1932

Abstract

As one of the major types of biomacromolecules in the cell, glycans play essential functional roles in various biological processes. Compared with proteins and nucleic acids, the analysis of glycans in situ has been more challenging. Herein we review recent advances in the development of methods and strategies for labeling, imaging, and profiling of glycans in cells and in vivo. Cellular glycans can be labeled by affinity-based probes, including lectin and antibody conjugates, direct chemical modification, metabolic glycan labeling, and chemoenzymatic labeling. These methods have been applied to label glycans with fluorophores, which enables the visualization and tracking of glycans in cells, tissues, and living organisms. Alternatively, labeling glycans with affinity tags has enabled the enrichment of glycoproteins for glycoproteomic profiling. Built on the glycan labeling methods, strategies enabling cell-selective and tissue-specific glycan labeling and protein-specific glycan imaging have been developed. With these methods and strategies, researchers are now better poised than ever to dissect the biological function of glycans in physiological or pathological contexts.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-091620-091314
2021-07-27
2024-04-29
Loading full text...

Full text loading...

/deliver/fulltext/anchem/14/1/annurev-anchem-091620-091314.html?itemId=/content/journals/10.1146/annurev-anchem-091620-091314&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Marth JD. 2008. A unified vision of the building blocks of life. Nat. Cell Biol. 10:1015–16
    [Google Scholar]
  2. 2. 
    Moremen KW, Tiemeyer M, Nairn AV. 2012. Vertebrate protein glycosylation: diversity, synthesis and function. Nat. Rev. Mol. Cell Biol. 13:448–62
    [Google Scholar]
  3. 3. 
    Xu C, Ng DT. 2015. Glycosylation-directed quality control of protein folding. Nat. Rev. Mol. Cell Biol. 16:742–52
    [Google Scholar]
  4. 4. 
    Hart GW, Copeland RJ. 2010. Glycomics hits the big time. Cell 143:672–76
    [Google Scholar]
  5. 5. 
    Reily C, Stewart TJ, Renfrow MB, Novak J. 2019. Glycosylation in health and disease. Nat. Rev. Nephrol. 15:346–66
    [Google Scholar]
  6. 6. 
    Freeze HH, Eklund EA, Ng BG, Patterson MC. 2012. Neurology of inherited glycosylation disorders. Lancet Neurol 11:453–66
    [Google Scholar]
  7. 7. 
    Pinho SS, Reis CA. 2015. Glycosylation in cancer: mechanisms and clinical implications. Nat. Rev. Cancer 15:540–55
    [Google Scholar]
  8. 8. 
    Pabst M, Altmann F. 2011. Glycan analysis by modern instrumental methods. Proteomics 11:631–43
    [Google Scholar]
  9. 9. 
    Andre S, Kaltner H, Manning JC, Murphy PV, Gabius HJ. 2015. Lectins: getting familiar with translators of the sugar code. Molecules 20:1788–823
    [Google Scholar]
  10. 10. 
    Rini JM. 1995. Lectin structure. Annu. Rev. Biophys. Biomol. Struct. 24:551–77
    [Google Scholar]
  11. 11. 
    Liang PH, Wang SK, Wong CH. 2007. Quantitative analysis of carbohydrate-protein interactions using glycan microarrays: determination of surface and solution dissociation constants. J. Am. Chem. Soc. 129:11177–84
    [Google Scholar]
  12. 12. 
    Vosseller K, Trinidad JC, Chalkley RJ, Specht CG, Thalhammer A et al. 2006. O-linked N-acetylglucosamine proteomics of postsynaptic density preparations using lectin weak affinity chromatography and mass spectrometry. Mol. Cell. Proteom. 5:923–34
    [Google Scholar]
  13. 13. 
    Zielinska DF, Gnad F, Wisniewski JR, Mann M. 2010. Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. Cell 141:897–907
    [Google Scholar]
  14. 14. 
    Sharon N, Lis H. 2004. History of lectins: from hemagglutinins to biological recognition molecules. Glycobiology 14:53R–62R
    [Google Scholar]
  15. 15. 
    Debbage PL, Griebel J, Ried M, Gneiting T, DeVries A, Hutzler P. 1998. Lectin intravital perfusion studies in tumor-bearing mice: micrometer-resolution, wide-area mapping of microvascular labeling, distinguishing efficiently and inefficiently perfused microregions in the tumor. J. Histochem. Cytochem. 46:627–39
    [Google Scholar]
  16. 16. 
    Loschberger A, van de Linde S, Dabauvalle MC, Rieger B, Heilemann M et al. 2012. Super-resolution imaging visualizes the eightfold symmetry of gp210 proteins around the nuclear pore complex and resolves the central channel with nanometer resolution. J. Cell Sci. 125:570–75
    [Google Scholar]
  17. 17. 
    Chen JL, Gao J, Zhang M, Cai MJ, Xu HJ et al. 2016. Systemic localization of seven major types of carbohydrates on cell membranes by dSTORM imaging. Sci. Rep. 6:10
    [Google Scholar]
  18. 18. 
    Tanaka Y, Kohler JJ. 2008. Photoactivatable crosslinking sugars for capturing glycoprotein interactions. J. Am. Chem. Soc. 130:3278–79
    [Google Scholar]
  19. 19. 
    Cheng W, Ding L, Ding SJ, Yin YB, Ju HX. 2009. A simple electrochemical cytosensor array for dynamic analysis of carcinoma cell surface glycans. Angew. Chem. Int. Ed. 48:6465–68
    [Google Scholar]
  20. 20. 
