1932

Abstract

Sepsis is expected to have a substantial impact on public health and cost as its prevalence increases. Factors contributing to increased prevalence include a progressively aging population, advances in the use of immunomodulatory agents to treat a rising number of diseases, and immune-suppressing therapies in organ transplant recipients and cancer patients. It is now recognized that sepsis is associated with profound and sustained immunosuppression, which has been implicated as a predisposing factor in the increased susceptibility of patients to secondary infections and mortality. In this review, we discuss mechanisms of sepsis-induced immunosuppression and biomarkers that identify a state of impaired immunity. We also highlight immune-enhancing strategies that have been evaluated in patients with sepsis, as well as therapeutics under current investigation. Finally, we describe future challenges and the need for a new treatment paradigm, integrating predictive enrichment with patient factors that may guide the future selection of tailored immunotherapy.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-061121-040214
2022-02-10
2024-04-29
Loading full text...

Full text loading...

/deliver/fulltext/physiol/84/1/annurev-physiol-061121-040214.html?itemId=/content/journals/10.1146/annurev-physiol-061121-040214&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D et al. 2016. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 315:801–10
    [Google Scholar]
  2. 2. 
    Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D et al. 2020. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. Lancet 395:200–11
    [Google Scholar]
  3. 3. 
    Fleischmann C, Scherag A, Adhikari NK, Hartog CS, Tsaganos T et al. 2016. Assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations. Am. J. Respir. Crit. Care Med. 193:259–72
    [Google Scholar]
  4. 4. 
    Martin GS, Mannino DM, Moss M. 2006. The effect of age on the development and outcome of adult sepsis. Crit. Care Med. 34:15–21
    [Google Scholar]
  5. 5. 
    Hotchkiss RS, Monneret G, Payen D. 2013. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat. Rev. Immunol. 13:862–74
    [Google Scholar]
  6. 6. 
    van der Poll T, van de Veerdonk FL, Scicluna BP, Netea MG. 2017. The immunopathology of sepsis and potential therapeutic targets. Nat. Rev. Immunol. 17:407–20
    [Google Scholar]
  7. 7. 
    Angus DC, van der Poll T. 2013. Severe sepsis and septic shock. N. Engl. J. Med. 369:840–51
    [Google Scholar]
  8. 8. 
    Venet F, Monneret G. 2018. Advances in the understanding and treatment of sepsis-induced immunosuppression. Nat. Rev. Nephrol. 14:121–37
    [Google Scholar]
  9. 9. 
    Stolk RF, van der Poll T, Angus DC, van der Hoeven JG, Pickkers P, Kox M 2016. Potentially inadvertent immunomodulation: norepinephrine use in sepsis. Am. J. Respir. Crit. Care Med. 194:550–58
    [Google Scholar]
  10. 10. 
    Heming N, Sivanandamoorthy S, Meng P, Bounab R, Annane D. 2018. Immune effects of corticosteroids in sepsis. Front. Immunol. 9:1736
    [Google Scholar]
  11. 11. 
    Takeuchi O, Akira S. 2010. Pattern recognition receptors and inflammation. Cell 140:805–20
    [Google Scholar]
  12. 12. 
    Deutschman CS, Tracey KJ. 2014. Sepsis: current dogma and new perspectives. Immunity 40:463–75
    [Google Scholar]
  13. 13. 
    Boomer JS, To K, Chang KC, Takasu O, Osborne DF et al. 2011. Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA 306:2594–605
    [Google Scholar]
  14. 14. 
    Oami T, Watanabe E, Hatano M, Sunahara S, Fujimura L et al. 2017. Suppression of T cell autophagy results in decreased viability and function of T cells through accelerated apoptosis in a murine sepsis model. Crit. Care Med. 45:e77–85
    [Google Scholar]
  15. 15. 
    Gustave CA, Gossez M, Demaret J, Rimmele T, Lepape A et al. 2018. Septic shock shapes B cell response toward an exhausted-like/immunoregulatory profile in patients. J. Immunol. 200:2418–25
    [Google Scholar]
  16. 16. 
    Shalova IN, Lim JY, Chittezhath M, Zinkernagel AS, Beasley F et al. 2015. Human monocytes undergo functional re-programming during sepsis mediated by hypoxia-inducible factor-1α. Immunity 42:484–98
    [Google Scholar]
  17. 17. 
    Davenport EE, Burnham KL, Radhakrishnan J, Humburg P, Hutton P et al. 2016. Genomic landscape of the individual host response and outcomes in sepsis: a prospective cohort study. Lancet Respir. Med. 4:259–71
    [Google Scholar]
  18. 18. 
    Burnham KL, Davenport EE, Radhakrishnan J, Humburg P, Gordon AC et al. 2017. Shared and distinct aspects of the sepsis transcriptomic response to fecal peritonitis and pneumonia. Am. J. Respir. Crit. Care Med. 196:328–39
    [Google Scholar]
  19. 19. 
