1932

Abstract

The oceanic waters below a depth of 200 m represent, in terms of volume, the largest habitat of the biosphere, harboring approximately 70% of the prokaryotic biomass in the oceanic water column. These waters are characterized by low temperature, increasing hydrostatic pressure, and decreasing organic matter supply with depth. Recent methodological advances in microbial oceanography have refined our view of the ecology of prokaryotes in the dark ocean. Here, we review the ecology of prokaryotes of the dark ocean, present data on the biomass distribution and heterotrophic and chemolithoautotrophic prokaryotic production in the major oceanic basins, and highlight the phylogenetic and functional diversity of this part of the ocean. We describe the connectivity of surface and deep-water prokaryotes and the molecular adaptations of piezophilic prokaryotes to high hydrostatic pressure. We also highlight knowledge gaps in the ecology of the dark ocean's prokaryotes and their role in the biogeochemical cycles in the largest habitat of the biosphere.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-032122-115655
2023-01-16
2024-05-06
Loading full text...

Full text loading...

/deliver/fulltext/marine/15/1/annurev-marine-032122-115655.html?itemId=/content/journals/10.1146/annurev-marine-032122-115655&mimeType=html&fmt=ahah

Literature Cited

  1. Acinas SG, Sánchez P, Salazar G, Cornejo-Castillo FM, Sebastian M et al. 2021. Deep ocean metagenomes provide insight into the metabolic architecture of bathypelagic microbial communities. Commun. Biol. 4:604
    [Google Scholar]
  2. Alonso-Sáez L, Galand PE, Casamayor EO, Pedrós-Alió C, Bertilsson S. 2010. High bicarbonate assimilation in the dark by Arctic bacteria. ISME J 4:1581–90
    [Google Scholar]
  3. Amano C, Zhao Z, Sintes E, Reinthaler T, Stefanschitz J et al. 2022. Influence of hydrostatic pressure on organic carbon cycling of the deep-sea microbiome. bioRxiv 2022.03.31.486587 https://doi.org/10.1101/2022.03.31.486587
    [Google Scholar]
  4. Anantharaman K, Breier JA, Sheik CS, Dick GJ. 2013. Evidence for hydrogen oxidation and metabolic plasticity in widespread deep-sea sulfur-oxidizing bacteria. PNAS 110:330–35
    [Google Scholar]
  5. Antia AN, Koeve W, Fischer G, Blanz T, Schulz-Bull D et al. 2001. Basin-wide particulate carbon flux in the Atlantic Ocean: regional export patterns and potential for atmospheric CO2 sequestration. Glob. Biogeochem. Cycles 15:845–62
    [Google Scholar]
  6. Arístegui J, Duarte CM, Agusti S, Doval M, Alvarez-Salgado XA, Hansell DA 2002. Dissolved organic carbon support of respiration in the dark ocean. Science 298:1967
    [Google Scholar]
  7. Arístegui J, Gasol JM, Duarte CM, Herndl GJ. 2009. Microbial oceanography of the dark ocean's pelagic realm. Limnol. Oceanogr. 54:1501–29
    [Google Scholar]
  8. Aylward FO, Santoro AE 2020. Heterotrophic thaumarchaea with small genomes are widespread in the dark ocean. mSystems 5:e00415–20
    [Google Scholar]
  9. Bach LT, Stange P, Taucher J, Achterberg EP, Algueró-Muñiz M et al. 2019. The influence of plankton community structure on sinking velocity and remineralization rate of marine aggregates. Glob. Biogeochem. Cycles 33:971–94
    [Google Scholar]
  10. Baltar F. 2018. Watch out for the “living dead”: cell-free enzymes and their fate. Front. Microbiol. 8:2438
    [Google Scholar]
  11. Baltar F, Arístegui J, Gasol JM, Herndl GJ. 2010a. Prokaryotic carbon utilization in the dark ocean: growth efficiency, leucine-to-carbon conversion factors, and their relation. Aquat. Microb. Ecol. 60:227–32
    [Google Scholar]
  12. Baltar F, Arístegui J, Gasol JM, Sintes E, Herndl GJ. 2009. Evidence of prokaryotic metabolism on suspended particulate organic matter in the dark waters of the subtropical North Atlantic. Limnol. Oceanogr. 54:182–93
    [Google Scholar]