    Katrlik J, Svitel J, Gemeiner P, Kozar T, Tkac J. 2010. Glycan and lectin microarrays for glycomics and medicinal applications. Med. Res. Rev. 30:394–418
    [Google Scholar]
  21. 21. 
    Haji-Ghassemi O, Blackler RJ, Young NM, Evans SV. 2015. Antibody recognition of carbohydrate epitopes. Glycobiology 25:920–52
    [Google Scholar]
  22. 22. 
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ et al. 1998. Embryonic stem cell lines derived from human blastocysts. Science 282:1145–47
    [Google Scholar]
  23. 23. 
    Trusler O, Huang ZY, Goodwin J, Laslett AL. 2018. Cell surface markers for the identification and study of human naive pluripotent stem cells. Stem Cell Res 26:36–43
    [Google Scholar]
  24. 24. 
    Teo CF, Ingale S, Wolfert MA, Elsayed GA, Not LG et al. 2010. Glycopeptide-specific monoclonal antibodies suggest new roles for O-GlcNAc. Nat. Chem. Biol. 6:338–43
    [Google Scholar]
  25. 25. 
    Fong CY, Peh GSL, Gauthaman K, Bongso A. 2009. Separation of SSEA-4 and TRA-1–60 labelled undifferentiated human embryonic stem cells from a heterogeneous cell population using magnetic-activated cell sorting (MACS) and fluorescence-activated cell sorting (FACS). Stem Cell Rev. Rep. 5:72–80
    [Google Scholar]
  26. 26. 
    Posey AD Jr., Schwab RD, Boesteanu AC, Steentoft C, Mandel U et al. 2016. Engineered CAR T cells targeting the cancer-associated Tn-glycoform of the membrane mucin MUC1 control adenocarcinoma. Immunity 44:1444–54
    [Google Scholar]
  27. 27. 
    Cox EC, Thornlow DN, Jones MA, Fuller JL, Merrit JH et al. 2019. Antibody-mediated endocytosis of polysialic acid enables intracellular delivery and cytotoxicity of a glycan-directed antibody-drug conjugate. Cancer Res 79:1810–21
    [Google Scholar]
  28. 28. 
    Shevinsky LH, Knowles BB, Damjanov I, Solter D. 1982. Monoclonal-antibody to murine embryos defines a stage-specific embryonic antigen expressed on mouse embryos and human teratocarcinoma cells. Cell 30:697–705
    [Google Scholar]
  29. 29. 
    Ma J, Hart GW. 2014. O-GlcNAc profiling: from proteins to proteomes. Clin. Proteom. 11:8
    [Google Scholar]
  30. 30. 
    Pan M, Li S, Li X, Shao F, Liu L, Hu HG. 2014. Synthesis of and specific antibody generation for glycopeptides with arginine N-GlcNAcylation. Angew. Chem. Int. Ed. 53:14517–21
    [Google Scholar]
  31. 31. 
    Kudryashov V, Glunz PW, Williams LJ, Hintermann S, Danishefsky SJ, Lloyd KO 2001. Toward optimized carbohydrate-based anticancer vaccines: epitope clustering, carrier structure, and adjuvant all influence antibody responses to Lewisy conjugates in mice. PNAS 98:3264–69
    [Google Scholar]
  32. 32. 
    Cai H, Sun ZY, Chen MS, Zhao YF, Kunz H, Li YM. 2014. Synthetic multivalent glycopeptide-lipopeptide antitumor vaccines: impact of the cluster effect on the killing of tumor cells. Angew. Chem. Int. Ed. 3:1699–703
    [Google Scholar]
  33. 33. 
    Otsuka H, Uchimura E, Koshino H, Okano T, Kataoka K. 2003. Anomalous binding profile of phenylboronic acid with N-acetylneuraminic acid (Neu5Ac) in aqueous solution with varying pH. J. Am. Chem. Soc. 125:3493–502
    [Google Scholar]
  34. 34. 
    Bull SD, Davidson MG, van den Elsen JM, Fossey JS, Jenkins AT et al. 2013. Exploiting the reversible covalent bonding of boronic acids: recognition, sensing, and assembly. Acc. Chem. Res. 46:312–26
    [Google Scholar]
  35. 35. 
    Xu YW, Wu ZX, Zhang LJ, Lu HJ, Yang PY et al. 2009. Highly specific enrichment of glycopeptides using boronic acid-functionalized mesoporous silica. Anal. Chem. 81:503–8
    [Google Scholar]
  36. 36. 
    Sparbier K, Koch S, Kessler I, Wenzel T, Kostrzewa M. 2005. Selective isolation of glycoproteins and glycopeptides for MALDI-TOF MS detection supported by magnetic particles. J. Biomol. Tech. 16:407–13
    [Google Scholar]
  37. 37. 
    Xiao H, Chen W, Smeekens JM, Wu R. 2018. An enrichment method based on synergistic and reversible covalent interactions for large-scale analysis of glycoproteins. Nat. Commun. 9:1692
    [Google Scholar]
  38. 38. 
    Liu AP, Peng S, Soo JC, Kuang M, Chen P, Duan HW 2011. Quantum dots with phenylboronic acid tags for specific labeling of sialic acids on living cells. Anal. Chem. 83:1124–30
    [Google Scholar]
  39. 39. 
    Di HX, Liu HQ, Li MM, Li J, Liu DB. 2017. High-precision profiling of sialic acid expression in cancer cells and tissues using background-free surface-enhanced Raman scattering tags. Anal. Chem. 89:5875–82
    [Google Scholar]
  40. 40. 