    Scicluna BP, van Vught LA, Zwinderman AH, Wiewel MA, Davenport EE et al. 2017. Classification of patients with sepsis according to blood genomic endotype: a prospective cohort study. Lancet Respir. Med. 5:816–26
    [Google Scholar]
  20. 20. 
    Reyes M, Filbin MR, Bhattacharyya RP, Billman K, Eisenhaure T et al. 2020. An immune-cell signature of bacterial sepsis. Nat. Med. 26:333–40
    [Google Scholar]
  21. 21. 
    Zhang Q, Cao X. 2019. Epigenetic regulation of the innate immune response to infection. Nat. Rev. Immunol. 19:417–32
    [Google Scholar]
  22. 22. 
    Carson WF, Cavassani KA, Dou Y, Kunkel SL. 2011. Epigenetic regulation of immune cell functions during post-septic immunosuppression. Epigenetics 6:273–83
    [Google Scholar]
  23. 23. 
    Foster SL, Hargreaves DC, Medzhitov R. 2007. Gene-specific control of inflammation by TLR-induced chromatin modifications. Nature 447:972–78
    [Google Scholar]
  24. 24. 
    El Gazzar M, Yoza BK, Chen X, Garcia BA, Young NL, McCall CE. 2009. Chromatin-specific remodeling by HMGB1 and linker histone H1 silences proinflammatory genes during endotoxin tolerance. Mol. Cell. Biol. 29:1959–71
    [Google Scholar]
  25. 25. 
    Wen H, Dou Y, Hogaboam CM, Kunkel SL. 2008. Epigenetic regulation of dendritic cell-derived interleukin-12 facilitates immunosuppression after a severe innate immune response. Blood 111:1797–804
    [Google Scholar]
  26. 26. 
    Yan Q, Carmody RJ, Qu Z, Ruan Q, Jager J et al. 2012. Nuclear factor-κB binding motifs specify Toll-like receptor-induced gene repression through an inducible repressosome. PNAS 109:14140–45
    [Google Scholar]
  27. 27. 
    Carson WF, Cavassani KA, Ito T, Schaller M, Ishii M et al. 2010. Impaired CD4+ T-cell proliferation and effector function correlates with repressive histone methylation events in a mouse model of severe sepsis. Eur. J. Immunol. 40:998–1010
    [Google Scholar]
  28. 28. 
    Cavassani KA, Carson WF, Moreira AP, Wen H, Schaller MA et al. 2010. The post sepsis-induced expansion and enhanced function of regulatory T cells create an environment to potentiate tumor growth. Blood 115:4403–11
    [Google Scholar]
  29. 29. 
    Davis FM, Schaller MA, Dendekker A, Joshi AD, Kimball AS et al. 2019. Sepsis induces prolonged epigenetic modifications in bone marrow and peripheral macrophages impairing inflammation and wound healing. Arterioscler. Thromb. Vasc. Biol. 39:2353–66
    [Google Scholar]
  30. 30. 
    Tannahill GM, Curtis AM, Adamik J, Palsson-McDermott EM, McGettrick AF et al. 2013. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496:238–42
    [Google Scholar]
  31. 31. 
    Liu P-S, Wang H, Li X, Chao T, Teav T et al. 2017. α-Ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nat. Immunol. 18:985–94
    [Google Scholar]
  32. 32. 
    Cheng SC, Scicluna BP, Arts RJ, Gresnigt MS, Lachmandas E et al. 2016. Broad defects in the energy metabolism of leukocytes underlie immunoparalysis in sepsis. Nat. Immunol. 17:406–13
    [Google Scholar]
  33. 33. 
    Stienstra R, Netea-Maier RT, Riksen NP, Joosten LAB, Netea MG. 2017. Specific and complex reprogramming of cellular metabolism in myeloid cells during innate immune responses. Cell Metab 26:142–56
    [Google Scholar]
  34. 34. 
    MacIver NJ, Michalek RD, Rathmell JC. 2013. Metabolic regulation of T lymphocytes. Annu. Rev. Immunol. 31:259–83
    [Google Scholar]
  35. 35. 
    O'Neill LA, Kishton RJ, Rathmell J. 2016. A guide to immunometabolism for immunologists. Nat. Rev. Immunol. 16:553–65
    [Google Scholar]
  36. 36. 
    Venet F, Demaret J, Blaise BJ, Rouget C, Girardot T et al. 2017. IL-7 restores T lymphocyte immunometabolic failure in septic shock patients through mTOR activation. J. Immunol. 199:1606–15
    [Google Scholar]
  37. 37. 
