1932

Abstract

Dengue, caused by the dengue virus, is the most widespread arboviral infectious disease of public health significance globally. This review explores the communicative function of olfactory cues that mediate host-seeking, egg-laying, plant-feeding, and mating behaviors in and , two mosquito vectors that drive dengue virus transmission. has adapted to live in close association with humans, preferentially feeding on them and laying eggs in human-fabricated water containers and natural habitats. In contrast, is considered opportunistic in its feeding habits and tends to inhabit more vegetative areas. Additionally, the ability of both mosquito species to locate suitable host plants for sugars and find mates for reproduction contributes to their survival. Advances in chemical ecology, functional genomics, and behavioral analyses have improved our understanding of the underlying neural mechanisms and reveal novel and specific olfactory semiochemicals that these species use to locate and discriminate among resources in their environment. Physiological status; learning; and host- and habitat-associated factors, including microbial infection and abundance, shape olfactory responses of these vectors. Some of these semiochemicals can be integrated into the toolbox for dengue surveillance and control.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-020123-015755
2024-01-25
2024-04-29
Loading full text...

Full text loading...

/deliver/fulltext/ento/69/1/annurev-ento-020123-015755.html?itemId=/content/journals/10.1146/annurev-ento-020123-015755&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Acree F Jr., Turner RB, Gouck HK, Beroza M, Smith N. 1968. L-lactic acid: a mosquito attractant isolated from humans. Science 161:1346–47
    [Google Scholar]
  2. 2.
    Agha SB, Tchouassi DP. 2022. Urbanisation of Aedes mosquito populations and evolution of arboviral disease risk in Africa. Curr. Opin. Insect Sci. 54:100988
    [Google Scholar]
  3. 3.
    Ahmed A, Abubakr M, Sami H, Mahdi I, Mohamed NS, Zinsstag J. 2022. The first molecular detection of Aedes albopictus in Sudan associates with increased outbreaks of chikungunya and dengue. Int. J. Mol. Sci. 23:11802
    [Google Scholar]
  4. 4.
    Akhoundi M, Jourdain F, Chandre F, Delaunay P, Roiz D. 2018. Effectiveness of a field trap barrier system for controlling Aedes albopictus: a “removal trapping” strategy. Parasit. Vectors 11:101
    [Google Scholar]
  5. 5.
    Amann A, de Lacy Costello B, Miekisch W, Schubert J, Buszewski B et al. 2014. The human volatilome: volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva. J. Breath Res. 8:034001
    [Google Scholar]
  6. 6.
    Amos BA, Ritchie SA, Carde RT. 2020. Attraction versus capture II: efficiency of the BG Sentinel trap under semifield conditions and characterizing response behaviors of male Aedes aegypti (Diptera: Culicidae). J. Med. Entomol. 57:1539–49
    [Google Scholar]
  7. 7.
    Arbaoui AA, Chua TH. 2014. Bacteria as a source of oviposition attractant for Aedes aegypti mosquitoes. Trop. Biomed. 31:134–42
    [Google Scholar]
  8. 8.
    Baak-Baak CM, Rodríguez-Ramírez AD, García-Rejón JE, Ríos-Delgado S, Torres-Estrada JL. 2013. Development and laboratory evaluation of chemically-based baited ovitrap for the monitoring of Aedes aegypti. J. Vector Ecol. 38:175–81
    [Google Scholar]
  9. 9.
    Balestrino F, Iyaloo DP, Elahee KB, Bheecarry A, Campedelli F et al. 2016. Sound trap for Aedes albopictus (Skuse) male surveillance: response analysis to acoustic and visual stimuli. Acta Trop. 164:448–54
    [Google Scholar]
  10. 10.
    Barbosa DS, Rodrigues MM, Silva AA. 2019. Evaluation of attractive toxic sugar baits (ATSB) against Aedes aegypti (Diptera: Culicidae) in laboratory. Trop. Biomed. 36:578–86
    [Google Scholar]
  11. 11.
    Barredo E, DeGennaro M. 2020. Not just from blood: mosquito nutrient acquisition from nectar sources. Trends Parasitol. 36:5473–84
    [Google Scholar]
  12. 12.
    Barrera R. 2022. New tools for Aedes control: mass trapping. Curr. Opin. Insect Sci. 3:100942