    Wang DE, Yan JH, Jiang JJ, Liu X, Tian C et al. 2018. Polydiacetylene liposomes with phenylboronic acid tags: a fluorescence turn-on sensor for sialic acid detection and cell-surface glycan imaging. Nanoscale 10:4570–78
    [Google Scholar]
  41. 41. 
    Gahmberg CG, Andersson LC. 1977. Selective radioactive labeling of cell surface sialoglycoproteins by periodate-tritiated borohydride. J. Biol. Chem. 252:5888–94
    [Google Scholar]
  42. 42. 
    De Bank PA, Kellam B, Kendall DA, Shakesheff KM. 2003. Surface engineering of living myoblasts via selective periodate oxidation. Biotechnol. Bioeng. 81:800–8
    [Google Scholar]
  43. 43. 
    Kolmel DK, Kool ET. 2017. Oximes and hydrazones in bioconjugation: mechanism and catalysis. Chem. Rev. 117:10358–76
    [Google Scholar]
  44. 44. 
    Dirksen A, Dawson PE. 2008. Rapid oxime and hydrazone ligations with aromatic aldehydes for biomolecular labeling. Bioconjug. Chem. 19:2543–48
    [Google Scholar]
  45. 45. 
    Dirksen A, Dirksen S, Hackeng TM, Dawson PE. 2006. Nucleophilic catalysis of hydrazone formation and transimination: implications for dynamic covalent chemistry. J. Am. Chem. Soc. 128:15602–3
    [Google Scholar]
  46. 46. 
    Dirksen A, Hackeng TM, Dawson PE. 2006. Nucleophilic catalysis of oxime ligation. Angew. Chem. Int. Ed. 45:7581–84
    [Google Scholar]
  47. 47. 
    Mao CY, Lee MY, Jhan JR, Halpern AR, Woodworth MA et al. 2020. Feature-rich covalent stains for super-resolution and cleared tissue fluorescence microscopy. Sci. Adv. 6:eaba4542
    [Google Scholar]
  48. 48. 
    Zeng Y, Ramya TN, Dirksen A, Dawson PE, Paulson JC. 2009. High-efficiency labeling of sialylated glycoproteins on living cells. Nat. Methods 6:207–9
    [Google Scholar]
  49. 49. 
    Mockl L, Pedram K, Roy AR, Krishnan V, Gustavsson AK et al. 2019. Quantitative super-resolution microscopy of the mammalian glycocalyx. Dev. Cell 50:57–72.e6
    [Google Scholar]
  50. 50. 
    Baskin JM, Dehnert KW, Laughlin ST, Amacher SL, Bertozzi CR 2010. Visualizing enveloping layer glycans during zebrafish early embryogenesis. PNAS 107:10360–65
    [Google Scholar]
  51. 51. 
    Kayser H, Zeitler R, Kannicht C, Grunow D, Nuck R, Reutter W. 1992. Biosynthesis of a nonphysiological sialic-acid in different rat organs, using N-propanoyl-D-hexosamines as precursors. J. Biol. Chem. 267:6934–38
    [Google Scholar]
  52. 52. 
    Mahal LK, Yarema KJ, Bertozzi CR. 1997. Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis. Science 276:1125–28
    [Google Scholar]
  53. 53. 
    Saxon E, Bertozzi CR. 2000. Cell surface engineering by a modified Staudinger reaction. Science 287:2007–10
    [Google Scholar]
  54. 54. 
    Wratil PR, Horstkorte R, Reutter W. 2016. Metabolic glycoengineering with N-acyl side chain modified mannosamines. Angew. Chem. Int. Ed. 55:9482–512
    [Google Scholar]
  55. 55. 
    Laughlin ST, Bertozzi CR 2009. Imaging the glycome. PNAS 106:12–17
    [Google Scholar]
  56. 56. 
    Cheng B, Xie R, Dong L, Chen X 2016. Metabolic remodeling of cell-surface sialic acids: principles, applications, and recent advances. ChemBioChem 17:11–27
    [Google Scholar]
  57. 57. 
    Sletten EM, Bertozzi CR. 2011. From mechanism to mouse: a tale of two bioorthogonal reactions. Acc. Chem. Res. 44:666–76
    [Google Scholar]
  58. 58. 
    Grammel M, Hang HC. 2013. Chemical reporters for biological discovery. Nat. Chem. Biol. 9:475–84
    [Google Scholar]
  59. 59. 
    Patterson DM, Nazarova LA, Prescher JA. 2014. Finding the right (bioorthogonal) chemistry. ACS Chem. Biol. 9:592–605
    [Google Scholar]
  60. 60. 
    Chang PV, Prescher JA, Hangauer MJ, Bertozzi CR. 2007. Imaging cell surface glycans with bioorthogonal chemical reporters. J. Am. Chem. Soc. 129:8400–1
    [Google Scholar]
  61. 61. 
    Hangauer MJ, Bertozzi CR. 2008. A FRET-based fluorogenic phosphine for live-cell imaging with the Staudinger ligation. Angew. Chem. Int. Ed. 47:2394–97
    [Google Scholar]
  62. 62. 
    Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. 2002. A stepwise Huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. 41:2596–99
    [Google Scholar]
  63. 63. 
    Tornoe CW, Christensen C, Meldal M. 2002. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 67:3057–64
    [Google Scholar]
  64. 64. 
    Hsu TL, Hanson SR, Kishikawa K, Wang SK, Sawa M, Wong CH 2007. Alkynyl sugar analogs for the labeling and visualization of glycoconjugates in cells. PNAS 104:2614–19
    [Google Scholar]
  65. 65. 