  13. Baltar F, Arístegui J, Gasol JM, Sintes E, van Aken HM, Herndl GJ. 2010b. High dissolved extracellular enzymatic activity in the deep central Atlantic Ocean. Aquat. Microb. Ecol. 58:287–302
    [Google Scholar]
  14. Baltar F, Arístegui J, Gasol JM, Yokokawa T, Herndl GJ. 2013. Bacterial versus archaeal origin of extracellular enzymatic activity in the northeast Atlantic deep waters. Microb. Ecol. 65:277–88
    [Google Scholar]
  15. Baltar F, Arístegui J, Sintes E, Gasol JM, Reinthaler T, Herndl GJ. 2010c. Significance of non-sinking particulate organic carbon and dark CO2 fixation to heterotrophic carbon demand in the mesopelagic northeast Atlantic. Geophys. Res. Lett. 37:L09602
    [Google Scholar]
  16. Bar-On YM, Phillips R, Milo R 2018. The biomass distribution on Earth. PNAS 115:6506–11
    [Google Scholar]
  17. Bayer B, Hansman RL, Bittner MJ, Noriega-Ortega BE, Niggemann J et al. 2019a. Ammonia-oxidizing archaea release a suite of organic compounds potentially fueling prokaryotic heterotrophy in the ocean. Environ. Microbiol. 21:4062–75
    [Google Scholar]
  18. Bayer B, McBeain K, Carlson CA, Santoro AE. 2022. Carbon content, carbon fixation yield and dissolved organic carbon release from diverse marine nitrifiers. bioRxiv 2022.01.04.474793. https://doi.org/10.1101/2022.01.04.474793
    [Crossref]
  19. Bayer B, Saito MA, McIlvin MR, Lücker S, Moran DM et al. 2021. Metabolic versatility of the nitrite-oxidizing bacterium Nitrospira marina and its proteomic response to oxygen-limited conditions. ISME J 15:1025–39
    [Google Scholar]
  20. Bayer B, Vojvoda J, Offre P, Alves RJE, Elisabeth N et al. 2016. Physiological and genomic characterization of two novel marine thaumarchaeal strains indicates niche differentiation. ISME J 10:1051–63
    [Google Scholar]
  21. Bayer B, Vojvoda J, Reinthaler T, Reyes C, Pinto M, Herndl GJ. 2019b. Nitrosopumilus adriaticus sp. nov. and Nitrosopumilus piranensis sp. nov., two ammonia-oxidizing archaea from the Adriatic Sea and members of the class Nitrososphaeria. Int. J. Syst. Evol. Microbiol. 69:1892–902
    [Google Scholar]
  22. Beman JM, Popp BN, Francis CA. 2008. Molecular and biogeochemical evidence for ammonia oxidation by marine Crenarchaeota in the Gulf of California. ISME J 2:429–441
    [Google Scholar]
  23. Bergauer K, Fernandez-Guerra A, Garcia JAL, Sprenger RR, Stepanauskas R et al. 2018. Organic matter processing by microbial communities throughout the Atlantic water column as revealed by metaproteomics. PNAS 115:E400–8
    [Google Scholar]
  24. Bochdansky AB, van Aken HM, Herndl GJ. 2010. Role of macroscopic particles in deep-sea oxygen consumption. PNAS 107:8287–91
    [Google Scholar]
  25. Boeuf D, Edwards BR, Eppley JM, Hu SK, Poff KE et al. 2019. Biological composition and microbial dynamics of sinking particulate organic matter at abyssal depths in the oligotrophic open ocean. PNAS 116:11824–32
    [Google Scholar]
  26. Boeuf D, Eppley JM, Mende DR, Malmstrom RR, Woyke T, DeLong EF 2021. Metapangenomics reveals depth-dependent shifts in metabolic potential for the ubiquitous marine bacterial SAR324 lineage. Microbiome 9:172
    [Google Scholar]
  27. Bork P, Bowler C, de Vargas C, Gorsky G, Karsenti E, Wincker P 2015. Tara Oceans studies plankton at planetary scale. Science 348:873
    [Google Scholar]
  28. Bosdriesz E, Magnúsdõttir S, Bruggeman FJ, Teusink B, Molenaar D. 2015. Binding proteins enhance specific uptake rate by increasing the substrate-transporter encounter rate. FEBS J. 282:2394–407
    [Google Scholar]
  29. Boyd P, Newton P. 1995. Evidence of the potential influence of planktonic community structure on the interannual variability of particulate organic carbon flux. Deep-Sea Res. I 42:619–39
    [Google Scholar]
  30. Braun A, Spona-Friedl M, Avramov M, Elsner M, Baltar F et al. 2021. Reviews and syntheses: heterotrophic fixation of inorganic carbon – significant but invisible flux in environmental carbon cycling. Biogeosciences 18:3689–700
