1932

Abstract

The micronutrient iron plays a major role in setting the magnitude and distribution of primary production across the global ocean. As such, an understanding of the sources, sinks, and internal cycling processes that drive the oceanic distribution of iron is key to unlocking iron's role in the global carbon cycle and climate, both today and in the geologic past. Iron isotopic analyses of seawater have emerged as a transformative tool for diagnosing iron sources to the ocean and tracing biogeochemical processes. In this review, we summarize the end-member isotope signatures of different iron source fluxes and highlight the novel insights into iron provenance gained using this tracer. We also review ways in which iron isotope fractionation might be used to understand internal oceanic cycling of iron, including speciation changes, biological uptake, and particle scavenging. We conclude with an overview of future research needed to expand the utilization of this cutting-edge tracer.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-032822-103431
2023-01-16
2024-05-03
Loading full text...

Full text loading...

/deliver/fulltext/marine/15/1/annurev-marine-032822-103431.html?itemId=/content/journals/10.1146/annurev-marine-032822-103431&mimeType=html&fmt=ahah

Literature Cited

  1. Abadie C, Lacan F, Radic A, Pradoux C, Poitrasson F. 2017. Iron isotopes reveal distinct dissolved iron sources and pathways in the intermediate versus deep Southern Ocean. PNAS 114:858–63
    [Google Scholar]
  2. Akerman A, Poitrasson F, Oliva P, Audry S, Prunier J, Braun J-J 2014. The isotopic fingerprint of Fe cycling in an equatorial soil–plant–water system: the Nsimi watershed, South Cameroon. Chem. Geol. 385:104–16
    [Google Scholar]
  3. Anderson RF. 2020. GEOTRACES: accelerating research on the marine biogeochemical cycles of trace elements and their isotopes. Annu. Rev. Mar. Sci. 12:49–85
    [Google Scholar]
  4. Anderson RF, Mawji E, Cutter GA, Measures CI, Jeandel C. 2014. GEOTRACES: changing the way we explore ocean chemistry. Oceanography 27:150–61
    [Google Scholar]
  5. Beard BL, Handler RM, Scherer MM, Wu L, Czaja AD et al. 2010. Iron isotope fractionation between aqueous ferrous iron and goethite. Earth Planet. Sci. Lett. 295:241–50
    [Google Scholar]
  6. Beard BL, Johnson CM. 1999. High precision iron isotope measurements of terrestrial and lunar materials. Geochim. Cosmochim. Acta 63:1653–60
    [Google Scholar]
  7. Beard BL, Johnson CM, Cox L, Sun H, Nealson KH, Aguilar C 1999. Iron isotope biosignatures. Science 285:1889–92
    [Google Scholar]
  8. Beard BL, Johnson CM, Von Damm KL, Poulson RL. 2003. Iron isotope constraints on Fe cycling and mass balance in oxygenated Earth oceans. Geology 31:629–32
    [Google Scholar]
  9. Bennett SA, Rouxel O, Schmidt K, Garbe-Schonberg D, Statham PJ, German CR. 2009. Iron isotope fractionation in a buoyant hydrothermal plume, 5°S Mid-Atlantic Ridge. Geochim. Cosmochim. Acta 73:5619–34
    [Google Scholar]
  10. Bergquist BA, Boyle EA. 2006a. Dissolved iron in the tropical and subtropical Atlantic Ocean. Glob. Biogeochem. Cycles 20:14
    [Google Scholar]
  11. Bergquist BA, Boyle EA. 2006b. Iron isotopes in the Amazon River system: weathering and transport signatures. Earth Planet. Sci. Lett. 248:54–68
    [Google Scholar]
  12. Boyle EA, Edmond JM, Sholkovitz ER. 1977. The mechanism of iron removal in estuaries. Geochim. Cosmochim. Acta 41:1313–24
    [Google Scholar]
  13. Boyle EA, John S, Abouchami W, Adkins JF, Echegoyen-Sanz Y et al. 2012. GEOTRACES IC1 (BATS) contamination-prone trace element isotopes Cd, Fe, Pb, Zn, Cu, and Mo intercalibration. Limnol. Oceanogr. Methods 10:653–65
