. 1978. Where Have All the Sardines Gone? Carmel, CA: Ghost Town
  117. Rixen T, Lahajnar N, Lamont T, Koppelmann R, Martin B et al. 2021. Oxygen and nutrient trapping in the southern Benguela Upwelling System. Front. . Mar. Sci. 8:730591
    [Google Scholar]
  118. Roemmich D, McGowan J. 1995. Climatic warming and the decline of zooplankton in the California Current. Science 267:1324–26
    [Google Scholar]
  119. Rykaczewski RR, Checkley DM Jr. 2008. Influence of ocean winds on the pelagic ecosystem in upwelling regions. PNAS 105:1965–70
    [Google Scholar]
  120. Rykaczewski RR, Dunne JP 2010. Enhanced nutrient supply to the California Current Ecosystem with global warming and increased stratification in an earth system model. Geophys. Res. Lett. 37:L21606
    [Google Scholar]
  121. Rykaczewski RR, Dunne JP, Sydeman WJ, García-Reyes M, Black BA, Bograd SJ. 2015. Poleward displacement of coastal upwelling-favorable winds in the ocean's eastern boundary currents through the 21st century. Geophys. Res. Lett. 42:6424–31
    [Google Scholar]
  122. SAH (Soc. Archit. Hist.) 2022. Cannery Row. SAH Archipedia. https://sah-archipedia.org/buildings/CA-01-053-0015
    [Google Scholar]
  123. Santora JA, Schroeder ID, Bograd SJ, Chavez FP, Cimino MA et al. 2021. Pelagic biodiversity, ecosystem function, and services. Oceanography 34:216–37
    [Google Scholar]
  124. Santos F, deCastro M, Gómez-Gesteira M, Álvarez I. 2012a. Differences in coastal and oceanic SST warming rates along the Canary upwelling ecosystem from 1982 to 2010. Cont. Shelf Res. 47:1–6
    [Google Scholar]
  125. Santos F, Gómez-Gesteira M, deCastro M, Álvarez I. 2012b. Differences in coastal and oceanic SST trends due to the strengthening of coastal upwelling along the Benguela Current System. Cont. Shelf Res. 34:79–86
    [Google Scholar]
  126. Seabra R, Varela R, Santos AM, Gómez-Gesteira M, Meneghesso C et al. 2019. Reduced nearshore warming associated with eastern boundary upwelling systems. . Front. Mar. Sci. 6:104
    [Google Scholar]
  127. Shannon LJ, Ortega-Cisneros K, Lamont T, Winker H, Crawford R et al. 2020. Exploring temporal variability in the southern Benguela ecosystem over the past four decades using a time-dynamic ecosystem model. Front. Mar. Sci. 7:540
    [Google Scholar]
  128. Shannon LJ, Waller LJ. 2021. A cursory look at the fishmeal/oil industry from an ecosystem perspective. Front. Ecol. Evol. 9:245
    [Google Scholar]
  129. Smith JA, Muhling B, Sweeney J, Tommasi D, Pozo Buil M et al. 2021. The potential impact of a shifting Pacific sardine distribution on US West Coast landings. Fish. Oceanogr. 30:437–54
    [Google Scholar]
  130. Snyder MA, Sloan LC, Diffenbaugh NS, Bell JL. 2003. Future climate change and upwelling in the California Current. Geophys. Res. Lett. 30:1823
    [Google Scholar]
  131. Sousa MC, Álvarez I, deCastro M, Gómez-Gesteira M, Dias JM. 2017a. Seasonality of coastal upwelling trends under future warming scenarios along the southern limit of the Canary upwelling system. Prog. Oceanogr. 153:16–23
    [Google Scholar]
  132. Sousa MC, deCastro M, Álvarez I, Gómez-Gesteira M, Dias JM. 2017b. Why coastal upwelling is expected to increase along the western Iberian Peninsula over the next century?. Sci. Total Environ. 592:243–51
    [Google Scholar]
  133. Sousa MC, Ribeiro A, Des M, Gómez-Gesteira M, deCastro M, Dias JM 2020. NW Iberian Peninsula coastal upwelling future weakening: competition between wind intensification and surface heating. Sci. Total Environ. 703:134808
    [Google Scholar]
  134. Steinbeck J. 1945. Cannery Row New York: Viking