    Liu TF, Vachharajani VT, Yoza BK, McCall CE. 2012. NAD+-dependent sirtuin 1 and 6 proteins coordinate a switch from glucose to fatty acid oxidation during the acute inflammatory response. J. Biol. Chem. 287:25758–69
    [Google Scholar]
  38. 38. 
    Domínguez-Andrés J, Novakovic B, Li Y, Scicluna BP, Gresnigt MS et al. 2019. The itaconate pathway is a central regulatory node linking innate immune tolerance and trained immunity. Cell Metab 29:211–20.e5
    [Google Scholar]
  39. 39. 
    Novakovic B, Habibi E, Wang SY, Arts RJW, Davar R et al. 2016. β-Glucan reverses the epigenetic state of LPS-induced immunological tolerance. Cell 167:1354–68.e14
    [Google Scholar]
  40. 40. 
    Leentjens J, Quintin J, Gerretsen J, Kox M, Pickkers P, Netea MG 2014. The effects of orally administered β-glucan on innate immune responses in humans, a randomized open-label intervention pilot-study. PLOS ONE 9:e108794
    [Google Scholar]
  41. 41. 
    Biswas SK, Lopez-Collazo E. 2009. Endotoxin tolerance: new mechanisms, molecules and clinical significance. Trends Immunol 30:475–87
    [Google Scholar]
  42. 42. 
    Cavaillon JM, Adib-Conquy M. 2006. Bench-to-bedside review: endotoxin tolerance as a model of leukocyte reprogramming in sepsis. Crit. Care 10:233
    [Google Scholar]
  43. 43. 
    Draisma A, Pickkers P, Bouw MP, van der Hoeven JG. 2009. Development of endotoxin tolerance in humans in vivo. Crit. Care Med. 37:1261–67
    [Google Scholar]
  44. 44. 
    Reddy RC, Chen GH, Newstead MW, Moore T, Zeng X et al. 2001. Alveolar macrophage deactivation in murine septic peritonitis: role of interleukin 10. Infect. Immun. 69:1394–401
    [Google Scholar]
  45. 45. 
    Simpson SQ, Modi HN, Balk RA, Bone RC, Casey LC. 1991. Reduced alveolar macrophage production of tumor necrosis factor during sepsis in mice and men. Crit. Care Med. 19:1060–66
    [Google Scholar]
  46. 46. 
    Philippart F, Fitting C, Cavaillon JM. 2012. Lung microenvironment contributes to the resistance of alveolar macrophages to develop tolerance to endotoxin. Crit. Care Med. 40:2987–96
    [Google Scholar]
  47. 47. 
    Rubio I, Osuchowski MF, Shankar-Hari M, Skirecki T, Winkler MS et al. 2019. Current gaps in sepsis immunology: new opportunities for translational research. Lancet Infect. Dis. 19:e422–36
    [Google Scholar]
  48. 48. 
    Hoogerwerf JJ, de Vos AF, van't Veer C, Bresser P, de Boer A et al. 2010. Priming of alveolar macrophages upon instillation of lipopolysaccharide in the human lung. Am. J. Respir. Cell Mol. Biol. 42:349–56
    [Google Scholar]
  49. 49. 
    Monneret G, Venet F. 2016. Sepsis-induced immune alterations monitoring by flow cytometry as a promising tool for individualized therapy. Cytom. B Clin. Cytom. 90:376–86
    [Google Scholar]
  50. 50. 
    Venet F, Lukaszewicz AC, Payen D, Hotchkiss R, Monneret G. 2013. Monitoring the immune response in sepsis: a rational approach to administration of immunoadjuvant therapies. Curr. Opin. Immunol. 25:477–83
    [Google Scholar]
  51. 51. 
    Heidecke CD, Hensler T, Weighardt H, Zantl N, Wagner H et al. 1999. Selective defects of T lymphocyte function in patients with lethal intraabdominal infection. Am. J. Surg. 178:288–92
    [Google Scholar]
  52. 52. 
    Roth G, Moser B, Krenn C, Brunner M, Haisjackl M et al. 2003. Susceptibility to programmed cell death in T-lymphocytes from septic patients: a mechanism for lymphopenia and Th2 predominance. Biochem. Biophys. Res. Commun. 308:840–46
    [Google Scholar]
  53. 53. 
    Venet F, Pachot A, Debard AL, Bohé J, Bienvenu J et al. 2004. Increased percentage of CD4+CD25+ regulatory T cells during septic shock is due to the decrease of CD4+CD25- lymphocytes. Crit. Care Med. 32:2329–31
    [Google Scholar]
  54. 54. 
    Xu J, Li J, Xiao K, Zou S, Yan P et al. 2020. Dynamic changes in human HLA-DRA gene expression and Th cell subsets in sepsis: indications of immunosuppression and associated outcomes. Scand. J. Immunol. 91:e12813
    [Google Scholar]
  55. 55. 