    [Google Scholar]
  14. Bullen TD, White AF, Childs CW, Vivit DV, Schulz MS. 2001. Demonstration of significant abiotic iron isotope fractionation in nature. Geology 29:699–702
    [Google Scholar]
  15. Butler IB, Archer C, Vance D, Oldroyd A, Rickard D. 2005. Fe isotope fractionation on FeS formation in ambient aqueous solution. Earth Planet. Sci. Lett. 236:430–42
    [Google Scholar]
  16. Charette MA, Kipp LE, Jensen LT, Dabrowski JS, Whitmore LM et al. 2020. The Transpolar Drift as a source of riverine and shelf-derived trace elements to the central Arctic Ocean. J. Geophys. Res. Oceans 125:e2019JC015920
    [Google Scholar]
  17. Chen J-B, Busigny V, Gaillardet J, Louvat P, Wang Y-N. 2014. Iron isotopes in the Seine River (France): natural versus anthropogenic sources. Geochim. Cosmochim. Acta 128:128–43
    [Google Scholar]
  18. Chever F, Rouxel OJ, Croot PL, Ponzevera E, Wuttig K, Auro M. 2015. Total dissolvable and dissolved iron isotopes in the water column of the Peru upwelling regime. Geochim. Cosmochim. Acta 162:66–82
    [Google Scholar]
  19. Chu NC, Johnson CM, Beard BL, German CR, Nesbitt RW et al. 2006. Evidence for hydrothermal venting in Fe isotope compositions of the deep Pacific Ocean through time. Earth Planet. Sci. Lett. 245:202–17
    [Google Scholar]
  20. Conway TM, Hamilton DS, Shelley RU, Aguilar-Islas AM, Landing WM et al. 2019. Tracing and constraining anthropogenic aerosol iron fluxes to the North Atlantic Ocean using iron isotopes. Nat. Commun. 10:2628
    [Google Scholar]
  21. Conway TM, Horner TJ, Plancherel Y, González AG. 2021. A decade of progress in understanding cycles of trace elements and their isotopes in the oceans. Chem. Geol. 580:120381
    [Google Scholar]
  22. Conway TM, John SG. 2014. Quantification of dissolved iron sources to the North Atlantic Ocean. Nature 511:212–15
    [Google Scholar]
  23. Conway TM, John SG. 2015. The cycling of iron, zinc and cadmium in the North East Pacific Ocean – insights from stable isotopes. Geochim. Cosmochim. Acta 164:262–83
    [Google Scholar]
  24. Conway TM, John SG, Lacan F. 2016. Intercomparison of dissolved iron isotope profiles from re-occupation of three GEOTRACES stations in the Atlantic Ocean. Mar. Chem. 183:50–61
    [Google Scholar]
  25. Conway TM, Rosenberg AD, Adkins JF, John SG. 2013. A new method for precise determination of iron, zinc, and cadmium stable isotope ratios in seawater by double-spike mass spectrometry. Anal. Chim. Acta 793:44–52
    [Google Scholar]
  26. Crosby HA, Johnson CM, Roden EE, Beard BL. 2005. Coupled Fe(II)-Fe(III) electron and atom exchange as a mechanism for Fe isotope fractionation during dissimilatory iron oxide reduction. Environ. Sci. Technol. 39:6698–704
    [Google Scholar]
  27. Crosby HA, Roden EE, Johnson CM, Beard BL. 2007. The mechanisms of iron isotope fractionation produced during dissimilatory Fe(III) reduction by Shewanella putrefaciens and Geobacter sulfurreducens. Geobiology 5:169–89
    [Google Scholar]
  28. Dale AW, Nickelsen L, Scholz F, Hensen C, Oschlies A, Wallmann K. 2015. A revised global estimate of dissolved iron fluxes from marine sediments. Glob. Biogeochem. Cycles 29:691–707
    [Google Scholar]
  29. Dauphas N, John SG, Rouxel O. 2017. Iron isotope systematics. Rev. Mineral. Geochem. 82:415–510
    [Google Scholar]
  30. de Jong J, Schoemann V, Tison JL, Becquevort S, Masson F et al. 2007. Precise measurement of Fe isotopes in marine samples by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). Anal. Chim. Acta 589:105–19
    [Google Scholar]
