1932

Abstract

This article reviews and evaluates the nascent literature on the economics of climate engineering. The literature distinguishes between two broad types of climate engineering: solar radiation management and carbon dioxide removal. We review the science and engineering characteristics of these technologies and analyze the implications of those characteristics for economic policy design. We discuss optimal policy and carbon price, interregional and intergenerational equity issues, strategic interaction in the design of international environmental agreements, and the sources of risk and uncertainty surrounding these technologies. We conclude that climate engineering technologies, similar to mitigation and adaptation, should be a fundamental part of future domestic and global climate policy design. We propose several avenues in need of additional research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-resource-100815-095440
2016-10-05
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/resource/8/1/annurev-resource-100815-095440.html?itemId=/content/journals/10.1146/annurev-resource-100815-095440&mimeType=html&fmt=ahah

Literature Cited

  1. Angel R. 2006. Feasibility of cooling the Earth with a cloud of small spacecraft near the inner Lagrange point (L1). PNAS 103:4617184–89 [Google Scholar]
  2. Archer D, Eby M, Brovkin V, Ridgwell A, Cao L. et al. 2009. Atmospheric lifetime of fossil fuel carbon dioxide. Annu. Rev. Earth Planet. Sci. 37:1117–34 [Google Scholar]
  3. Bala G, Duffy PB, Taylor KE. 2008. Impact of geoengineering schemes on the global hydrological cycle. PNAS 105:227664–69 [Google Scholar]
  4. Barrett S. 2007. A multitrack climate treaty system. Architectures for Agreement: Addressing Global Climate Change in the Post-Kyoto World JE Aldy, RN Stavins 237–79 Cambridge, MA: Cambridge Univ. Press [Google Scholar]
  5. Barrett S. 2008. The incredible economics of geoengineering. Environ. Resour. Econ. 39:45–54 [Google Scholar]
  6. Barrett S. 2014. Solar geoengineering's brave new world: thoughts on the governance of an unprecedented technology. Rev. Environ. Econ. Policy 8:2249–69 [Google Scholar]
  7. Bellamy R, Hulme M. 2011. Beyond the tipping point: understanding perceptions of abrupt climate change and their implications. Weather Clim. Soc. 3:48–60 [Google Scholar]
  8. Betz G. 2012. The case for climate engineering research: an analysis of the “arm the future” argument. Clim. Change 111:473–85 [Google Scholar]
  9. Bickel JE. 2013. Climate engineering and climate tipping-point scenarios. Environ. Syst. Decis. 33:1152–67 [Google Scholar]
  10. Bickel JE, Agrawal S. 2013. Reexamining the economics of aerosol geoengineering. Clim. Change 119:3–4993–1006 [Google Scholar]
  11. Bickel JE, Lane L. 2009. An analysis of climate engineering as a response to climate change. Rep. 40, Copenhagen Consens. Cent., Copenhagen, Den.
  12. Blackstock JJ, Battisti DS, Caldeira K, Eardley DM, Katz JI. et al. 2009. Climate engineering responses to climate emergencies Rep., Novim, Santa Barbara, CA. http://arxiv.org/ftp/arxiv/papers/0907/0907.5140.pdf
  13. Bunzl M. 2009. Researching geoengineering: should not or could not?. Environ. Res. Lett. 4:4045104 [Google Scholar]
  14. Burns WCG. 2011. Climate geoengineering: solar radiation management and its implications for intergenerational equity. Stanford J. Law Sci. Policy 4:137–55 [Google Scholar]
  15. Caldeira K, Wood L. 2008. Global and Arctic climate engineering: numerical model studies. Philos. Trans. R. Soc. A 366:18824039–56 [Google Scholar]
  16. Corner A, Pidgeon N. 2010. Geoengineering the climate: the social and ethical implications. Environment 52:124–37 [Google Scholar]