    Sawa M, Hsu TL, Itoh T, Sugiyama M, Hanson SR et al. 2006. Glycoproteomic probes for fluorescent imaging of fucosylated glycans in vivo. PNAS 103:12371–76
    [Google Scholar]
  66. 66. 
    Chang PV, Chen X, Smyrniotis C, Xenakis A, Hu TS et al. 2009. Metabolic labeling of sialic acids in living animals with alkynyl sugars. Angew. Chem. Int. Ed. 48:4030–33
    [Google Scholar]
  67. 67. 
    Agard NJ, Prescher JA, Bertozzi CR. 2004. A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J. Am. Chem. Soc. 126:15046–47
    [Google Scholar]
  68. 68. 
    Baskin JM, Prescher JA, Laughlin ST, Agard NJ, Chang PV et al. 2007. Copper-free click chemistry for dynamic in vivo imaging. PNAS 104:16793–97
    [Google Scholar]
  69. 69. 
    Ning XH, Guo J, Wolfert MA, Boons GJ. 2008. Visualizing metabolically labeled glycoconjugates of living cells by copper-free and fast Huisgen cycloadditions. Angew. Chem. Int. Ed. 47:2253–55
    [Google Scholar]
  70. 70. 
    Jewett JC, Sletten EM, Bertozzi CR. 2010. Rapid Cu-free click chemistry with readily synthesized biarylazacyclooctynones. J. Am. Chem. Soc. 132:3688–90
    [Google Scholar]
  71. 71. 
    Leunissen EHP, Meuleners MHL, Verkade JMM, Dommerholt J, Hoenderop JGJ, van Delft FL. 2014. Copper-free click reactions with polar bicyclononyne derivatives for modulation of cellular imaging. ChemBioChem 15:1446–51
    [Google Scholar]
  72. 72. 
    Friscourt F, Ledin PA, Mbua NE, Flanagan-Steet HR, Wolfert MA et al. 2012. Polar dibenzocyclooctynes for selective labeling of extracellular glycoconjugates of living cells. J. Am. Chem. Soc. 134:5381–89
    [Google Scholar]
  73. 73. 
    Soriano del Amo D, Wang W, Jiang H, Besanceney C, Yan AC et al. 2010. Biocompatible copper(I) catalysts for in vivo imaging of glycans. J. Am. Chem. Soc. 132:16893–99
    [Google Scholar]
  74. 74. 
    Besanceney-Webler C, Jiang H, Zheng T, Feng L, Soriano del Amo D et al. 2011. Increasing the efficacy of bioorthogonal click reactions for bioconjugation: a comparative study. Angew. Chem. Int. Ed. 50:8051–56
    [Google Scholar]
  75. 75. 
    Hong V, Steinmetz NF, Manchester M, Finn MG. 2010. Labeling live cells by copper-catalyzed alkyne-azide click chemistry. Bioconjug. Chem. 21:1912–16
    [Google Scholar]
  76. 76. 
    Chang PV, Prescher JA, Sletten EM, Baskin JM, Miller IA et al. 2010. Copper-free click chemistry in living animals. PNAS 107:1821–26
    [Google Scholar]
  77. 77. 
    Rong J, Han J, Dong L, Tan Y, Yang H et al. 2014. Glycan imaging in intact rat hearts and glycoproteomic analysis reveal the upregulation of sialylation during cardiac hypertrophy. J. Am. Chem. Soc. 136:17468–76
    [Google Scholar]
  78. 78. 
    Luchansky SJ, Bertozzi CR. 2004. Azido sialic acids can modulate cell-surface interactions. ChemBioChem 5:1706–9
    [Google Scholar]
  79. 79. 
    Gilormini PA, Lion C, Vicogne D, Levade T, Potelle S et al. 2016. A sequential bioorthogonal dual strategy: ManNAl and SiaNAl as distinct tools to unravel sialic acid metabolic pathways. Chem. Commun. 52:2318–21
    [Google Scholar]
  80. 80. 
    Cheng B, Dong L, Zhu YT, Huang RB, Sun YT et al. 2019. 9-Azido analogues of three sialic acid forms for metabolic remodeling of cell-surface sialoglycans. ACS Chem. Biol. 14:2141–47
    [Google Scholar]
  81. 81. 
    Xie R, Hong SL, Feng LS, Rong J, Chen X 2012. Cell-selective metabolic glycan labeling based on ligand-targeted liposomes. J. Am. Chem. Soc. 134:9914–17
    [Google Scholar]
  82. 82. 
    Schmitz C, Gotthardt M, Hinderlich S, Leheste JR, Gross V et al. 2000. Normal blood pressure and plasma renin activity in mice lacking the renin-binding protein, a cellular renin inhibitor. J. Biol. Chem. 275:15357–62
    [Google Scholar]
  83. 83. 
    Luchansky SJ, Yarema KJ, Takahash S, Bertozzi CR. 2003. GlcNAc 2-epimerase can serve a catabolic role in sialic acid metabolism. J. Biol. Chem. 278:8035–42
    [Google Scholar]
  84. 84. 
    Rabuka D, Hubbard SC, Laughlin ST, Argade SP, Bertozzi CR. 2006. A chemical reporter strategy to probe glycoprotein fucosylation. J. Am. Chem. Soc. 128:12078–79
    [Google Scholar]
  85. 85. 
    Kizuka Y, Funayama S, Shogomori H, Nakano M, Nakajima K et al. 2016. High-sensitivity and low-toxicity fucose probe for glycan imaging and biomarker discovery. Cell Chem. Biol. 23:782–92
    [Google Scholar]
  86. 86. 
    Hang HC, Yu C, Kato DL, Bertozzi CR 2003. A metabolic labeling approach toward proteomic analysis of mucin-type O-linked glycosylation. PNAS 100:14846–51
    [Google Scholar]
  87. 87. 