  31. Dideriksen K, Baker JA, Stipp SLS. 2008. Equilibrium Fe isotope fractionation between inorganic aqueous Fe(III) and the siderophore complex, Fe(III)-desferrioxamine B. Earth Planet. Sci. Lett. 269:280–90
    [Google Scholar]
  32. Dunlea AG, Tegler LA, Peucker-Ehrenbrink B, Anbar AD, Romaniello SJ, Horner TJ. 2021. Pelagic clays as archives of marine iron isotope chemistry. Chem. Geol. 575:120201
    [Google Scholar]
  33. Ellwood MJ, Hutchins DA, Lohan MC, Milne A, Nasemann P et al. 2015. Iron stable isotopes track pelagic iron cycling during a subtropical phytoplankton bloom. PNAS 112:E15–20
    [Google Scholar]
  34. Ellwood MJ, Strzepek RF, Strutton PG, Trull TW, Fourquez M, Boyd PW. 2020. Distinct iron cycling in a Southern Ocean eddy. Nat. Commun. 11:825
    [Google Scholar]
  35. Elrod VA, Berelson WM, Coale KH, Johnson KS. 2004. The flux of iron from continental shelf sediments: a missing source for global budgets. Geophys. Res. Lett. 31:L12307
    [Google Scholar]
  36. Escoube R, Rouxel OJ, Pokrovsky OS, Schroth A, Holmes RM, Donard OF. 2015. Iron isotope systematics in Arctic rivers. C. R. Geosci. 347:377–85
    [Google Scholar]
  37. Escoube R, Rouxel OJ, Sholkovitz E, Donard OFX. 2009. Iron isotope systematics in estuaries: the case of North River, Massachusetts (USA). Geochim. Cosmochim. Acta 73:4045–59
    [Google Scholar]
  38. Fantle MS, DePaolo DJ. 2004. Iron isotopic fractionation during continental weathering. Earth Planet. Sci. Lett. 228:547–62
    [Google Scholar]
  39. Fitzsimmons JN, Boyle EA. 2014. Assessment and comparison of Anopore and cross flow filtration methods for the determination of dissolved iron size fractionation into soluble and colloidal phases in seawater. Limnol. Oceanogr. Methods 12:244–61
    [Google Scholar]
  40. Fitzsimmons JN, Carrasco GG, Wu J, Roshan S, Hatta M et al. 2015. Partitioning of dissolved iron and iron isotopes into soluble and colloidal phases along the GA03 GEOTRACES North Atlantic Transect. Deep-Sea Res. II 116:130–51
    [Google Scholar]
  41. Fitzsimmons JN, Conway TM, Lee J-M, Kayser R, Thyng KM et al. 2016. Dissolved iron and iron isotopes in the southeastern Pacific Ocean. Glob. Biogeochem. Cycles 30:1372–95
    [Google Scholar]
  42. Fitzsimmons JN, Jenkins WJ, Boyle EA. 2014. Distal transport of dissolved hydrothermal iron in the deep South Pacific Ocean. PNAS 111:16654–61
    [Google Scholar]
  43. Fitzsimmons JN, John SG, Marsay CM, Hoffman CL, Nicholas SL et al. 2017. Iron persistence in a distal hydrothermal plume supported by dissolved–particulate exchange. Nat. Geosci. 10:195
    [Google Scholar]
  44. Frierdich AJ, Beard BL, Reddy TR, Scherer MM, Johnson CM. 2014. Iron isotope fractionation between aqueous Fe(II) and goethite revisited: new insights based on a multi-direction approach to equilibrium and isotopic exchange rate modification. Geochim. Cosmochim. Acta 139:383–98
    [Google Scholar]
  45. Froelich PN, Klinkhammer G, Bender ML, Luedtke N, Heath GR et al. 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim. Cosmochim. Acta 43:1075–90
    [Google Scholar]
  46. Gartman A, Findlay AJ, Luther GW III 2014. Nanoparticulate pyrite and other nanoparticles are a widespread component of hydrothermal vent black smoker emissions. Chem. Geol. 366:32–41
    [Google Scholar]
  47. GEOTRACES Group. 2006. GEOTRACES Science Plan Baltimore, MD: Sci. Comm. Ocean. Res.
  48. GEOTRACES Int. Data Prod. Group. 2021. The GEOTRACES Intermediate Data Product 2021 (IDP2021) Data Set, Br. Oceanogr. Data Cent. Liverpool, UK: https://doi.org/10.5285/cf2d9ba9-d51d-3b7c-e053-8486abc0f5fd
    [Crossref]
  49. German CR, Seyfried WE 2014. Hydrothermal processes. Treatise on Geochemistry HD Holland, KK Turekian 191–233 Oxford, UK: Elsevier. , 2nd ed..