    Cabrera-Perez J, Condotta SA, Badovinac VP, Griffith TS. 2014. Impact of sepsis on CD4 T cell immunity. J. Leukoc. Biol. 96:767–77
    [Google Scholar]
  56. 56. 
    Danahy DB, Strother RK, Badovinac VP, Griffith TS. 2016. Clinical and experimental sepsis impairs CD8 T-cell-mediated immunity. Crit. Rev. Immunol. 36:57–74
    [Google Scholar]
  57. 57. 
    Yi JS, Cox MA, Zajac AJ. 2010. T-cell exhaustion: characteristics, causes and conversion. Immunology 129:474–81
    [Google Scholar]
  58. 58. 
    Guignant C, Lepape A, Huang X, Kherouf H, Denis L et al. 2011. Programmed death-1 levels correlate with increased mortality, nosocomial infection and immune dysfunctions in septic shock patients. Crit. Care 15:R99
    [Google Scholar]
  59. 59. 
    Huang X, Venet F, Wang YL, Lepape A, Yuan Z et al. 2009. PD-1 expression by macrophages plays a pathologic role in altering microbial clearance and the innate inflammatory response to sepsis. PNAS 106:6303–8
    [Google Scholar]
  60. 60. 
    Brahmamdam P, Inoue S, Unsinger J, Chang KC, McDunn JE, Hotchkiss RS. 2010. Delayed administration of anti-PD-1 antibody reverses immune dysfunction and improves survival during sepsis. J. Leukoc. Biol. 88:233–40
    [Google Scholar]
  61. 61. 
    Zhang Y, Zhou Y, Lou J, Li J, Bo L et al. 2010. PD-L1 blockade improves survival in experimental sepsis by inhibiting lymphocyte apoptosis and reversing monocyte dysfunction. Crit. Care 14:R220
    [Google Scholar]
  62. 62. 
    Venet F, Davin F, Guignant C, Larue A, Cazalis MA et al. 2010. Early assessment of leukocyte alterations at diagnosis of septic shock. Shock 34:358–63
    [Google Scholar]
  63. 63. 
    Huang LF, Yao YM, Dong N, Yu Y, He LX, Sheng ZY 2010. Association between regulatory T cell activity and sepsis and outcome of severely burned patients: a prospective, observational study. Crit. Care 14:R3
    [Google Scholar]
  64. 64. 
    Venet F, Chung CS, Kherouf H, Geeraert A, Malcus C et al. 2009. Increased circulating regulatory T cells (CD4+CD25+CD127) contribute to lymphocyte anergy in septic shock patients. Intensive Care Med 35:678–86
    [Google Scholar]
  65. 65. 
    Boomer JS, Green JM, Hotchkiss RS. 2014. The changing immune system in sepsis: is individualized immuno-modulatory therapy the answer?. Virulence 5:45–56
    [Google Scholar]
  66. 66. 
    Ost M, Singh A, Peschel A, Mehling R, Rieber N, Hartl D 2016. Myeloid-derived suppressor cells in bacterial infections. Front. Cell Infect. Microbiol. 6:37
    [Google Scholar]
  67. 67. 
    Mathias B, Delmas AL, Ozrazgat-Baslanti T, Vanzant EL, Szpila BE et al. 2017. Human myeloid-derived suppressor cells are associated with chronic immune suppression after severe sepsis/septic shock. Ann. Surg. 265:827–34
    [Google Scholar]
  68. 68. 
    Uhel F, Azzaoui I, Grégoire M, Pangault C, Dulong J et al. 2017. Early expansion of circulating granulocytic myeloid-derived suppressor cells predicts development of nosocomial infections in patients with sepsis. Am J. Respir. Crit. Care Med. 196:315–27
    [Google Scholar]
  69. 69. 
    Ren C, Yao R, Zhang H, Feng Y, Yao Y. 2020. Sepsis-associated encephalopathy: a vicious cycle of immunosuppression. J. Neuroinflamm. 17:14
    [Google Scholar]
  70. 70. 
    Vandewalle J, Libert C. 2020. Glucocorticoids in sepsis: to be or not to be. Front. Immunol. 11:1318
    [Google Scholar]
  71. 71. 
    Andersson U, Tracey KJ 2012. Reflex principles of immunological homeostasis. Annu. Rev. Immunol. 30:313–35
    [Google Scholar]
  72. 72. 
    Pavlov VA, Chavan SS, Tracey KJ. 2018. Molecular and functional neuroscience in immunity. Annu. Rev. Immunol. 36:783–812
    [Google Scholar]
  73. 73. 
    Kox M, Pompe JC, de Gouberville MCG, van der Hoeven JG, Hoedemaekers CW, Pickkers P. 2011. Effects of the α7 nicotinic acetylcholine receptor agonist GTS-21 on the innate immune response in humans. Shock 36:5–11
    [Google Scholar]
  74. 74. 