    Vocadlo DJ, Hang HC, Kim EJ, Hanover JA, Bertozzi CR 2003. A chemical approach for identifying O-GlcNAc-modified proteins in cells. PNAS 100:9116–21
    [Google Scholar]
  88. 88. 
    Boyce M, Carrico IS, Ganguli AS, Yu SH, Hangauer MJ et al. 2011. Metabolic cross-talk allows labeling of O-linked β-N-acetylglucosamine-modified proteins via the N-acetylgalactosamine salvage pathway. PNAS 108:3141–46
    [Google Scholar]
  89. 89. 
    Woo CM, Iavarone AT, Spiciarich DR, Palaniappan KK, Bertozzi CR. 2015. Isotope-targeted glycoproteomics (IsoTaG): a mass-independent platform for intact N- and O-glycopeptide discovery and analysis. Nat. Methods 12:561–67
    [Google Scholar]
  90. 90. 
    Qin W, Qin K, Fan X, Peng L, Hong W et al. 2018. Artificial cysteine S-glycosylation induced by per-O-acetylated unnatural monosaccharides during metabolic glycan labeling. Angew. Chem. Int. Ed. 57:1817–20
    [Google Scholar]
  91. 91. 
    Qin K, Zhang H, Zhao ZQ, Chen X 2020. Protein S-glyco-modification through an elimination-addition mechanism. J. Am. Chem. Soc. 142:9382–88
    [Google Scholar]
  92. 92. 
    Hao Y, Fan X, Shi Y, Zhang C, Sun D-E et al. 2019. Next-generation unnatural monosaccharides reveal that ESRRB O-GlcNAcylation regulates pluripotency of mouse embryonic stem cells. Nat. Commun. 10:4065
    [Google Scholar]
  93. 93. 
    Lin L, Tian XD, Hong SL, Dai P, You QC et al. 2013. A bioorthogonal Raman reporter strategy for SERS detection of glycans on live cells. Angew. Chem. Int. Ed. 52:7266–71
    [Google Scholar]
  94. 94. 
    Han SF, Collins BE, Bengtson P, Paulson JC. 2005. Homomultimeric complexes of CD22 in B cells revealed by protein-glycan cross-linking. Nat. Chem. Biol. 1:93–97
    [Google Scholar]
  95. 95. 
    Feng L, Hong S, Rong J, You Q, Dai P et al. 2013. Bifunctional unnatural sialic acids for dual metabolic labeling of cell-surface sialylated glycans. J. Am. Chem. Soc. 135:9244–47
    [Google Scholar]
  96. 96. 
    Sminia TJ, Zuilhof H, Wennekes T. 2016. Getting a grip on glycans: a current overview of the metabolic oligosaccharide engineering toolbox. Carbohydr. Res. 435:121–41
    [Google Scholar]
  97. 97. 
    Chaubard JL, Krishnamurthy C, Yi W, Smith DF, Hsieh-Wilson LC 2012. Chemoenzymatic probes for detecting and imaging fucose-α(1-2)-galactose glycan biomarkers. J. Am. Chem. Soc. 134:4489–92
    [Google Scholar]
  98. 98. 
    Clark PM, Dweck JF, Mason DE, Hart CR, Buck SB et al. 2008. Direct in-gel fluorescence detection and cellular imaging of O-GlcNAc-modified proteins. J. Am. Chem. Soc. 130:11576–77
    [Google Scholar]
  99. 99. 
    Yu SH, Zhao P, Sun TT, Gao ZW, Moremen KW et al. 2016. Selective exo-enzymatic labeling detects increased cell surface sialoglycoprotein expression upon megakaryocytic differentiation. J. Biol. Chem. 291:3982–89
    [Google Scholar]
  100. 100. 
    Wen LQ, Zheng Y, Jiang K, Zhang MZ, Kondengaden SM et al. 2016. Two-step chemoenzymatic detection of N-acetylneuraminic acid-α(2-3)-galactose glycans. J. Am. Chem. Soc. 138:11473–76
    [Google Scholar]
  101. 101. 
    Zheng T, Jiang H, Gros M, Soriano del Amo D, Sundaram S et al. 2011. Tracking N-acetyllactosamine on cell-surface glycans in vivo. Angew. Chem. Int. Ed. 50:4113–18
    [Google Scholar]
  102. 102. 
    Wen L, Liu D, Zheng Y, Huang K, Cao X et al. 2018. A one-step chemoenzymatic labeling strategy for probing sialylated Thomsen-Friedenreich antigen. ACS Cent. Sci. 4:451–57
    [Google Scholar]
  103. 103. 
    Sun TT, Yu SH, Zhao P, Meng L, Moremen KW et al. 2016. One-step selective exoenzymatic labeling (SEEL) strategy for the biotinylation and identification of glycoproteins of living cells. J. Am. Chem. Soc. 138:11575–82
    [Google Scholar]
  104. 104. 
    Li J, Chen MK, Liu ZL, Zhang LD, Felding BH et al. 2018. A single-step chemoenzymatic reaction for the construction of antibody–cell conjugates. ACS Cent. Sci. 4:1633–41
    [Google Scholar]
  105. 105. 
    Hong S, Shi Y, Wu NC, Grande G, Douthit L et al. 2019. Bacterial glycosyltransferase-mediated cell-surface chemoenzymatic glycan modification. Nat. Commun. 10:1799
    [Google Scholar]
  106. 106. 