  17. Crutzen PJ. 2006. Albedo enhancement by stratospheric sulfur injections: a contribution to resolve a policy dilemma?. Clim. Change 77:3–4211–19 [Google Scholar]
  18. Davis SJ, Socolow RH. 2014. Commitment accounting of CO2 emissions. Environ. Res. Lett. 9:8084018 [Google Scholar]
  19. Diffenbaugh NS, Field CB. 2013. Changes in ecologically critical terrestrial climate conditions. Science 341:6145486–92 [Google Scholar]
  20. Emmerling J, Tavoni M. 2013. Geoengineering and abatement: a ‘flat’ relationship under uncertainty FEEM Work. Pap. 31. http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2251733
  21. Feichter J, Leisner T. 2009. Climate engineering: a critical review of approaches to modify the global energy balance. Eur. Phys. J. Spec. Top. 176:181–92 [Google Scholar]
  22. Galaz V. 2012. Geo-engineering, governance, and social-ecological systems: critical issues and joint research needs. Ecol. Soc. 17:124 [Google Scholar]
  23. Goes M, Tuana N, Keller K. 2011. The economics (or lack thereof) of aerosol geoengineering. Clim. Change 109:3–4719–44 [Google Scholar]
  24. Goeschl T, Heyen D, Moreno-Cruz JB. 2013. The intergenerational transfer of solar radiation management capabilities and atmospheric carbon stocks. Environ. Resour. Econ. 56:185–104 [Google Scholar]
  25. Gramstad K, Tjøtta S. 2010. Climate engineering: cost benefit and beyond Work. Pap. 05/10, Dep. Econ., Univ. Bergen, Bergen, Nor. http://www.feem-web.it/ess/ess10/files/selected_papers/GRAMSTAD_Kjetil.pdf
  26. Heutel G, Moreno-Cruz J, Shayegh S. 2015a. Solar geoengineering, uncertainty, and the price of carbon NBER Work. Pap. No. 21355
  27. Heutel G, Moreno-Cruz J, Shayegh S. 2015b. Climate tipping points and solar geoengineering NBER Work. Pap. No. 21589
  28. Heyen D. 2015. Strategic conflicts on the horizon: R&D incentives for environmental technologies Work. Pap. 584, Dep. Econ., Univ. Heidelberg, Heidelberg, Ger.
  29. Heyen D, Wiertz T, Irvine P. 2015. Regional disparities in solar radiation management impacts: limitations to simple assessments and the role of diverging preferences. Clim. Change 133:4557–63 [Google Scholar]
  30. House KZ, Baclig AC, Ranjan M, van Nierop EA, Wilcox J, Herzog HJ. 2011. Economic and energetic analysis of capturing CO2 from ambient air. PNAS 108:520428–33 [Google Scholar]
  31. IPCC (Intergov. Panel Clim. Change) 2014. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects Cambridge, UK: Cambridge Univ. Press
  32. Jamieson D. 1996. Ethics and intentional climate change. Clim. Change 33:3323–36 [Google Scholar]
  33. Jones A, Haywood JM, Alterskjoer K, Boucher O, Cole JNS. et al. 2013. The impact of abrupt suspension of solar radiation management (termination effect) in experiment G2 of the Geoengineering Model Intercomparison Project (GeoMIP). J. Geophys. Res. Atmos. 118:179743–52 [Google Scholar]
  34. Kalidindi S, Bala G, Modak A, Caldeira K. 2014. Modeling of solar radiation management: a comparison of simulations using reduced solar constant and stratospheric sulphate aerosols. Climate Dyn 44:9–102909–25 [Google Scholar]
  35. Katz JI. 2010. Stratospheric albedo modification. Energy Environ. Sci. 3:1634–44 [Google Scholar]
  36. Keith DW. 2013. A Case for Climate Engineering Cambridge, MA: MIT Press
  37. Klepper G, Rickels W. 2012. The real economics of climate engineering. Econ. Res. Int. 2012:316564 [Google Scholar]
  38. Klepper G, Rickels W. 2014. Climate engineering: economic considerations and research challenges. Rev. Environ. Econ. Policy 8:2270–89 [Google Scholar]
  39. Kravitz B, MacMartin DG, Caldeira K. 2012. Geoengineering: whiter skies?. Geophys. Res. Lett. 39:11L11801 [Google Scholar]
  40. Kravitz B, MacMartin DG, Robock A, Rasch PJ, Ricke KL. et al. 2014. A multi-model assessment of regional climate disparities caused by solar geoengineering. Environ. Res. Lett. 9:074013 [Google Scholar]