    [Google Scholar]
  50. Gledhill M, Buck KN. 2012. The organic complexation of iron in the marine environment: a review. Front. Microbiol. 3:69
    [Google Scholar]
  51. Gong Y, Xia Y, Huang F, Yu H. 2017. Average iron isotopic compositions of the upper continental crust: constrained by loess from the Chinese Loess Plateau. Acta Geochim. 36:125–31
    [Google Scholar]
  52. Hamilton DS, Perron MMG, Bond TC, Bowie AR, Buchholz RR et al. 2022. Earth, wind, fire, and pollution: aerosol nutrient sources and impacts on ocean biogeochemistry. Annu. Rev. Mar. Sci. 14:303–30
    [Google Scholar]
  53. Han G, Yang K, Zeng J, Zhao Y. 2021. Dissolved iron and isotopic geochemical characteristics in a typical tropical river across the floodplain: the potential environmental implication. Environ. Res. 200:111452
    [Google Scholar]
  54. Hayes CT, Fitzsimmons JN, Boyle EA, McGee D, Anderson RF et al. 2015. Thorium isotopes tracing the iron cycle at the Hawaii Ocean Time-series station ALOHA. Geochim. Cosmochim. Acta 169:1–16
    [Google Scholar]
  55. Henkel S, Kasten S, Hartmann JF, Silva-Busso A, Staubwasser M. 2018. Iron cycling and stable Fe isotope fractionation in Antarctic shelf sediments, King George Island. Geochim. Cosmochim. Acta 237:320–38
    [Google Scholar]
  56. Henkel S, Kasten S, Poulton SW, Staubwasser M. 2016. Determination of the stable iron isotopic composition of sequentially leached iron phases in marine sediments. Chem. Geol. 421:93–102
    [Google Scholar]
  57. Hirst C, Andersson PS, Kooijman E, Schmitt M, Kutscher L et al. 2020. Iron isotopes reveal the sources of Fe-bearing particles and colloids in the Lena River basin. Geochim. Cosmochim. Acta 269:678–92
    [Google Scholar]
  58. Homoky WB, Conway TM, John SG, König D, Deng F et al. 2021. Iron colloids dominate sedimentary supply to the ocean interior. PNAS 118:e2016078118
    [Google Scholar]
  59. Homoky WB, Hembury DJ, Hepburn LE, Mills RA, Statham PJ et al. 2011. Iron and manganese diagenesis in deep sea volcanogenic sediments and the origins of pore water colloids. Geochim. Cosmochim. Acta 75:5032–48
    [Google Scholar]
  60. Homoky WB, John SG, Conway TM, Mills RA. 2013. Distinct iron isotopic signatures and supply from marine sediment dissolution. Nat. Commun. 4:2143
    [Google Scholar]
  61. Homoky WB, Severmann S, Mills RA, Statham PJ, Fones GR. 2009. Pore-fluid Fe isotopes reflect the extent of benthic Fe redox recycling: evidence from continental shelf and deep-sea sediments. Geology 37:751–54
    [Google Scholar]
  62. Horner TJ, Little S, Conway T, Farmer J, Hertzberg JE et al. 2021. Bioactive trace metals and their isotopes as paleoproductivity proxies: an assessment using GEOTRACES-era data. Glob. Biogeochem. Cycles 35:e2020GB006814
    [Google Scholar]
  63. Horner TJ, Williams HM, Hein JR, Saito MA, Burton KW et al. 2015. Persistence of deeply sourced iron in the Pacific Ocean. PNAS 112:1292–97
    [Google Scholar]
  64. Hutchins DA, Witter AE, Butler A, Luther GW III 1999. Competition among marine phytoplankton for different chelated iron species. Nature 400:858–61
    [Google Scholar]
  65. Icopini GA, Anbar AD, Ruebush SS, Tien M, Brantley SL. 2004. Iron isotope fractionation during microbial reduction of iron: the importance of adsorption. Geology 32:205–8
    [Google Scholar]
  66. Ilina SM, Poitrasson F, Lapitskiy SA, Alekhin YV, Viers J, Pokrovsky OS. 2013. Extreme iron isotope fractionation between colloids and particles of boreal and temperate organic-rich waters. Geochim. Cosmochim. Acta 101:96–111
    [Google Scholar]
  67. Ingri J, Malinovsky D, Rodushkin I, Baxter DC, Widerlund A et al. 2006. Iron isotope fractionation in river colloidal matter. Earth Planet. Sci. Lett. 245:792–98
    [Google Scholar]
  68. Jickells TD, An ZS, Andersen KK, Baker AR, Bergametti G et al. 2005. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308:67–71
    [Google Scholar]
  69. John SG, Adkins J. 2012. The vertical distribution of iron stable isotopes in the North Atlantic near Bermuda. Glob. Biogeochem. Cycles 26:GB2034
    [Google Scholar]