    Li Q, Li Z, Duan X, Yi W 2014. A tandem enzymatic approach for detecting and imaging tumor-associated Thomsen-Friedenreich antigen disaccharide. J. Am. Chem. Soc. 136:12536–39
    [Google Scholar]
  107. 107. 
    Zheng JN, Xiao HP, Wu RH. 2017. Specific identification of glycoproteins bearing the Tn antigen in human cells. Angew. Chem. Int. Ed. 56:7107–11
    [Google Scholar]
  108. 108. 
    Du J, Hong SL, Dong L, Cheng B, Lin L et al. 2015. Dynamic sialylation in transforming growth factor-β (TGF-β)-induced epithelial to mesenchymal transition. J. Biol. Chem. 290:12000–13
    [Google Scholar]
  109. 109. 
    Letschert S, Göhler A, Franke C, Bertleff-Zieschang N, Memmel E et al. 2014. Super-resolution imaging of plasma membrane glycans. Angew. Chem. Int. Ed. 53:10921–24
    [Google Scholar]
  110. 110. 
    Jiang H, English BP, Hazan RB, Wu P, Ovryn B. 2015. Tracking surface glycans on live cancer cells with single-molecule sensitivity. Angew. Chem. Int. Ed. 54:1765–69
    [Google Scholar]
  111. 111. 
    Sun D, Fan X, Shi Y, Zhang H, Cheng B et al. 2021. Click-ExM enables expansion microscopy for all biomolecules. Nat. Methods 18:107–13
    [Google Scholar]
  112. 112. 
    Bird-Lieberman EL, Neves AA, Lao-Sirieix P, O'Donovan M, Novelli M et al. 2012. Molecular imaging using fluorescent lectins permits rapid endoscopic identification of dysplasia in Barrett's esophagus. Nat. Med. 18:315–21
    [Google Scholar]
  113. 113. 
    Rouhanifard SH, Lopez-Aguilar A, Wu P. 2014. CHoMP: a chemoenzymatic histology method using clickable probes. ChemBioChem 15:2667–73
    [Google Scholar]
  114. 114. 
    Spiciarich DR, Nolley R, Maund SL, Purcell SC, Herschel J et al. 2017. Bioorthogonal labeling of human prostate cancer tissue slice cultures for glycoproteomics. Angew. Chem. Int. Ed. 56:8992–97
    [Google Scholar]
  115. 115. 
    Laughlin ST, Baskin JM, Amacher SL, Bertozzi CR. 2008. In vivo imaging of membrane-associated glycans in developing zebrafish. Science 320:664–67
    [Google Scholar]
  116. 116. 
    Dehnert KW, Baskin JM, Laughlin ST, Beahm BJ, Naidu NN et al. 2012. Imaging the sialome during zebrafish development with copper-free click chemistry. ChemBioChem 13:353–57
    [Google Scholar]
  117. 117. 
    Agarwal P, Beahm BJ, Shieh P, Bertozzi CR. 2015. Systemic fluorescence imaging of zebrafish glycans with bioorthogonal chemistry. Angew. Chem. Int. Ed. 54:11504–10
    [Google Scholar]
  118. 118. 
    Dehnert KW, Beahm BJ, Huynh TT, Baskin JM, Laughlin ST et al. 2011. Metabolic labeling of fucosylated glycans in developing zebrafish. ACS Chem. Biol. 6:547–52
    [Google Scholar]
  119. 119. 
    Hong S, Sahai-Hernandez P, Chapla DG, Moremen KW, Traver D, Wu P 2019. Direct visualization of live zebrafish glycans via single-step metabolic labeling with fluorophore-tagged nucleotide sugars. Angew. Chem. Int. Ed. 58:14327–33
    [Google Scholar]
  120. 120. 
    Laughlin ST, Bertozzi CR. 2009. In vivo imaging of Caenorhabditis elegans glycans. ACS Chem. Biol. 4:1068–72
    [Google Scholar]
  121. 121. 
    Prescher JA, Dube DH, Bertozzi CR. 2004. Chemical remodelling of cell surfaces in living animals. Nature 430:873–77
    [Google Scholar]
  122. 122. 
    Xie R, Dong L, Huang RB, Hong S, Lei R, Chen X 2014. Targeted imaging and proteomic analysis of tumor-associated glycans in living animals. Angew. Chem. Int. Ed. 53:14082–86
    [Google Scholar]
  123. 123. 
    Xie R, Dong L, Du YF, Zhu Y, Hua R et al. 2016. In vivo metabolic labeling of sialoglycans in the mouse brain by using a liposome-assisted bioorthogonal reporter strategy. PNAS 113:5173–78
    [Google Scholar]
  124. 124. 
    Anderson CT, Wallace IS, Somerville CR 2012. Metabolic click-labeling with a fucose analog reveals pectin delivery, architecture, and dynamics in Arabidopsis cell walls. PNAS 109:1329–34
    [Google Scholar]
  125. 125. 
    Dumont M, Lehner A, Vauzeilles B, Malassis J, Marchant A et al. 2016. Plant cell wall imaging by metabolic click-mediated labelling of rhamnogalacturonan II using azido 3-deoxy-d-manno-oct-2-ulosonic acid. Plant J 85:437–47
    [Google Scholar]
  126. 126. 
    Zhu YT, Wu J, Chen X 2016. Metabolic labeling and imaging of N-linked glycans in Arabidopsis thaliana. Angew. Chem. Int. Ed. 55:9301–5
    [Google Scholar]
  127. 127. 
    Zhu Y, Chen X. 2017. Expanding the scope of metabolic glycan labeling in Arabidopsis thaliana. ChemBioChem 18:1286–96
    [Google Scholar]
  128. 128. 