    [Google Scholar]
  31. Buesseler KO, Lamborg CH, Boyd PW, Lam PJ, Trull TW et al. 2007. Revisiting carbon flux through the ocean's twilight zone. Science 316:567–70
    [Google Scholar]
  32. Burd AB, Hansell DA, Steinberg DK, Anderson TR, Arístegui J et al. 2010. Assessing the apparent imbalance between geochemical and biochemical indicators of meso- and bathypelagic biological activity: What the @$♯! is wrong with present calculations of carbon budgets?. Deep-Sea Res. II 57:1557–71
    [Google Scholar]
  33. Callbeck CM, Canfield DE, Kuypers MMM, Yilmaz P, Lavik G et al. 2021. Sulfur cycling in oceanic oxygen minimum zones. Limnol. Oceanogr. 66:2360–92
    [Google Scholar]
  34. Carini P, Dupont CL, Santoro AE. 2018. Patterns of thaumarchaeal gene expression in culture and diverse marine environments. Environ. Microbiol. 20:2112–24
    [Google Scholar]
  35. Clifford EL, Hansell DA, Varela MM, Nieto-Cid M, Herndl GJ, Sintes E. 2017. Crustacean zooplankton release copious amounts of dissolved organic matter as taurine in the ocean. Limnol. Oceanogr. 62:2745–58
    [Google Scholar]
  36. Cram JA, Chow C-ET, Sachdeva R, Needham DM, Parada AE et al. 2015a. Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. ISME J 9:563–80
    [Google Scholar]
  37. Cram JA, Xia LC, Needham DM, Sachdeva R, Sun F, Fuhrman JA. 2015b. Cross-depth analysis of marine bacterial networks suggests downward propagation of temporal changes. ISME J 9:2573–86
    [Google Scholar]
  38. Crespo BG, Pommier T, Fernández-Gómez B, Pedrós-Alió C. 2013. Taxonomic composition of the particle-attached and free-living bacterial assemblages in the northwest Mediterranean Sea analyzed by pyrosequencing of the 16S rRNA. Microbiol. Open 2:541–52
    [Google Scholar]
  39. Crowther GJ, Kosály G, Lidstrom ME. 2008. Formate as the main branch point for methylotrophic metabolism in Methylobacterium extorquens AM1. J. Bacteriol. 190:5057–62
    [Google Scholar]
  40. Damashek J, Bayer B, Herndl GJ, Wallsgrove NJ, Popp BNet al. 2021. Limited accessibility of nitrogen supplied as amino acids, amides, and amines as energy sources for marine Thaumarchaeota. bioRxiv 2021.07.22.453390. https://doi.org/10.1101/2021.07.22.453390
    [Crossref]
  41. DeLong EF, Preston CM, Mincer T, Rich V, Hallam SJ et al. 2006. Community genomics among stratified microbial assemblages in the ocean's interior. Science 311:496–503
    [Google Scholar]
  42. Duarte CM. 2015. Seafaring in the 21st century: the Malaspina 2010 Circumnavigation Expedition. Limnol. Oceanogr. Bull. 24:11–14
    [Google Scholar]
  43. Ducklow H 2000. Bacterial production and biomass in the oceans. Microbial Ecology of the Oceans DL Kirchman 85–120 New York: Wiley
    [Google Scholar]
  44. Duret MT, Lampitt RS, Lam P. 2019. Prokaryotic niche partitioning between suspended and sinking marine particles. Environ. Microbiol. Rep. 11:386–400
    [Google Scholar]
  45. Eiler A, Hayakawa DH, Church MJ, Karl DM, Rappé MS. 2009. Dynamics of the SAR11 bacterioplankton lineage in relation to environmental conditions in the oligotrophic North Pacific subtropical gyre. Environ. Microbiol. 11:2291–300
    [Google Scholar]
  46. Eloe EA, Malfatti F, Gutierrez J, Hardy K, Schmidt WE et al. 2011a. Isolation and characterization of psychropiezophilic Alphaproteobacterium. Appl. Environ. Microbiol. 77:8145–53
    [Google Scholar]
  47. Eloe EA, Shulse CN, Fadrosh DW, Williamson SJ, Allen EE, Bartlett DH. 2011b. Compositional differences in particle-associated and free-living microbial assemblages from an extreme deep-ocean environment. Environ. Microbiol. Rep. 3:449–58
    [Google Scholar]
  48. Erb TJ. 2011. Carboxylases in natural and synthetic microbial pathways. Appl. Environ. Microbiol. 77:8466–477
    [Google Scholar]
  49. Füssel J, Lücker S, Yilmaz P, Nowka B, van Kessel MAHJ et al. 2017. Adaptability as the key to success for the ubiquitous marine nitrite oxidizer Nitrococcus. Sci. Adv. 3:2–10