  70. John SG, Adkins JF. 2010. Analysis of dissolved iron isotopes in seawater. Mar. Chem. 119:65–76
    [Google Scholar]
  71. John SG, Geis RW, Saito MA, Boyle EA. 2007. Zinc isotope fractionation during high-affinity and low-affinity zinc transport by the marine diatom Thalassiosira oceanica. Limnol. Oceanogr. 52:2710–14
    [Google Scholar]
  72. John SG, Helgoe J, Townsend E, Weber T, DeVries T et al. 2018. Biogeochemical cycling of Fe and Fe stable isotopes in the Eastern Tropical South Pacific. Mar. Chem. 201:66–76
    [Google Scholar]
  73. John SG, King A, Hutchins D, Adkins J, Fu F et al. 2012a. Biological, chemical, electrochemical, and photochemical fractionation of Fe isotopes Paper presented at the American Geophysical Union Fall Meeting San Francisco, CA: Dec 3–7
  74. John SG, Mendez J, Moffett J, Adkins J. 2012b. The flux of iron and iron isotopes from San Pedro Basin sediments. Geochim. Cosmochim. Acta 93:14–29
    [Google Scholar]
  75. Johnson CM, Beard B, Weyer S. 2020. Iron Geochemistry: An Isotopic Perspective Cham, Switz: Springer
  76. Johnson CM, Roden EE, Welch SA, Beard BL. 2005. Experimental constraints on Fe isotope fractionation during magnetite and Fe carbonate formation coupled to dissimilatory hydrous ferric oxide reduction. Geochim. Cosmochim. Acta 69:963–93
    [Google Scholar]
  77. Klar JK, Homoky WB, Statham PJ, Birchill AJ, Harris EL et al. 2017a. Stability of dissolved and soluble Fe(II) in shelf sediment pore waters and release to an oxic water column. Biogeochemistry 135:49–67
    [Google Scholar]
  78. Klar JK, James RH, Gibbs D, Lough A, Parkinson I et al. 2017b. Isotopic signature of dissolved iron delivered to the Southern Ocean from hydrothermal vents in the East Scotia Sea. Geology 45:351–54
    [Google Scholar]
  79. Klar JK, Schlosser C, Milton JA, Woodward E, Lacan F et al. 2018. Sources of dissolved iron to oxygen minimum zone waters on the Senegalese continental margin in the tropical North Atlantic Ocean: insights from iron isotopes. Geochim. Cosmochim. Acta 236:60–78
    [Google Scholar]
  80. König D, Conway T, Ellwood M, Homoky W, Tagliabue A. 2021. Constraints on the cycling of iron isotopes from a global ocean model. Glob. Biogeochem. Cycles 35:e2021GB006968
    [Google Scholar]
  81. Kurisu M, Adachi K, Sakata K, Takahashi Y. 2019. Stable isotope ratios of combustion iron produced by evaporation in a steel plant. ACS Earth Space Chem. 3:588–98
    [Google Scholar]
  82. Kurisu M, Sakata K, Miyamoto C, Takaku Y, Iizuka T, Takahashi Y. 2016a. Variation of iron isotope ratios in anthropogenic materials emitted through combustion processes. Chem. Lett. 45:970–72
    [Google Scholar]
  83. Kurisu M, Sakata K, Uematsu M, Ito A, Takahashi Y. 2021. Contribution of combustion Fe in marine aerosols over the northwestern Pacific estimated by Fe stable isotope ratios. Atmos. Chem. Phys. 21:16027–50
    [Google Scholar]
  84. Kurisu M, Takahashi Y, Iizuka T, Uematsu M. 2016b. Very low isotope ratio of iron in fine aerosols related to its contribution to the surface ocean. J. Geophys. Res. Atmos. 121:11119–36
    [Google Scholar]
  85. Labatut M, Lacan F, Pradoux C, Chmeleff J, Radic A et al. 2014. Iron sources and dissolved-particulate interactions in the seawater of the Western Equatorial Pacific, iron isotope perspectives. Glob. Biogeochem. Cycles 28:1044–65
    [Google Scholar]
  86. Lacan F, Francois R, Ji Y, Sherrell RM 2006. Cadmium isotopic composition in the ocean. Geochim. Cosmochim. Acta 70:5104–18
    [Google Scholar]
  87. Lacan F, Radic A, Jeandel C, Poitrasson F, Sarthou G et al. 2008. Measurement of the isotopic composition of dissolved iron in the open ocean. Geophys. Res. Lett. 35:L24610
    [Google Scholar]
  88. Lannuzel D, Vancoppenolle M, Van der Merwe P, De Jong J, Meiners KM et al. 2016. Iron in sea ice: review and new insights. Elem. Sci. Anthr. 4:000130
    [Google Scholar]
  89. Levasseur S, Frank M, Hein J, Halliday AN. 2004. The global variation in the iron isotope composition of marine hydrogenetic ferromanganese deposits: implications for seawater chemistry?. Earth Planet. Sci. Lett. 224:91–105
    [Google Scholar]