  41. Kravitz B, Robock A, Boucher O, Schmidt H, Taylor KE. et al. 2011. The Geoengineering Model Intercomparison Project (GeoMIP). Atmos. Sci. Lett. 12:2162–67 [Google Scholar]
  42. Kriegler E, Hall JW, Held H, Dawson R, Schellnhuber HJ. 2013. Is atmospheric carbon dioxide removal a game changer for climate change mitigation?. Clim. Change 118:45–57 [Google Scholar]
  43. Lackner KS. 2009. Capture of carbon dioxide from ambient air. Eur. Phys. J. 176:93–106 [Google Scholar]
  44. Lackner KS, Brennan S, Matter JM, Park A-HA, Wright A, van der Zwaan B. 2012. The urgency of the development of CO2 capture from ambient air. PNAS 109:3313156–62 [Google Scholar]
  45. Lackner KS, Sachs JD. 2005. A robust strategy for sustainable energy. Brookings Pap. Econ. Act. 2:215–84 [Google Scholar]
  46. Latham J, Bower K, Choularton T, Coe H, Connolly P. et al. 2012. Marine cloud brightening. Philos. Trans. R. Soc. A 370:4217–62 [Google Scholar]
  47. Lemoine D, Traeger C. 2014. Watch your step: optimal policy in a tipping climate. Am. Econ. J. Econ. Policy 6:1137–66 [Google Scholar]
  48. Lenton TM, Held H, Kriegler E, Hall JW, Lucht W. et al. 2008. Tipping elements in the Earth's climate system. PNAS 105:61786–93 [Google Scholar]
  49. Lockwood JG. 2011. Abrupt and sudden climatic transitions and fluctuations: a review. Int. J. Climatol. 21:91153–79 [Google Scholar]
  50. MacMartin DG, Keith DW, Kravitz B, Caldeira K. 2013. Management of trade-offs in geoengineering through optimal choice of non-uniform radiative forcing. Nat. Clim. Change 3:365–68 [Google Scholar]
  51. Manoussi V, Xepapadeas A. 2016. Cooperation and competition in climate change policies: mitigation and climate engineering when countries are asymmetric. Environ. Resour. Econ. In press. doi: 10.1007/s10640-015-9956-3
  52. Matthews D, Caldeira K. 2007. Transient climate-carbon simulations of planetary geoengineering. PNAS 104:249949–54 [Google Scholar]
  53. McClellan J, Keith DW, Apt J. 2012. Cost analysis of stratospheric albedo modification delivery systems. Environ. Res. Lett. 7:3034019 [Google Scholar]
  54. Millard-Ball A. 2012. The Tuvalu Syndrome. Can geoengineering solve climate's collective action problem?. Clim. Change 110:1047–66 [Google Scholar]
  55. Moreno-Cruz JB. 2015. Mitigation and the geoengineering threat. Resour. Energy Econ. 41:248–63 [Google Scholar]
  56. Moreno-Cruz JB, Keith DW. 2013. Climate policy under uncertainty: a case for solar geoengineering. Clim. Change 121:3431–44 [Google Scholar]
  57. Moreno-Cruz JB, Ricke KL, Keith DW. 2012. A simple model to account for regional inequalities in the effectiveness of solar radiation management. Clim. Change 110:3–4649–68 [Google Scholar]
  58. Moreno-Cruz JB, Smulders S. 2007. Geoengineering and economic growth: making climate change irrelevant or buying time? Presented at Meet. Int. Energy Workshop, Maastricht, Neth. [Google Scholar]
  59. Moreno-Cruz JB, Smulders S. 2010. Revisiting the economics of climate change: the role of geoengineering Unpublished manuscript, Sch. Econ., Georgia Inst. Tech., Atlanta, GA. http://works.bepress.com/morenocruz/4
  60. Morgan MG, Ricke KL. 2011. Cooling the earth through solar radiation management: the need for research and an approach to its governance. Work. Pap., Int. Risk Gov. Counc., Geneva
  61. Murphy DM. 2009. Effect of stratospheric aerosols on direct sunlight and implications for concentrating solar power. Environ. Sci. Technol. 43:82784–86 [Google Scholar]
  62. Nordhaus WD. 2008. A Question of Balance: Weighing the Options on Global Warming Policies New Haven, CT: Yale Univ. Press
  63. NRC (Natl. Res. Counc.) 2015a. Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration Washington, DC: Natl. Acad. Press