    [Google Scholar]
  50. Ghiglione JF, Galand PE, Pommier T, Pedro-Alio C, Maas EW et al. 2012. Pole-to-pole biogeography of surface and deep marine bacterial communities. PNAS 109:17633–38
    [Google Scholar]
  51. Ghiglione JF, Mevel G, Pujo-Pay M, Mousseau L, Lebaron P, Goutx M. 2007. Diel and seasonal variations in abundance, activity, and community structure of particle-attached and free-living bacteria in NW Mediterranean Sea. Microb. Ecol. 54:217–31
    [Google Scholar]
  52. Giering SLC, Evans C. 2022. Overestimation of prokaryotic production by leucine incorporation—and how to avoid it. Limnol. Oceanogr. 67:726–38
    [Google Scholar]
  53. Giering SLC, Sanders R, Lampitt RS, Anderson TR, Tamburini C et al. 2014. Reconciliation of the carbon budget in the ocean's twilight zone. Nature 507:480–83
    [Google Scholar]
  54. Giovannoni SJ. 2017. SAR11 bacteria: the most abundant plankton in the oceans. Annu. Rev. Mar. Sci. 9:231–55
    [Google Scholar]
  55. Guidi L, Chaffron S, Bittner L, Eveillard D, Larhlimi A et al. 2016. Plankton networks driving carbon export in the oligotrophic ocean. Nature 532:465–70
    [Google Scholar]
  56. Hansell DA, Ducklow HW. 2003. Bacterioplankton distribution and production in the bathypelagic ocean: directly coupled to particulate organic carbon export?. Limnol. Oceanogr. 48:150–56
    [Google Scholar]
  57. Hansman RL, Griffin S, Watson JT, Druffel ERM, Ingalls AE et al. 2009. The radiocarbon signature of microorganisms in the mesopelagic ocean. PNAS 106:6513–18
    [Google Scholar]
  58. Herndl GJ, Reinthaler T. 2013. Microbial control of the dark end of the biological pump. Nat. Geosci. 6:718–24
    [Google Scholar]
  59. Herndl GJ, Reinthaler T, Teira E, van Aken H, Veth C et al. 2005. Contribution of Archaea to total prokaryotic production in the deep Atlantic Ocean. Appl. Environ. Microbiol. 71:2303–9
    [Google Scholar]
  60. Hill PG, Warwick PE, Zubkov MV. 2013. Low microbial respiration of leucine at ambient oceanic concentration in the mixed layer of the central Atlantic Ocean. Limnol. Oceanogr. 58:1597–604
    [Google Scholar]
  61. Honjo S, Manganini SJ, Krishfield RA, Francois R. 2008. Particulate organic carbon fluxes to the ocean interior and factors controlling the biological pump: a synthesis of global sediment trap programs since 1983. Prog. Oceanogr. 76:217–85
    [Google Scholar]
  62. Ingalls AE, Shah SR, Hansman RL, Aluwihare LI, Santos GM et al. 2006. Quantifying archaeal community autotrophy in the mesopelagic ocean using natural radiocarbon. PNAS 103:6442–47
    [Google Scholar]
  63. Jannasch HW, Taylor CD. 1984. Deep sea microbiology. Annu. Rev. Microbiol. 38:487–514
    [Google Scholar]
  64. Jebbar M, Franzetti B, Girard E, Oger P. 2015. Microbial diversity and adaptation to high hydrostatic pressure in deep-sea hydrothermal vent prokaryotes. Extremophiles 19:21–40
    [Google Scholar]
  65. Jun X, Lupeng L, Minjuan X, Oger P, Fengping W et al. 2011. Complete genome sequence of the obligate piezophilic hyperthermophilic archeon Pyrococcus yayanosii CH1. J. Bacteriol. 193:4297–98
    [Google Scholar]
  66. Karner MB, DeLong EF, Karl DM. 2001. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409:507–10
    [Google Scholar]
  67. Kepkay PE. 2000. Colloids and the ocean carbon cycle. Handbook of Environmental Chemistry P Wangersky 35–56 Berlin: Springer
    [Google Scholar]
  68. Kessler AJ, Chen YJ, Waite DW, Hutchinson T, Koh S et al. 2019. Bacterial fermentation and respiration processes are uncoupled in anoxic permeable sediments. Nat. Microbiol. 4:1014–23
    [Google Scholar]
  69. Kirchman D, K'Ness E, Hodson R 1985. Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Appl. Environ. Microbiol. 49:599–607
    [Google Scholar]
  70. Kitzinger K, Padilla CC, Marchant HK, Hach PF, Herbold CW et al. 2019. Cyanate and urea are substrates for nitrification by Thaumarchaeota in the marine environment. Nat. Microbiol. 4:234–43