  90. Liu X, Millero FJ. 2002. The solubility of iron in seawater. Mar. Chem. 77:43–54
    [Google Scholar]
  91. Lough AJM, Klar JK, Homoky WB, Comer-Warner SA, Milton JA et al. 2017. Opposing authigenic controls on the isotopic signature of dissolved iron in hydrothermal plumes. Geochim. Cosmochim. Acta 202:1–20
    [Google Scholar]
  92. Majestic BJ, Anbar AD, Herckes P. 2009. Elemental and iron isotopic composition of aerosols collected in a parking structure. Sci. Total Environ. 407:5104–9
    [Google Scholar]
  93. Marcus MA, Edwards KJ, Gueguen B, Fakra SC, Horn G et al. 2015. Iron mineral structure, reactivity, and isotopic composition in a South Pacific Gyre ferromanganese nodule over 4 Ma. Geochim. Cosmochim. Acta 171:61–79
    [Google Scholar]
  94. Marsay CM, Aguilar-Islas A, Fitzsimmons JN, Hatta M, Jensen LT et al. 2018a. Dissolved and particulate trace elements in late summer Arctic melt ponds. Mar. Chem. 204:70–85
    [Google Scholar]
  95. Marsay CM, Lam PJ, Heller MI, Lee J-M, John SG. 2018b. Distribution and isotopic signature of ligand-leachable particulate iron along the GEOTRACES GP16 East Pacific Zonal Transect. Mar. Chem. 201:198–211
    [Google Scholar]
  96. Martin JH. 1990. Glacial-interglacial CO2 change: the iron hypothesis. Paleoceanography 5:1–13
    [Google Scholar]
  97. Mead C, Herckes P, Majestic BJ, Anbar AD. 2013. Source apportionment of aerosol iron in the marine environment using iron isotope analysis. Geophys. Res. Lett. 40:5722–27
    [Google Scholar]
  98. Moore JK, Doney SC, Glover DM, Fung IY. 2002. Iron cycling and nutrient-limitation patterns in surface waters of the world ocean. Deep-Sea Res. II 49:463–507
    [Google Scholar]
  99. Morel FMM, Kustka AB, Shaked Y. 2008. The role of unchelated Fe in the iron nutrition of phytoplankton. Limnol. Oceanogr. 53:400–4
    [Google Scholar]
  100. Morgan JLL, Wasylenki LE, Nuester J, Anbar AD. 2010. Fe isotope fractionation during equilibration of Fe-organic complexes. Environ. Sci. Technol. 44:6095–101
    [Google Scholar]
  101. Mulholland DS, Flament P, de Jong J, Mattielli N, Deboudt K et al. 2021. In-cloud processing as a possible source of isotopically light iron from anthropogenic aerosols: new insights from a laboratory study. Atmos. Environ. 259:118505
    [Google Scholar]
  102. Mulholland DS, Poitrasson F, Boaventura GR, Allard T, Vieira LC et al. 2015. Insights into iron sources and pathways in the Amazon River provided by isotopic and spectroscopic studies. Geochim. Cosmochim. Acta 150:142–59
    [Google Scholar]
  103. Nasemann P, Gault-Ringold M, Stirling CH, Koschinsky A, Sander SG. 2018. Processes affecting the isotopic composition of dissolved iron in hydrothermal plumes: a case study from the Vanuatu back-arc. Chem. Geol. 476:70–84
    [Google Scholar]
  104. Nier AO. 1939. The isotopic constitution of iron and chromium. Phys. Rev. 55:1143
    [Google Scholar]
  105. Owens JD, Lyons TW, Li X, Macleod KG, Gordon G et al. 2012. Iron isotope and trace metal records of iron cycling in the proto-North Atlantic during the Cenomanian-Turonian oceanic anoxic event (OAE-2). Paleoceanography 27:PA3223
    [Google Scholar]
  106. Perron MMG, Meyerink S, Corkill M, Strzelec M, Proemse BC et al. 2022. Trace elements and nutrients in wildfire plumes to the southeast of Australia. Atmos. Res. 270:106084
    [Google Scholar]
  107. Pinedo-González P, Hawco NJ, Bundy RM, Armbrust EV, Follows MJ et al. 2020. Anthropogenic Asian aerosols provide Fe to the north Pacific Ocean. PNAS 117:27862–68
    [Google Scholar]
  108. Poitrasson F, Cruz Vieira L, Seyler P, dos Santos Pinheiro GM, Santos Mulholland D et al. 2014. Iron isotope composition of the bulk waters and sediments from the Amazon River Basin. Chem. Geol. 377:1–11
    [Google Scholar]
  109. Radic A, Lacan F, Murray JW. 2011. Iron isotopes in the seawater of the equatorial Pacific Ocean: new constraints for the oceanic iron cycle. Earth Planet. Sci. Lett. 306:1–10
    [Google Scholar]
  110. Raiswell R, Tranter M, Benning LG, Siegert M, De'ath R et al. 2006. Contributions from glacially derived sediment to the global iron (oxyhydr)oxide cycle: implications for iron delivery to the oceans. Geochim. Cosmochim. Acta 70:2765–80