    Kox M, van Eijk LT, Verhaak T, Frenzel T, Kiers HD et al. 2015. Transvenous vagus nerve stimulation does not modulate the innate immune response during experimental human endotoxemia: a randomized controlled study. Arthritis Res. Ther. 17:150
    [Google Scholar]
  75. 75. 
    Koopman FA, Chavan SS, Miljko S, Grazio S, Sokolovic S et al. 2016. Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis. PNAS 113:8284–89
    [Google Scholar]
  76. 76. 
    van der Poll T, Coyle SM, Barbosa K, Braxton CC, Lowry SF. 1996. Epinephrine inhibits tumor necrosis factor-α and potentiates interleukin 10 production during human endotoxemia. J. Clin. Investig. 97:713–19
    [Google Scholar]
  77. 77. 
    van der Poll T, Jansen J, Endert E, Sauerwein HP, van Deventer SJ. 1994. Noradrenaline inhibits lipopolysaccharide-induced tumor necrosis factor and interleukin 6 production in human whole blood. Infect. Immun. 62:2046–50
    [Google Scholar]
  78. 78. 
    Takamoto T, Hori Y, Koga Y, Toshima H, Hara A, Yokoyama MM. 1991. Norepinephrine inhibits human natural killer cell activity in vitro. Int. J. Neurosci. 58:127–31
    [Google Scholar]
  79. 79. 
    Stolk RF, van der Pasch E, Naumann F, Schouwstra J, Bressers S et al. 2020. Norepinephrine dysregulates the immune response and compromises host defense during sepsis. Am. J. Respir. Crit. Care Med. 202:830–42
    [Google Scholar]
  80. 80. 
    Stolk RF, Naumann F, van der Pasch E, Schouwstra J, Bressers S et al. 2021. Phenylephrine impairs host defence mechanisms to infection: a combined laboratory study in mice and translational human study. Br. J. Anaesth. 126:652–64
    [Google Scholar]
  81. 81. 
    de Kruif MD, Lemaire LC, Giebelen IA, van Zoelen MA, Pater JM et al. 2007. Prednisolone dose-dependently influences inflammation and coagulation during human endotoxemia. J. Immunol. 178:1845–51
    [Google Scholar]
  82. 82. 
    Heagy W, Nieman K, Hansen C, Cohen M, Danielson D, West MA. 2003. Lower levels of whole blood LPS-stimulated cytokine release are associated with poorer clinical outcomes in surgical ICU patients. Surg. Infect. 4:171–80
    [Google Scholar]
  83. 83. 
    Frazier WJ, Hall MW. 2008. Immunoparalysis and adverse outcomes from critical illness. Pediatr. Clin. N. Am. 55:647–68
    [Google Scholar]
  84. 84. 
    Docke WD, Randow F, Syrbe U, Krausch D, Asadullah K et al. 1997. Monocyte deactivation in septic patients: restoration by IFN-γ treatment. Nat. Med. 3:678–81
    [Google Scholar]
  85. 85. 
    Meisel C, Schefold JC, Pschowski R, Baumann T, Hetzger K et al. 2009. Granulocyte-macrophage colony-stimulating factor to reverse sepsis-associated immunosuppression: a double-blind, randomized, placebo-controlled multicenter trial. Am. J. Respir. Crit. Care Med. 180:640–48
    [Google Scholar]
  86. 86. 
    Döcke WD, Höflich C, Davis KA, Röttgers K, Meisel C et al. 2005. Monitoring temporary immunodepression by flow cytometric measurement of monocytic HLA-DR expression: a multicenter standardized study. Clin. Chem. 51:2341–47
    [Google Scholar]
  87. 87. 
    Monneret G, Gossez M, Aghaeepour N, Gaudilliere B, Venet F. 2019. How clinical flow cytometry rebooted sepsis immunology. Cytometry A 95:431–41
    [Google Scholar]
  88. 88. 
    Peronnet E, Venet F, Maucort-Boulch D, Friggeri A, Cour M et al. 2017. Association between mRNA expression of CD74 and IL10 and risk of ICU-acquired infections: a multicenter cohort study. Intensive Care Med 43:1013–20
    [Google Scholar]
  89. 89. 
    Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T et al. 2000. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med. 192:1027–34
    [Google Scholar]
  90. 90. 
    Monaghan SF, Thakkar RK, Tran ML, Huang X, Cioffi WG et al. 2012. Programmed death 1 expression as a marker for immune and physiological dysfunction in the critically ill surgical patient. Shock 38:117–22
    [Google Scholar]
  91. 91. 
    Chang K, Svabek C, Vazquez-Guillamet C, Sato B, Rasche D et al. 2014. Targeting the programmed cell death 1: programmed cell death ligand 1 pathway reverses T cell exhaustion in patients with sepsis. Crit. Care 18:R3
    [Google Scholar]
  92. 92. 