    Siegrist MS, Swarts BM, Fox DM, Lim SA, Bertozzi CR. 2015. Illumination of growth, division and secretion by metabolic labeling of the bacterial cell surface. FEMS Microbiol. Rev. 39:184–202
    [Google Scholar]
  129. 129. 
    Palaniappan KK, Bertozzi CR. 2016. Chemical glycoproteomics. Chem. Rev. 116:14277–306
    [Google Scholar]
  130. 130. 
    Woo CM, Lund PJ, Huang AC, Davis MM, Bertozzi CR, Pitteri SJ. 2018. Mapping and quantification of over 2000 O-linked glycopeptides in activated human T cells with isotope-targeted glycoproteomics (Isotag). Mol. Cell. Proteom. 17:764–75
    [Google Scholar]
  131. 131. 
    Abbott KL, Pierce JM. 2010. Lectin-based glycoproteomic techniques for the enrichment and identification of potential biomarkers. Methods Enzymol 480:461–76
    [Google Scholar]
  132. 132. 
    Wollscheid B, Bausch-Fluck D, Henderson C, O'Brien R, Bibel M et al. 2009. Mass-spectrometric identification and relative quantification of N-linked cell surface glycoproteins. Nat. Biotechnol. 27:378–86
    [Google Scholar]
  133. 133. 
    Zhang H, Li XJ, Martin DB, Aebersold R. 2003. Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat. Biotechnol. 21:660–66
    [Google Scholar]
  134. 134. 
    Xiao H, Tang GX, Wu R. 2016. Site-specific quantification of surface N-glycoproteins in statin-treated liver cells. Anal. Chem. 88:3324–32
    [Google Scholar]
  135. 135. 
    Bai QR, Dong L, Hao Y, Chen X, Shen Q 2018. Metabolic glycan labeling-assisted discovery of cell-surface markers for primary neural stem and progenitor cells. Chem. Commun. 54:5486–89
    [Google Scholar]
  136. 136. 
    Hanson SR, Hsu TL, Weerapana E, Kishikawa K, Simon GM et al. 2007. Tailored glycoproteomics and glycan site mapping using saccharide-selective bioorthogonal probes. J. Am. Chem. Soc. 129:7266–67
    [Google Scholar]
  137. 137. 
    Woo CM, Felix A, Zhang LC, Elias JE, Bertozzi CR. 2017. Isotope-targeted glycoproteomics (IsoTaG) analysis of sialylated N- and O-glycopeptides on an orbitrap fusion tribrid using azido and alkynyl sugars. Anal. Bioanal. Chem. 409:579–88
    [Google Scholar]
  138. 138. 
    Fujiki R, Hashiba W, Sekine H, Yokoyama A, Chikanishi T et al. 2011. GlcNAcylation of histone H2B facilitates its monoubiquitination. Nature 480:557–60
    [Google Scholar]
  139. 139. 
    Qin K, Zhu YT, Qin W, Gao JJ, Shao X et al. 2018. Quantitative profiling of protein O-GlcNAcylation sites by an isotope-tagged cleavable linker. ACS Chem. Biol. 13:1983–89
    [Google Scholar]
  140. 140. 
    Wang Z, Udeshi ND, O'Malley M, Shabanowitz J, Hunt DF, Hart GW 2010. Enrichment and site mapping of O-linked N-acetylglucosamine by a combination of chemical/enzymatic tagging, photochemical cleavage, and electron transfer dissociation mass spectrometry. Mol. Cell. Proteom. 9:153–60
    [Google Scholar]
  141. 141. 
    Qin W, Lv PO, Fan XQ, Quan BY, Zhu YT et al. 2017. Quantitative time-resolved chemoproteomics reveals that stable O-GlcNAc regulates box C/D snoRNP biogenesis. PNAS 114:E6749–58
    [Google Scholar]
  142. 142. 
    Lopez Aguilar A, Gao Y, Hou X, Lauvau G, Yates JR, Wu P. 2017. Profiling of protein O-GlcNAcylation in murine CD8+ effector- and memory-like T cells. ACS Chem. Biol. 12:3031–38
    [Google Scholar]
  143. 143. 
    Qin W, Xie Z, Wang J, Ou G, Wang C, Chen X 2020. Chemoproteomic profiling of O-GlcNAcylation in Caenorhabditis elegans. Biochemistry 59:3129–34
    [Google Scholar]
  144. 144. 
    Chalkley RJ, Thalhammer A, Schoepfer R, Burlingame AL 2009. Identification of protein O-GlcNAcylation sites using electron transfer dissociation mass spectrometry on native peptides. PNAS 106:8894–99
    [Google Scholar]
  145. 145. 
    Trinidad JC, Barkan DT, Gulledge BF, Thalhammer A, Sali A et al. 2012. Global identification and characterization of both O-GlcNAcylation and phosphorylation at the murine synapse. Mol. Cell. Proteom. 11:215–29
    [Google Scholar]
  146. 146. 
    Chang PV, Dube DH, Sletten EM, Bertozzi CR. 2010. A strategy for the selective imaging of glycans using caged metabolic precursors. J. Am. Chem. Soc. 132:9516–18
    [Google Scholar]
  147. 147. 
    Wang RB, Cai KM, Wang H, Yin C, Cheng JJ. 2018. A caged metabolic precursor for DT-diaphorase-responsive cell labeling. Chem. Commun. 54:4878–81
    [Google Scholar]
  148. 148. 
    Shim MK, Yoon HY, Ryu JH, Koo H, Lee S et al. 2016. Cathepsin B-specific metabolic precursor for in vivo tumor-specific fluorescence imaging. Angew. Chem. Int. Ed. 55:14698–703
    [Google Scholar]
  149. 149. 