    [Google Scholar]
  111. Resing JA, Sedwick PN, German CR, Jenkins WJ, Moffett JW et al. 2015. Basin-scale transport of hydrothermal dissolved metals across the South Pacific Ocean. Nature 523:200–6
    [Google Scholar]
  112. Revels BN, Ohnemus DC, Lam PJ, Conway TM, John SG. 2015a. The isotopic signature and distribution of particulate iron in the North Atlantic Ocean. Deep-Sea Res. II 116:321–31
    [Google Scholar]
  113. Revels BN, Zhang R, Adkins JF, John SG. 2015b. Fractionation of iron isotopes during leaching of natural particles by acidic and circumneutral leaches and development of an optimal leach for marine particulate iron isotopes. Geochim. Cosmochim. Acta 166:92–104
    [Google Scholar]
  114. Rolison JM, Stirling CH, Middag R, Gault-Ringold M, George E, Rijkenberg MJ 2018. Iron isotope fractionation during pyrite formation in a sulfidic Precambrian ocean analogue. Earth Planet. Sci. Lett. 488:1–13
    [Google Scholar]
  115. Rouxel O, Auro M. 2010. Iron isotope variations in coastal seawater determined by multicollector ICP-MS. Geostand. Geoanal. Res. 34:135–44
    [Google Scholar]
  116. Rouxel O, Dobbek N, Ludden J, Fouquet Y. 2003. Iron isotope fractionation during oceanic crust alteration. Chem. Geol. 202:155–82
    [Google Scholar]
  117. Rouxel O, Shanks WC III, Bach W, Edwards KJ 2008a. Integrated Fe- and S-isotope study of seafloor hydrothermal vents at East Pacific Rise 9–10°N. Chem. Geol. 252:214–27
    [Google Scholar]
  118. Rouxel O, Sholkovitz E, Charette M, Edwards KJ. 2008b. Iron isotope fractionation in subterranean estuaries. Geochim. Cosmochim. Acta 72:3413–30
    [Google Scholar]
  119. Rouxel O, Toner BM, Germain Y, Glazer B. 2018. Geochemical and iron isotopic insights into hydrothermal iron oxyhydroxide deposit formation at Loihi Seamount. Geochim. Cosmochim. Acta 220:449–82
    [Google Scholar]
  120. Rouxel O, Toner BM, Manganini SJ, German CR. 2016. Geochemistry and iron isotope systematics of hydrothermal plume fall-out at East Pacific Rise 9°50′N. Chem. Geol. 441:212–34
    [Google Scholar]
  121. Roy M, Rouxel O, Martin JB, Cable JE. 2012. Iron isotope fractionation in a sulfide-bearing subterranean estuary and its potential influence on oceanic Fe isotope flux. Chem. Geol. 300–301:133–42
    [Google Scholar]
  122. Rudge JF, Reynolds BC, Bourdon B. 2009. The double spike toolbox. Chem. Geol. 265:420–31
    [Google Scholar]
  123. Rudnick RL, Gao S 2014. Composition of the continental crust. Treatise on Geochemistry HD Holland, KK Turekian 1–51 Oxford, UK: Elsevier. , 2nd ed..
    [Google Scholar]
  124. Sander SG, Koschinsky A. 2011. Metal flux from hydrothermal vents increased by organic complexation. Nat. Geosci. 4:145–50
    [Google Scholar]
  125. Schlitzer R, Anderson RF, Dodas EM, Lohan M, Geibert W et al. 2018. The GEOTRACES Intermediate Data Product 2017. Chem. Geol. 493:210–23
    [Google Scholar]
  126. Scholz F, Severmann S, McManus J, Noffke A, Lomnitz U, Hensen C. 2014. On the isotope composition of reactive iron in marine sediments: redox shuttle versus early diagenesis. Chem. Geol. 389:48–59
    [Google Scholar]
  127. Schroth AW, Crusius J, Chever F, Bostick BC, Rouxel OJ. 2011. Glacial influence on the geochemistry of riverine iron fluxes to the Gulf of Alaska and effects of deglaciation. Geophys. Res. Lett. 38:L16605
    [Google Scholar]
  128. Severmann S, Johnson CM, Beard BL, German CR, Edmonds HN et al. 2004. The effect of plume processes on the Fe isotope composition of hydrothermally derived Fe in the deep ocean as inferred from the Rainbow vent site, Mid-Atlantic Ridge, 36°14′N. Earth Planet. Sci. Lett. 225:63–76
    [Google Scholar]
  129. Severmann S, Johnson CM, Beard BL, McManus J. 2006. The effect of early diagenesis on the Fe isotope compositions of porewaters and authigenic minerals in continental margin sediments. Geochim. Cosmochim. Acta 70:2006–22
    [Google Scholar]
  130. Severmann S, McManus J, Berelson WM, Hammond DE. 2010. The continental shelf benthic iron flux and its isotope composition. Geochim. Cosmochim. Acta 74:3984–4004