    [Google Scholar]
  71. Koch H, Galushko A, Albertsen M, Schintlmeister A, Gruber-Dorninger C et al. 2014. Growth of nitrite-oxidizing bacteria by aerobic hydrogen oxidation. Science 345:1052–54
    [Google Scholar]
  72. Koch H, Lücker S, Albertsen M, Kitzinger K, Herbold C et al. 2015. Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira. PNAS 112:11371–76
    [Google Scholar]
  73. Könneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA. 2005. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543–46
    [Google Scholar]
  74. Krebs HA. 1941. Carbon dioxide assimilation in heterotrophic organisms. Nature 147:560–63
    [Google Scholar]
  75. Kusube M, Kyaw TS, Tanikawa K, Chastain RA, Hardy KM et al. 2017. Colwellia marinimaniae sp. nov., a hyperpiezophilic species isolated from an amphipod within the Challenger Deep, Mariana Trench. Int. J. Syst. Evol. Microbiol. 67:824–31
    [Google Scholar]
  76. Landa M, Burns AS, Durham BP, Esson K, Nowinski B et al. 2019. Sulfur metabolites that facilitate oceanic phytoplankton–bacteria carbon flux. ISME J 13:2536–50
    [Google Scholar]
  77. Landry Z, Swan BK, Herndl GJ, Stepanauskas R, Giovannoni SJ 2017. SAR202 genomes from the dark ocean predict pathways for the oxidation of recalcitrant dissolved organic matter. mBio 8:00413–17
    [Google Scholar]
  78. Lappan R, Shelley G, Islam ZF, Lueng PM, Lockwood S et al. 2022. Molecular hydrogen is an overlooked energy source for marine bacteria. bioRxiv 2022.01.29.478295. https://doi.org/10.1101/2022.01.29.478295
    [Crossref]
  79. Lauro FM, Bartlett DH. 2008. Prokaryotic lifestyles in deep sea habitats. Extremophiles 12:15–25
    [Google Scholar]
  80. Liu S, Parsons R, Opalk K, Baetge N, Giovannoni SJ et al. 2020. Different carboxyl-rich alicyclic molecules proxy compounds select distinct bacterioplankton for oxidation of dissolved organic matter in the mesopelagic Sargasso Sea. Limnol. Oceanogr. 65:1532–53
    [Google Scholar]
  81. Luo E, Leu AO, Eppley JM, Karl DM, DeLong EF. 2022. Diversity and origins of bacterial and archaeal viruses on sinking particles reaching the abyssal ocean. ISME J. 16:1627–35
    [Google Scholar]
  82. Maas AE, Liu S, Bolaños LM, Widner B, Parsons RJ et al. 2020. Migratory zooplankton excreta and its influence on prokaryotic communities. Front. Mar. Sci. 7:1014
    [Google Scholar]
  83. MacArthur RH, Pianka ER. 1966. On the optimal use of a patchy environment. Am. Nat. 100:603–9
    [Google Scholar]
  84. Malfertheiner L, Martínez-Pérez C, Zhao Z, Herndl GJ, Baltar F. 2022. Phylogeny and metabolic potential of the candidate phylum SAR324. Biology 11:599
    [Google Scholar]
  85. Martin JH, Knauer GA, Karl DM, Broenkow WW. 1987. VERTEX: carbon cycling in the northeast Pacific. Deep-Sea Res. A 34:267–85
    [Google Scholar]
  86. McCollom TM. 2008. Observational, experimental, and theoretical constraints on carbon cycling in mid-ocean ridge hydrothermal systems. Magma to Microbe: Modeling Hydrothermal Processes at Ocean Spreading Centers RP Lowell, JS Seewald, A Metaxas, MR Perfit 193–213 New York: Wiley
    [Google Scholar]
  87. Mestre M, Höfer J, Sala MM, Gasol JM. 2020. Seasonal variation of bacterial diversity along the marine particulate matter continuum. Front. Microbiol. 11:1590
    [Google Scholar]
  88. Mestre M, Ruiz-González C, Logares R, Duarte CM, Gasol JM, Sala MM. 2018. Sinking particles promote vertical connectivity in the ocean microbiome. PNAS 115:E6799–807
    [Google Scholar]
  89. Middelburg JJ. 2011. Chemoautotrophy in the ocean. Geophys. Res. Lett. 38:94–97
    [Google Scholar]
  90. Moore RM, Punshon S, Mahaffey C, Karl DM. 2009. The relationship between dissolved hydrogen and nitrogen fixation in ocean waters. Deep-Sea Res. I 56:1449–58
    [Google Scholar]