    Wang H, Wang R, Cai K, He H, Liu Y et al. 2017. Selective in vivo metabolic cell-labeling-mediated cancer targeting. Nat. Chem. Biol. 13:415–24
    [Google Scholar]
  150. 150. 
    Sun Y, Hong S, Xie R, Huang R, Lei R et al. 2018. Mechanistic investigation and multiplexing of liposome-assisted metabolic glycan labeling. J. Am. Chem. Soc. 140:3592–602
    [Google Scholar]
  151. 151. 
    Wang H, Gauthier M, Kelly JR, Miller RJ, Xu M et al. 2016. Targeted ultrasound-assisted cancer-selective chemical labeling and subsequent cancer imaging using click chemistry. Angew. Chem. Int. Ed. 55:5452–56
    [Google Scholar]
  152. 152. 
    Wang H, Sobral MC, Zhang DKY, Cartwright AN, Li AW et al. 2020. Metabolic labeling and targeted modulation of dendritic cells. Nat. Mater. 19:1244–52
    [Google Scholar]
  153. 153. 
    Lee S, Jung S, Koo H, Na JH, Yoon HY et al. 2017. Nano-sized metabolic precursors for heterogeneous tumor-targeting strategy using bioorthogonal click chemistry in vivo. Biomaterials 148:1–15
    [Google Scholar]
  154. 154. 
    Du LH, Qin H, Ma T, Zhang T, Xing D. 2017. In vivo imaging-guided photothermal/photoacoustic synergistic therapy with bioorthogonal metabolic glycoengineering-activated tumor targeting nanoparticles. ACS Nano 11:8930–43
    [Google Scholar]
  155. 155. 
    Haga Y, Ishii K, Hibino K, Sako Y, Ito Y et al. 2012. Visualizing specific protein glycoforms by transmembrane fluorescence resonance energy transfer. Nat. Commun. 3:907
    [Google Scholar]
  156. 156. 
    Belardi B, de la Zerda A, Spiciarich DR, Maund SL, Peehl DM, Bertozzi CR. 2013. Imaging the glycosylation state of cell surface glycoproteins by two-photon fluorescence lifetime imaging microscopy. Angew. Chem. Int. Ed. 52:14045–49
    [Google Scholar]
  157. 157. 
    Lin W, Du Y, Zhu Y, Chen X 2014. A cis-membrane FRET-based method for protein-specific imaging of cell-surface glycans. J. Am. Chem. Soc. 136:679–87
    [Google Scholar]
  158. 158. 
    Lin W, Gao L, Chen X 2015. Protein-specific imaging of O-GlcNAcylation in single cells. ChemBioChem 16:2571–75
    [Google Scholar]
  159. 159. 
    Doll F, Buntz A, Spate AK, Schart VF, Timper A et al. 2016. Visualization of protein-specific glycosylation inside living cells. Angew. Chem. Int. Ed. 55:2262–66
    [Google Scholar]
  160. 160. 
    Wu N, Bao L, Ding L, Ju HX. 2016. A single excitation-duplexed imaging strategy for profiling cell surface protein-specific glycoforms. Angew. Chem. Int. Ed. 55:5220–24
    [Google Scholar]
  161. 161. 
    Yuan B, Chen Y, Sun Y, Guo Q, Huang J et al. 2018. Enhanced imaging of specific cell-surface glycosylation based on multi-FRET. Anal. Chem. 90:6131–37
    [Google Scholar]
  162. 162. 
    Li N, Zhang W, Lin L, Shah SNA, Li Y, Lin JM 2019. Nongenetically encoded and erasable imaging strategy for receptor-specific glycans on live cells. Anal. Chem. 91:2600–4
    [Google Scholar]
  163. 163. 
    Conze T, Carvalho AS, Landegren U, Almeida R, Reis CA et al. 2010. MUC2 mucin is a major carrier of the cancer-associated sialyl-Tn antigen in intestinal metaplasia and gastric carcinomas. Glycobiology 20:199–206
    [Google Scholar]
  164. 164. 
    Li X, Jiang X, Xu X, Zhu C, Yi W 2017. Imaging of protein-specific glycosylation by glycan metabolic tagging and in situ proximity ligation. Carbohydr. Res. 448:148–54
    [Google Scholar]
  165. 165. 
    Möller H, Böhrsch V, Bentrop J, Bender J, Hinderlich S, Hackenberger CPR. 2012. Glycan-specific metabolic oligosaccharide engineering of C7-substituted sialic acids. Angew. Chem. Int. Ed. 51:5986–90
    [Google Scholar]
  166. 166. 
    Chinoy ZS, Bodineau C, Favre C, Moremen KW, Duran RV, Friscourt F. 2019. Selective engineering of linkage-specific α2,6-N-linked sialoproteins using sydnone-modified sialic acid bioorthogonal reporters. Angew. Chem. Int. Ed. 58:4281–85
    [Google Scholar]
  167. 167. 
    Choi J, Wagner LJS, Timmermans S, Malaker SA, Schumann B et al. 2019. Engineering orthogonal polypeptide GalNAc-transferase and UDP-sugar pairs. J. Am. Chem. Soc. 141:13442–53
    [Google Scholar]
  168. 168. 
    Schumann B, Malaker SA, Wisnovsky SP, Debets MF, Agbay AJ et al. 2020. Bump-and-hole engineering identifies specific substrates of glycosyltransferases in living cells. Mol. Cell 78:824–34.e15
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-091620-091314
Loading
/content/journals/10.1146/annurev-anchem-091620-091314
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error