    Yende S, Kellum JA, Talisa VB, Palmer OMP, Chang C-CH et al. 2019. Long-term host immune response trajectories among hospitalized patients with sepsis. JAMA Netw. Open 2:e198686
    [Google Scholar]
  93. 93. 
    Shao R, Fang Y, Yu H, Zhao L, Jiang Z, Li CS. 2016. Monocyte programmed death ligand-1 expression after 3–4 days of sepsis is associated with risk stratification and mortality in septic patients: a prospective cohort study. Crit. Care 20:124
    [Google Scholar]
  94. 94. 
    Drewry AM, Samra N, Skrupky LP, Fuller BM, Compton SM, Hotchkiss RS. 2014. Persistent lymphopenia after diagnosis of sepsis predicts mortality. Shock 42:383–91
    [Google Scholar]
  95. 95. 
    Chung K-P, Chang H-T, Lo S-C, Chang L-Y, Lin S-Y et al. 2015. Severe lymphopenia is associated with elevated plasma interleukin-15 levels and increased mortality during severe sepsis. Shock 43:569–75
    [Google Scholar]
  96. 96. 
    Otto GP, Sossdorf M, Claus RA, Rödel J, Menge K et al. 2011. The late phase of sepsis is characterized by an increased microbiological burden and death rate. Crit. Care 15:R183
    [Google Scholar]
  97. 97. 
    Koch RM, Kox M, de Jonge MI, van der Hoeven JG, Ferwerda G, Pickkers P 2017. Patterns in bacterial- and viral-induced immunosuppression and secondary infections in the ICU. Shock 47:5–12
    [Google Scholar]
  98. 98. 
    Monneret G, Venet F, Kullberg BJ, Netea MG. 2011. ICU-acquired immunosuppression and the risk for secondary fungal infections. Med. Mycol. 49:Suppl. 1S17–23
    [Google Scholar]
  99. 99. 
    Ong DSY, Bonten MJM, Spitoni C, Lunel FMV, Frencken JF et al. 2017. Epidemiology of multiple herpes viremia in previously immunocompetent patients with septic shock. Clin. Infect. Dis. 64:1204–10
    [Google Scholar]
  100. 100. 
    Walton AH, Muenzer JT, Rasche D, Boomer JS, Sato B et al. 2014. Reactivation of multiple viruses in patients with sepsis. PLOS ONE 9:e98819
    [Google Scholar]
  101. 101. 
    Osawa R, Singh N. 2009. Cytomegalovirus infection in critically ill patients: a systematic review. Crit. Care 13:R68
    [Google Scholar]
  102. 102. 
    van Vught LA, Klouwenberg PMCK, Spitoni C, Scicluna BP, Wiewel MA et al. 2016. Incidence, risk factors, and attributable mortality of secondary infections in the intensive care unit after admission for sepsis. JAMA 315:1469–79
    [Google Scholar]
  103. 103. 
    Gentile LF, Cuenca AG, Efron PA, Ang D, Bihorac A et al. 2012. Persistent inflammation and immunosuppression: a common syndrome and new horizon for surgical intensive care. J. Trauma Acute Care Surg. 72:1491–501
    [Google Scholar]
  104. 104. 
    Van Vught LA, Wiewel MA, Hoogendijk AJ, Frencken JF, Scicluna BP et al. 2017. The host response in patients with sepsis developing intensive care unit–acquired secondary infections. Am. J. Respir. Crit. Care Med. 196:458–70
    [Google Scholar]
  105. 105. 
    Prescott HC, Angus DC. 2018. Enhancing recovery from sepsis: a review. JAMA 319:62–75
    [Google Scholar]
  106. 106. 
    Arens C, Bajwa SA, Koch C, Siegler BH, Schneck E et al. 2016. Sepsis-induced long-term immune paralysis—results of a descriptive, explorative study. Crit. Care 20:93
    [Google Scholar]
  107. 107. 
    Zorio V, Venet F, Delwarde B, Floccard B, Marcotte G et al. 2017. Assessment of sepsis-induced immunosuppression at ICU discharge and 6 months after ICU discharge. Ann. Intensive Care 7:80
    [Google Scholar]
  108. 108. 
    Borriello F, Galdiero MR, Varricchi G, Loffredo S, Spadaro G, Marone G. 2019. Innate immune modulation by GM-CSF and IL-3 in health and disease. Int. J. Mol. Sci. 20:834
    [Google Scholar]
  109. 109. 
    Presneill JJ, Harris T, Stewart AG, Cade JF, Wilson JW. 2002. A randomized phase II trial of granulocyte-macrophage colony-stimulating factor therapy in severe sepsis with respiratory dysfunction. Am. J. Respir. Crit. Care Med. 166:138–43
    [Google Scholar]
  110. 110. 