  91. Morris MR, Rappé MS, Connon SA, Vergin KL, Siebold WA et al. 2002. SAR11 clade dominates ocean surface bacterioplankton communities. Nature 420:806–10
    [Google Scholar]
  92. Morris RM, Rappé MS, Urbach E, Connon SA, Giovannoni SJ. 2004. Prevalence of the Chloroflexi-related SAR202 bacterioplankton cluster throughout the mesopelagic zone and deep ocean. Appl. Environ. Microbiol. 70:2836–42
    [Google Scholar]
  93. Nagata T, Fukuda H, Fukuda R, Koike I. 2000. Bacterioplankton distribution and production in deep Pacific waters: large-scale geographic variations and possible coupling with sinking particle fluxes. Limnol. Oceanogr. 45:426–35
    [Google Scholar]
  94. Noell SE, Giovannoni SJ. 2019. SAR11 bacteria have a high affinity and multifunctional glycine betaine transporter. Environ. Microbiol. 21:2559–75
    [Google Scholar]
  95. Nogi Y 2017. Microbial life in the deep sea: psychropiezophiles. Psychrophiles: From Biodiversity to Biotechnology R Margesin 133–52 Cham, Switz: Springer
    [Google Scholar]
  96. Norris N, Levine NM, Fernandez VI, Stocker R. 2021. Mechanistic model of nutrient uptake explains dichotomy between marine oligotrophic and copiotrophic bacteria. PLOS Comput. Biol. 17:e1009023
    [Google Scholar]
  97. Oger PM, Jebbar M. 2010. The many ways of coping with pressure. Res. Microbiol. 161:799–809
    [Google Scholar]
  98. Ouverney CC, Fuhrman JA. 2000. Marine planktonic archaea take up amino acids. Appl. Environ. Microbiol. 66:4829–33
    [Google Scholar]
  99. Pachiadaki MG, Sintes E, Bergauer K, Brown JM, Record NR et al. 2017. Major role of nitrite-oxidizing bacteria in dark ocean carbon fixation. Science 1051:1046–51
    [Google Scholar]
  100. Palovaara J, Akram N, Baltar F, Bunse C, Forsberg J et al. 2014. Stimulation of growth by proteorhodopsin phototrophy involves regulation of central metabolic pathways in marine planktonic bacteria. PNAS 111:E3650–58
    [Google Scholar]
  101. Parada AE, Fuhrman JA. 2017. Marine archaeal dynamics and interactions with the microbial community over 5 years from surface to seafloor. ISME J 11:2510–25
    [Google Scholar]
  102. Peoples LM, Kyaw TS, Ugalde JA, Mullane KK, Castain RA et al. 2020. Distinctive gene and protein characteristics of extremely piezophilic Colwellia. BMC Genom. 21:692
    [Google Scholar]
  103. Poff KE, Leu AO, Eppley JM, Karl DM, DeLong EF. 2021. Microbial dynamics of elevated carbon flux in the open ocean's abyss. PNAS 118:e2018269118
    [Google Scholar]
  104. Qin W, Heal KR, Ramdasi R, Kobelt JN, Martens-Habbena W et al. 2017. Nitrosopumilus maritimus gen. nov., sp. nov., Nitrosopumilus cobalaminigenes sp. nov., Nitrosopumilus oxyclinae sp. nov., and Nitrosopumilus ureiphilus sp. nov., four marine ammonia-oxidizing archaea of the phylum Thaumarchaeota. Int. J. Syst. Evol. Microbiol. 67:5067–79
    [Google Scholar]
  105. Reinthaler T, van Aken H, Veth C, Williams PJLB, Aristegui J et al. 2006. Prokaryotic respiration and production in the meso- and bathypelagic realm of the eastern and western North Atlantic basin. Limnol. Oceanogr. 51:1262–73
    [Google Scholar]
  106. Reinthaler T, van Aken HM, Herndl GJ. 2010. Major contribution of autotrophy to microbial carbon cycling in the deep North Atlantic's interior. Deep-Sea Res. II 57:1572–80
    [Google Scholar]
  107. Robinson C. 2019. Microbial respiration, the engine of ocean deoxygenation. Front. Mar. Sci. 5:533
    [Google Scholar]
  108. Robinson C, Steinberg DK, Anderson TR, Aristegui J, Carlson CA et al. 2010. Mesopelagic zone ecology and biogeochemistry – a synthesis. . Deep-Sea Res. II 57:1504–18
    [Google Scholar]
  109. Romero-Kutzner V, Packard T, Berdalet E, Roy S, Gagné J, Gómez M. 2015. Respiration quotient variability: bacterial evidence. Mar. Ecol. Prog. Ser. 519:47–59
    [Google Scholar]
  110. Roslev P, Larsen MB, Jørgensen D, Hesselsoe M. 2004. Use of heterotrophic CO2 assimilation as a measure of metabolic activity in planktonic and sessile bacteria. J. Microbiol. Methods 59:381–93