  135. Strub PT, Combes V, Shillington FA, Pizarro O 2013. Currents and processes along the eastern boundaries. Ocean Circulation and Climate: A 21st Century Perspective G Siedler, SM Griffies, J Gould, JA Church 339–84 Oxford, UK: Academic
    [Google Scholar]
  136. Sydeman WJ, García-Reyes M, Schoeman D, Rykaczewski RR, Thompson SA et al. 2014. Climate change and wind intensification in coastal upwelling ecosystems. Science 345:77–80
    [Google Scholar]
  137. Sydeman WJ, Santora JA, Thompson SA, Marinovic B, Di Lorenzo E. 2013. Increasing variance in North Pacific climate relates to unprecedented ecosystem variability off California. Glob. Change Biol. 19:1662–75
    [Google Scholar]
  138. Sylla A, Mignot J, Capet X, Gaye AT. 2019. Weakening of the Senegalo-Mauritanian upwelling system under climate change. Clim. Dyn. 53:4447–73
    [Google Scholar]
  139. Taboada FG, Stock CA, Griffies SM, Dunne J, John JG et al. 2019. Surface winds from atmospheric reanalysis lead to contrasting oceanic forcing and coastal upwelling patterns. Ocean Model. 133:79–111
    [Google Scholar]
  140. Tim N, Zorita E, Hünicke B. 2015. Decadal variability and trends of the Benguela upwelling system as simulated in a high-resolution ocean simulation. Ocean Sci 11:483–502
    [Google Scholar]
  141. Tim N, Zorita E, Hünicke B, Yi X, Emeis KC 2016. The importance of external climate forcing for the variability and trends of coastal upwelling in past and future climate. Ocean Sci 12:807–823
    [Google Scholar]
  142. Ueber E, MacCall A 1992. The rise and fall of the California sardine empire. Climate Variability, Climate Change and Fisheries MH Glantz 31–48 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  143. UN 2016. The First Global Integrated Marine Assessment: World Ocean Assessment I Cambridge, UK: Cambridge Univ. Press
  144. Vaquer-Sunyer R, Duarte CM. 2008. Thresholds of hypoxia for marine biodiversity. PNAS 105:15452–57
    [Google Scholar]
  145. Varela R, Álvarez I, Santos F, Gómez-Gesteira M. 2015. Has upwelling strengthened along worldwide coasts over 1982–2010?. Sci. Rep. 5:10016
    [Google Scholar]
  146. Varela R, Lima FP, Seabra R, Meneghesso C, Gómez-Gesteira M. 2018. Coastal warming and wind-driven upwelling: a global analysis. Sci. Total Environ. 639:1501–11
    [Google Scholar]
  147. Varela R, Rodríguez-Díaz L, deCastro M, Gómez-Gesteira M. 2022. Influence of Canary upwelling system on coastal SST warming along the 21st century using CMIP6 GCMs. Glob. Planet. Change 208:103692
    [Google Scholar]
  148. Wang D, Gouhier TC, Menge BA, Ganguly AR. 2014. Intensification and spatial homogenization of coastal upwelling under climate change. Nature 518:390–94
    [Google Scholar]
  149. Watermeyer KE, Gregr EJ, Rykaczewski RR, Shannon LJ, Suthers IM, Keith DA 2020. Upwelling zones. The IUCN Global Ecosystem Typology 2.0: Descriptive Profiles for Biomes and Ecosystem Functional Groups DA Keith, JR Ferrer-Paris, E Nicholson, RT Kingsford 140 Gland, Switz: IUCN
    [Google Scholar]
  150. Worm B, Hilborn R, Baum JK, Branch TA, Collie JS et al. 2009. Rebuilding global fisheries. Science 325:578–85
    [Google Scholar]
  151. Xiu P, Chai F, Curchitser EN, Castruccio FS. 2018. Future changes in coastal upwelling ecosystems with global warming: the case of the California Current System. Sci. Rep. 8:2866
    [Google Scholar]
  152. Young JW, Hunt BP, Cook TR, Llopiz JK, Hazen EL et al. 2015. The trophodynamics of marine top predators: current knowledge, recent advances and challenges. Deep-Sea Res. II 113:170–87
    [Google Scholar]
/content/journals/10.1146/annurev-marine-032122-021945
Loading
/content/journals/10.1146/annurev-marine-032122-021945
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error