    Rosenbloom AJ, Linden PK, Dorrance A, Penkosky N, Cohen-Melamed MH, Pinsky MR. 2005. Effect of granulocyte-monocyte colony-stimulating factor therapy on leukocyte function and clearance of serious infection in nonneutropenic patients. Chest 127:2139–50
    [Google Scholar]
  111. 111. 
    Orozco H, Arch J, Medina-Franco H, Pantoja JP, González QH et al. 2006. Molgramostim (GM-CSF) associated with antibiotic treatment in nontraumatic abdominal sepsis: a randomized, double-blind, placebo-controlled clinical trial. Arch. Surg. 141:150–53
    [Google Scholar]
  112. 112. 
    Hall MW, Knatz NL, Vetterly C, Tomarello S, Wewers MD et al. 2011. Immunoparalysis and nosocomial infection in children with multiple organ dysfunction syndrome. Intensive Care Med 37:525–32
    [Google Scholar]
  113. 113. 
    Bo L, Wang F, Zhu J, Li J, Deng X 2011. Granulocyte-colony stimulating factor (G-CSF) and granulocyte-macrophage colony stimulating factor (GM-CSF) for sepsis: a meta-analysis. Crit. Care 15:R58
    [Google Scholar]
  114. 114. 
    Burke JD, Young HA. 2019. IFN-γ: a cytokine at the right time, is in the right place. Semin. Immunol. 43:101280
    [Google Scholar]
  115. 115. 
    Leentjens J, Kox M, Koch RM, Preijers F, Joosten LA et al. 2012. Reversal of immunoparalysis in humans in vivo: a double-blind, placebo-controlled, randomized pilot study. Am. J. Respir. Crit. Care Med. 186:838–45
    [Google Scholar]
  116. 116. 
    Payen D, Faivre V, Miatello J, Leentjens J, Brumpt C et al. 2019. Multicentric experience with interferon gamma therapy in sepsis induced immunosuppression. A case series. BMC Infect. Dis. 19:931
    [Google Scholar]
  117. 117. 
    Delsing CE, Gresnigt MS, Leentjens J, Preijers F, Frager FA et al. 2014. Interferon-gamma as adjunctive immunotherapy for invasive fungal infections: a case series. BMC Infect. Dis. 14:166
    [Google Scholar]
  118. 118. 
    Nalos M, Santner-Nanan B, Parnell G, Tang B, McLean AS, Nanan R. 2012. Immune effects of interferon gamma in persistent staphylococcal sepsis. Am. J. Respir. Crit. Care Med. 185:110–12
    [Google Scholar]
  119. 119. 
    de Roquetaillade C, Monneret G, Gossez M, Venet F 2018. IL-7 and its beneficial role in sepsis-induced T lymphocyte dysfunction. Crit. Rev. Immunol. 38:433–51
    [Google Scholar]
  120. 120. 
    Venet F, Foray AP, Villars-Méchin A, Malcus C, Poitevin-Later F et al. 2012. IL-7 restores lymphocyte functions in septic patients. J. Immunol. 189:5073–81
    [Google Scholar]
  121. 121. 
    Francois B, Jeannet R, Daix T, Walton AH, Shotwell MS et al. 2018. Interleukin-7 restores lymphocytes in septic shock: the IRIS-7 randomized clinical trial. JCI Insight 3:5e98960
    [Google Scholar]
  122. 122. 
    Inoue S, Unsinger J, Davis CG, Muenzer JT, Ferguson TA et al. 2010. IL-15 prevents apoptosis, reverses innate and adaptive immune dysfunction, and improves survival in sepsis. J. Immunol. 184:1401–9
    [Google Scholar]
  123. 123. 
    Conlon KC, Lugli E, Welles HC, Rosenberg SA, Fojo AT et al. 2015. Redistribution, hyperproliferation, activation of natural killer cells and CD8 T cells, and cytokine production during first-in-human clinical trial of recombinant human interleukin-15 in patients with cancer. J. Clin. Oncol. 33:74–82
    [Google Scholar]
  124. 124. 
    McBride MA, Patil TK, Bohannon JK, Hernandez A, Sherwood ER, Patil NK 2020. Immune checkpoints: novel therapeutic targets to attenuate sepsis-induced immunosuppression. Front. Immunol. 11:624272
    [Google Scholar]
  125. 125. 
    Wakeley ME, Gray CC, Monaghan SF, Heffernan DS, Ayala A. 2020. Check point inhibitors and their role in immunosuppression in sepsis. Crit. Care Clin. 36:69–88
    [Google Scholar]
  126. 126. 