    [Google Scholar]
  111. Ruiz-González C, Mestre M, Estrada M, Sebastián M, Salazar G et al. 2020. Major imprint of surface plankton on deep ocean prokaryotic structure and activity. Mol. Ecol. 29:1820–38
    [Google Scholar]
  112. Saito MA, McIlvin MR, Moran DM, Santoro AE, Dupont CL et al. 2020. Abundant nitrite-oxidizing metalloenzymes in the mesopelagic zone of the tropical Pacific Ocean. Nat. Geosci. 13:355–62
    [Google Scholar]
  113. Salazar G, Cornejo-Castillo FM, Benítez-Barrios V, Fraile-Nuez E, Alvarez-Salgado XA et al. 2016. Global diversity and biogeography of deep-sea pelagic prokaryotes. ISME J 10:596–608
    [Google Scholar]
  114. Salazar G, Cornejo-Castillo FM, Borrull E, Díez-Vives C, Lara E et al. 2015. Particle-association lifestyle is a phylogenetically conserved trait in bathypelagic prokaryotes. Mol. Ecol. 24:5692–706
    [Google Scholar]
  115. Santoro AE, Richter RA, Dupont CL. 2019. Planktonic marine archaea. Annu. Rev. Mar. Sci. 11:131–58
    [Google Scholar]
  116. Santoro AE, Saito MA, Goepfert TJ, Lamborg CH, Dupont CL, DiTullio GR. 2017. Thaumarchaeal ecotype distributions across the equatorial Pacific Ocean and their potential roles in nitrification and sinking flux attenuation. Limnol. Oceanogr. 62:1984–2003
    [Google Scholar]
  117. Saw JHW, Nunoura T, Hirai M, Takaki Y, Parsons R et al. 2020. Pangenomics analysis reveals diversification of enzyme families and niche specialization in globally abundant SAR202 bacteria. mBio 11:02975–19
    [Google Scholar]
  118. Scoma A. 2021. Functional groups in microbial ecology: updated definitions of piezophiles as suggested by hydrostatic pressure dependence on temperature. ISME J. 15:1871–78
    [Google Scholar]
  119. Sheik CS, Jain S, Dick GJ. 2013. Metabolic flexibility of enigmatic SAR324 revealed through metagenomics and metratranscriptomics. Environ. Microbiol. 16:304–17
    [Google Scholar]
  120. Shiozaki T, Ijichi M, Isobe K, Hashihama F, Nakamura K-I et al. 2016. Nitrification and its influence on biogeochemical cycles from the equatorial Pacific to the Arctic Ocean. ISME J 10:2184–97
    [Google Scholar]
  121. Simon M, Azam F. 1989. Protein content and protein synthesis rates of planktonic marine bacteria. Mar. Ecol. Prog. Ser. 51:201–13
    [Google Scholar]
  122. Smith DC, Azam F. 1992. A simple, economical method for measuring bacterial protein synthesis rates in seawater using 3H-leucine. Mar. Microb. Food Webs 6:107–14
    [Google Scholar]
  123. Sorokin JI. 1966. On the carbon dioxide uptake during cell synthesis by microorganisms. Z. Allg. Mikrobiol. 6:69–73
    [Google Scholar]
  124. Sowell SM, Wilhelm LJ, Norbeck AD, Lipton MS, Nicora CD et al. 2009. Transport functions dominate the SAR11 metaproteome at low-nutrient extremes in the Sargasso Sea. ISME J. 3:93–105
    [Google Scholar]
  125. Stegen JC, Lin X, Konopka AE, Fredrickson JK. 2012. Stochastic and deterministic assembly processes in subsurface microbial communities. ISME J. 6:1653–64
    [Google Scholar]
  126. Steinberg DK, Goldthwait SA, Hansell DA. 2002. Zooplankton vertical migration and the active transport of dissolved organic and inorganic nitrogen in the Sargasso Sea. Deep-Sea Res. I 49:1445–61
    [Google Scholar]
  127. Steinberg DK, Van Mooy BAS, Buesseler KO, Boyd PW, Kobari T, Karl DM. 2008. Bacterial vs. zooplankton control of sinking particle flux in the ocean's twilight zone. Limnol. Oceanogr. 53:1327–38
    [Google Scholar]
  128. Stief P, Elvert M, Glud RN. 2021. Respiration by “marine snow” at high hydrostatic pressure: insights from continuous oxygen measurements in a rotating pressure tank. Limnol. Oceanogr. 66:2797–809
    [Google Scholar]
  129. Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K et al. 2015. Structure and function of the global ocean microbiome. Science 348:1261359
    [Google Scholar]