  64. NRC (Natl. Res. Counc.) 2015b. Climate Intervention: Reflecting Sunlight to Cool Earth Washington, DC: Natl. Acad. Press
  65. Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC. et al. 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:7059681–86 [Google Scholar]
  66. Rasch PJ, Crutzen PJ, Coleman DB. 2008. Exploring the geoengineering of climate using stratospheric sulfate aerosols: the role of particle size. Geophys. Res. Lett. 35:2L02809 [Google Scholar]
  67. Ricke KL, Moreno-Cruz JB, Caldeira K. 2013. Strategic incentives for climate geoengineering coalitions to exclude broad participation. Environ. Res. Lett. 8:1014021 [Google Scholar]
  68. Ricke KL, Morgan MG, Allen MR. 2010. Regional climate response to solar-radiation management. Nat. Geosci. 3:537–41 [Google Scholar]
  69. Ricke KL, Rowlands DJ, Ingram WJ, Keith DW, Granger MM. 2012. Effectiveness of stratospheric solar-radiation management as a function of climate sensitivity. Nat. Clim. Change 2:92–96 [Google Scholar]
  70. Rickels W, Rehdanz K, Oschlies A. 2012. Economic prospects of ocean iron fertilization in an international carbon market. Res. Energy Econ. 34:129–50 [Google Scholar]
  71. Robock A, Marquardt A, Kravitz B, Stenchikov G. 2009. Benefits, risks, and costs of stratospheric geoengineering. Geophys. Res. Lett. 36:19L19703 [Google Scholar]
  72. Robock A, Oman L, Stenchikov GL. 2008. Regional climate responses to geoengineering with tropical and Arctic SO2 injections. J. Geophys. Res. 113:D16101 [Google Scholar]
  73. Salter S, Sortino G, Latham J. 2008. Sea-going hardware for the cloud albedo method of reversing global warming. Philos. Trans. R. Soc. A 366:18823989–4006 [Google Scholar]
  74. Schelling TC. 1996. The economic diplomacy of geoengineering. Clim. Change 33:291–302 [Google Scholar]
  75. Schneider SH. 1996. Geoengineering: could—or should—we do it?. Clim. Change 33:3291–302 [Google Scholar]
  76. Sillmann J, Lenton TM, Levermann A, Ott K, Hulme M. et al. 2015. Climate emergencies do not justify engineering the climate. Nat. Clim. Change 5:4290–92 [Google Scholar]
  77. Socolow R, Desmond M, Aines R, Blackstock J, Bolland O. et al. 2011. Direct air capture of CO2 with chemicals: a technology assessment for the APS Panel on Public Affairs. Rep., Am. Phys. Soc., Ridge, NY
  78. Sterck O. 2011. Geoengineering as an alternative to mitigation: specification and dynamic implications Discuss. Pap. 2011-35, Univ. Cathol. Louvain, Leuven, Belg.
  79. Tilmes S, Moeller R, Salawitch R. 2008. The sensitivity of polar ozone depletion to proposed geoengineering schemes. Science 320:58801201–204 [Google Scholar]
  80. Victor DG. 2008. On the regulation of geoengineering. Oxf. Rev. Econ. Policy 24:2322–36 [Google Scholar]
  81. Wagner G, Weitzman ML. 2015. Climate Shock: The Economic Consequences of a Hotter Planet. Princeton, NJ: Princeton Univ. Press
  82. Walther GR, Post E, Convey P, Menzel A, Parmesan C. et al. 2002. Ecological responses to recent climate change. Nature 416:6879389–95 [Google Scholar]
  83. Weitzman M. 2015. A voting architecture for the governance of free-driver externalities, with application to geoengineering. Scand. J. Econ. 17:41049–68 [Google Scholar]
  84. Williamson P, Wallace DWR, Law CS, Boyd PW, Collos Y. et al. 2012. Ocean fertilization for geoengineering: a review of effectiveness, environmental impacts and emerging governance. Process Saf. Environ. Prot. 90:6475–88 [Google Scholar]
  85. Zickfeld K, Morgan MG, Frame DJ, Keith DW. 2010. Expert judgments about transient climate response to alternative future trajectories of radiative forcing. PNAS 107:2812451–56 [Google Scholar]
/content/journals/10.1146/annurev-resource-100815-095440
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error