    Patera AC, Drewry AM, Chang K, Beiter ER, Osborne D, Hotchkiss RS 2016. Frontline science: defects in immune function in patients with sepsis are associated with PD-1 or PD-L1 expression and can be restored by antibodies targeting PD-1 or PD-L1. J. Leukoc. Biol. 100:1239–54
    [Google Scholar]
  127. 127. 
    Chen L, Han X 2015. Anti-PD-1/PD-L1 therapy of human cancer: past, present, and future. J. Clin. Investig. 125:3384–91
    [Google Scholar]
  128. 128. 
    Watanabe E, Nishida O, Kakihana Y, Odani M, Okamura T et al. 2020. Pharmacokinetics, pharmacodynamics, and safety of nivolumab in patients with sepsis-induced immunosuppression: a multicenter, open-label Phase 1/2 study. Shock 53:686–94
    [Google Scholar]
  129. 129. 
    Hotchkiss RS, Colston E, Yende S, Angus DC, Moldawer LL et al. 2019. Immune checkpoint inhibition in sepsis: a Phase 1b randomized, placebo-controlled, single ascending dose study of antiprogrammed cell death-ligand 1 antibody (BMS-936559). Crit. Care Med. 47:632–42
    [Google Scholar]
  130. 130. 
    Hotchkiss RS, Colston E, Yende S, Crouser ED, Martin GS et al. 2019. Immune checkpoint inhibition in sepsis: a Phase 1b randomized study to evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics of nivolumab. Intensive Care Med 45:1360–71
    [Google Scholar]
  131. 131. 
    Dominari A, Hathaway D III, Pandav K, Matos W, Biswas S et al. 2020. Thymosin alpha 1: a comprehensive review of the literature. World J. Virol. 9:67–78
    [Google Scholar]
  132. 132. 
    Pei F, Guan X, Wu J 2018. Thymosin alpha 1 treatment for patients with sepsis. Expert Opin. Biol. Ther. 18:71–76
    [Google Scholar]
  133. 133. 
    Wu J, Zhou L, Liu J, Ma G, Kou Q et al. 2013. The efficacy of thymosin alpha 1 for severe sepsis (ETASS): a multicenter, single-blind, randomized and controlled trial. Crit. Care 17:R8
    [Google Scholar]
  134. 134. 
    Gilardin L, Bayry J, Kaveri SV. 2015. Intravenous immunoglobulin as clinical immune-modulating therapy. CMAJ 187:257–64
    [Google Scholar]
  135. 135. 
    Giamarellos-Bourboulis EJ, Tziolos N, Routsi C, Katsenos C, Tsangaris I et al. 2016. Improving outcomes of severe infections by multidrug-resistant pathogens with polyclonal IgM-enriched immunoglobulins. Clin. Microbiol. Infect. 22:499–506
    [Google Scholar]
  136. 136. 
    Aubron C, Berteau F, Sparrow RL. 2019. Intravenous immunoglobulin for adjunctive treatment of severe infections in ICUs. Curr. Opin. Crit. Care 25:417–22
    [Google Scholar]
  137. 137. 
    Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M et al. 2017. Surviving Sepsis Campaign: international guidelines for management of sepsis and septic shock; 2016. Intensive Care Med 43:304–77
    [Google Scholar]
  138. 138. 
    Kakoullis L, Pantzaris ND, Platanaki C, Lagadinou M, Papachristodoulou E, Velissaris D 2018. The use of IgM-enriched immunoglobulin in adult patients with sepsis. J. Crit. Care 47:30–35
    [Google Scholar]
  139. 139. 
    Cui J, Wei X, Lv H, Li Y, Li P et al. 2019. The clinical efficacy of intravenous IgM-enriched immunoglobulin (pentaglobin) in sepsis or septic shock: a meta-analysis with trial sequential analysis. Ann. Intensive Care 9:27
    [Google Scholar]
  140. 140. 
    Kalvelage C, Zacharowski K, Bauhofer A, Gockel U, Adamzik M et al. 2019. Personalized medicine with IgGAM compared with standard of care for treatment of peritonitis after infectious source control (the PEPPER trial): study protocol for a randomized controlled trial. Trials 20:156
    [Google Scholar]
  141. 141. 
    Parks T, Wilson C, Curtis N, Norrby-Teglund A, Sriskandan S. 2018. Polyspecific intravenous immunoglobulin in clindamycin-treated patients with streptococcal toxic shock syndrome: a systematic review and meta-analysis. Clin. Infect. Dis. 67:1434–36
    [Google Scholar]
  142. 142. 
    Sartelli M, Guirao X, Hardcastle TC, Kluger Y, Boermeester MA et al. 2018. 2018 WSES/SIS-E consensus conference: recommendations for the management of skin and soft-tissue infections. World J. Emerg. Surg. 13:58
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-061121-040214
Loading
/content/journals/10.1146/annurev-physiol-061121-040214
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error