  130. Swan BK, Martinez-Garcia M, Preston CM, Sczyrba A, Woyke T et al. 2011. Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean. Science 333:1296–300
    [Google Scholar]
  131. Tamburini C, Boutrif M, Garel M, Colwell RR, Deming JW. 2013. Prokaryotic response to hydrostatic pressure in the ocean – a review. Environ. Microbiol. 15:1262–74
    [Google Scholar]
  132. Teira E, Hernando-Morales V, Cornejo-Castillo FM, Alonso-Saez L, Sarmento H et al. 2015. Sample dilution and bacterial community composition influence empirical leucine-to-carbon conversion factors in surface waters of the world's oceans. Appl. Environ. Microbiol. 81:8224–32
    [Google Scholar]
  133. Teira E, van Aken HM, Veth C, Herndl GJ. 2006. Archaeal uptake of enantiomeric amino acids in the meso-and bathypelagic waters of the North Atlantic. Limnol. Oceanogr. 51:60–69
    [Google Scholar]
  134. Thrash CJ, Temperton B, Swan BK, Landry ZC, Woyke T et al. 2014. Single-cell enabled comparative genomics of a deep ocean SAR11 bathytype. ISME J 8:1440–51
    [Google Scholar]
  135. Tutasi P, Escribano R. 2020. Zooplankton diel vertical migration and downward C flux into the oxygen minimum zone in the highly productive upwelling region off northern Chile. Biogeosciences 17:455–73
    [Google Scholar]
  136. Uchimiya M, Fukuda H, Wakita M, Kitamura M, Kawakami H et al. 2018. Balancing organic carbon supply and consumption in the ocean's interior: evidence from repeated biogeochemical observations conducted in the subarctic and subtropical western North Pacific. Limnol. Oceanogr. 63:2015–27
    [Google Scholar]
  137. Varela MM, van Aken HM, Herndl GJ. 2008. Abundance and activity of Chloroflexi-type SAR202 bacterioplankton in the meso- and bathypelagic waters of the (sub)tropical Atlantic. Environ. Microbiol. 10:1903–11
    [Google Scholar]
  138. Verdugo P, Alldredge AL, Azam F, Kirchman DL, Passow U, Santschi PH. 2004. The oceanic gel phase: a bridge in the DOM–POM continuum. Mar. Chem. 92:67–85
    [Google Scholar]
  139. Ward BB 2011. Nitrification in the ocean. Nitrification BB Ward, DJ Arp, MG Klotz 325–46 Washington, DC: ASM Press
    [Google Scholar]
  140. Wenley J, Currie K, Lockwood S, Thomson B, Baltar F, Morales SE. 2021. Seasonal prokaryotic community linkages between surface and deep ocean water. Front. Mar. Sci. 8:777
    [Google Scholar]
  141. Wuchter C, Schouten S, Boschker HT, Sinninghe Damste JS 2003. Bicarbonate uptake by marine Crenarchaeota. FEMS Microbiol. Lett. 219:203–7
    [Google Scholar]
  142. Xie H, Zafiriou OC, Umile TP, Kieber DJ. 2005. Biological consumption of carbon monoxide in Delaware Bay, NW Atlantic and Beaufort Sea. Mar. Ecol. Prog. Ser. 290:1–14
    [Google Scholar]
  143. Yang S, Matsen JB, Konopka M, Green-Saxena A, Clubb J et al. 2013. Global molecular analyses of methane metabolism in methanotrophic alphaproteobacterium, Methylosinus trichosporium OB3b. Part II. Metabolomics and 13C-labeling study. Front. Microbiol. 4:70
    [Google Scholar]
  144. Yayanos AA 1986. Evolutional and ecological implications of the properties of deep-sea barophilic bacteria. PNAS 83:9542–46
    [Google Scholar]
  145. Yokokawa T, Yang Y, Motegi C, Nagata T. 2013. Large-scale geographical variation in prokaryotic abundance and production in meso- and bathypelagic zones of the central Pacific and Southern Ocean. Limnol. Oceanogr. 58:61–73
    [Google Scholar]
  146. Zhang Y, Qin W, Hou L, Zhao Z, Qin W et al. 2020. Nitrifier adaptation to low energy flux controls inventory of reduced nitrogen in the dark ocean. PNAS 117:4823–30
    [Google Scholar]
  147. Zhao Z, Baltar F, Herndl GJ. 2020. Linking extracellular enzymes to phylogeny indicates a predominantly particle-associated lifestyle of deep-sea prokaryotes. Sci. Adv. 6:eaaz4354
    [Google Scholar]
/content/journals/10.1146/annurev-marine-032122-115655
Loading
/content/journals/10.1146/annurev-marine-032122-115655
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error