    [Google Scholar]
  131. Sharma M, Polizzotto M, Anbar AD. 2001. Iron isotopes in hot springs along the Juan de Fuca Ridge. Earth Planet. Sci. Lett. 194:39–51
    [Google Scholar]
  132. Sieber M, Conway TM, de Souza G, Hassler CS, Ellwood MJ, Vance D 2021. Isotopic fingerprinting of biogeochemical processes and iron sources in the iron-limited surface Southern Ocean. Earth Planet. Sci. Lett. 567:116967
    [Google Scholar]
  133. Skulan JL, Beard BL, Johnson CM. 2002. Kinetic and equilibrium Fe isotope fractionation between aqueous Fe(III) and hematite. Geochim. Cosmochim. Acta 66:2995–3015
    [Google Scholar]
  134. Staubwasser M, Schoenberg R, von Blanckenburg F, Krüger S, Pohl C 2013. Isotope fractionation between dissolved and suspended particulate Fe in the oxic and anoxic water column of the Baltic Sea. Biogeosciences 10:233–45
    [Google Scholar]
  135. Stevenson E, Fantle M, Das S, Williams H, Aciego S. 2017. The iron isotopic composition of subglacial streams draining the Greenland ice sheet. Geochim. Cosmochim. Acta 213:237–54
    [Google Scholar]
  136. Tagliabue A, Aumont O, DeAth R, Dunne JP, Dutkiewicz S et al. 2016. How well do global ocean biogeochemistry models simulate dissolved iron distributions?. Glob. Biogeochem. Cycles 30:149–74
    [Google Scholar]
  137. Tagliabue A, Bopp L, Dutay J-C, Bowie AR, Chever F et al. 2010. Hydrothermal contribution to the oceanic dissolved iron inventory. Nat. Geosci. 3:252–56
    [Google Scholar]
  138. Tagliabue A, Bowie AR, Boyd PW, Buck KN, Johnson KS, Saito MA. 2017. The integral role of iron in ocean biogeochemistry. Nature 543:51–59
    [Google Scholar]
  139. Teng F-Z, Dauphas N, Huang S, Marty B 2013. Iron isotopic systematics of oceanic basalts. Geochim. Cosmochim. Acta 107:12–26
    [Google Scholar]
  140. Teutsch N, von Gunten U, Porcelli D, Cirpka OA, Halliday AN. 2005. Adsorption as a cause for iron isotope fractionation in reduced groundwater. Geochim. Cosmochim. Acta 69:4175–85
    [Google Scholar]
  141. Twining BS, Baines SB. 2013. The trace metal composition of marine phytoplankton. Annu. Rev. Mar. Sci. 5:191–215
    [Google Scholar]
  142. Valley GE, Anderson HH. 1947. A comparison of the abundance ratios of the isotopes of terrestrial and of meteoritic iron. J. Am. Chem. Soc. 69:1871–75
    [Google Scholar]
  143. von Blanckenburg F, von Wirén N, Guelke M, Weiss DJ, Bullen TD. 2009. Fractionation of metal stable isotopes by higher plants. Elements 5:375–80
    [Google Scholar]
  144. Waeles M, Baker AR, Jickells T, Hoogewerff J. 2007. Global dust teleconnections: aerosol iron solubility and stable isotope composition. Environ. Chem. 4:233–37
    [Google Scholar]
  145. Wang W, Lough A, Lohan MC, Connelly DP, Cooper M et al. 2021. Behavior of iron isotopes in hydrothermal systems: Beebe and Von Damm vent fields on the mid-Cayman ultraslow-spreading ridge. Earth Planet. Sci. Lett. 575:117200
    [Google Scholar]
  146. Welch SA, Beard BL, Johnson CM, Braterman PS. 2003. Kinetic and equilibrium Fe isotopic fractionation between aqueous Fe(II) and Fe(III). Geochim. Cosmochim. Acta 67:4231–50
    [Google Scholar]
  147. Wu L, Beard BL, Roden EE, Johnson CM. 2011. Stable iron isotope fractionation between aqueous Fe(II) and hydrous ferric oxide. Environ. Sci. Technol. 45:1847–52
    [Google Scholar]
  148. Zhang R, Jensen L, Fitzsimmons J, Sherrell RM, Lam P et al. 2021. Iron isotope biogeochemical cycling in the Western Arctic Ocean. Glob. Biogeochem. Cycles 35:e2021GB006977
    [Google Scholar]
  149. Zhang R, John SG, Zhang J, Ren J, Wu Y et al. 2015. Transport and reaction of iron and iron stable isotopes in glacial meltwaters on Svalbard near Kongsfjorden: from rivers to estuary to ocean. Earth Planet. Sci. Lett. 424:201–11
    [Google Scholar]
  150. Zhu X-K, O'Nions RK, Guo Y, Reynolds BC 2000. Secular variation of iron isotopes in North Atlantic deep water. Science 287:2000–2
    [Google Scholar]
/content/journals/10.1146/annurev-marine-032822-103431
Loading
/content/journals/10.1146/annurev-marine-032822-103431
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error