    [Google Scholar]
  13. 13.
    Bello JE, Cardé RT. 2022. Compounds from human odor induce attraction and landing in female yellow fever mosquitoes (Aedes aegypti). Sci. Rep. 12:15638
    [Google Scholar]
  14. 14.
    Bernier UR, Kline DL, Allan SA, Barnard DR. 2007. Laboratory comparison of Aedes aegypti attraction to human odors and to synthetic human odor compounds and blends. J. Am. Mosq. Control Assoc. 23:288–93
    [Google Scholar]
  15. 15.
    Bernier UR, Kline DL, Barnard D, Schreck C, Yost RA. 2000. Analysis of human skin emanations by gas chromatography/mass spectrometry. 2. Identification of volatile compounds that are candidate attractants for the yellow fever mosquito Aedes aegypti. Anal. Chem. 72:747–56
    [Google Scholar]
  16. 16.
    Bernier UR, Kline D, Posey KH 2006. Human emanations and related natural compounds that inhibit mosquito host-finding abilities. Insect Repellents: Principles, Methods, and Uses M Debboun, S Frances, D Strickman 77–100. Boca Raton, FL: CRC Press
    [Google Scholar]
  17. 17.
    Bernier UR, Kline DL, Schreck CE, Yost RA, Barnard DR. 2002. Chemical analysis of human skin emanations: comparison of volatiles from humans that differ in attraction of Aedes aegypti (Diptera: Culicidae). J. Am. Mosq. Control Assoc. 18:186–95
    [Google Scholar]
  18. 18.
    Bohbot J, Pitts RJ, Kwon HW, Rützler M, Robertson HM, Zwiebel LJ. 2007. Molecular characterization of the Aedes aegypti odorant receptor gene family. Insect Mol. Biol. 16:525–37
    [Google Scholar]
  19. 19.
    Boullis A, Mulatier M, Delannay C, Héry L, Verheggen F, Vega-Rúa A. 2021. Behavioural and antennal responses of Aedes aegypti (l.) (Diptera: Culicidae) gravid females to chemical cues from conspecific larvae. PLOS ONE 16:e0247657
    [Google Scholar]
  20. 20.
    Braga IA, Gomes AC, Nelson M, Mello RC, Bergamaschi DP, de Souza JM. 2000. Comparative study between larval surveys and ovitraps to monitor populations of Aedes aegypti. Rev. Soc. Bras. Med. Trop. 33:347–53
    [Google Scholar]
  21. 21.
    Cabrera M, Jaffe K. 2007. An aggregation pheromone modulates lekking behavior in the vector mosquito Aedes aegypti (Diptera: Culicidae). J. Am. Mosq. Control Assoc. 23:1–10
    [Google Scholar]
  22. 22.
    Calliari D, Sanz K, Martınez M, Cervetto G, Gomez M, Basso C. 2003. Comparison of the predation rate of freshwater cyclopoid copepod species on larvae of the mosquito Culex pipiens. Med. Vet. Entomol. 17:339–42
    [Google Scholar]
  23. 23.
    Carey AF, Carlson JR. 2011. Insect olfaction from model systems to disease control. PNAS 108:12987–95
    [Google Scholar]
  24. 24.
    Carraretto D, Soresinetti L, Rossi I, Malacrida AR, Gasperi G, Gomulski LM. 2022. Behavioural responses of male Aedes albopictus to different volatile chemical compounds. Insects 13:290
    [Google Scholar]
  25. 25.
    Cator LJ, Arthur BJ, Harrington LC, Hoy RR. 2020. Harmonic convergence in the love songs of the dengue vector mosquito. Science 323:1077–79
    [Google Scholar]
  26. 26.
    Cator LJ, Arthur BJ, Ponlawat A, Harrington LC. 2011. Behavioral observations and sound recordings of free-flight mating swarms of Ae. aegypti (Diptera: Culicidae) in Thailand. J. Med. Entomol. 48:941–46
    [Google Scholar]
  27. 27.
    Chen XG, Jiang X, Gu J, Xu M, Wu Y et al. 2015. Genome sequence of the Asian tiger mosquito, Aedes albopictus, reveals insights into its biology, genetics, and evolution. PNAS 112:5907–15
    [Google Scholar]
  28. 28.
    Chen Z, Kearney CM. 2015. Nectar protein content and attractiveness to Aedes aegypti and Culex pipiens in plants with nectar/insect associations. Acta Trop. 146:81–88
    [Google Scholar]
  29. 29.
    Chumsri A, Pongmanawut P, Tina FW, Jaroensutasinee M, Jaroensutasinee K. 2018. Container types and water qualities affecting on number of Aedes larvae in Trang province, Thailand. Walailak Procedia 2018:st43
    [Google Scholar]
  30. 30.
    Cook JI, Majeed S, Ignell R, Pickett JA, Birkett MA, Logan JG. 2011. Enantiomeric selectivity in behavioural and electrophysiological responses of Aedes aegypti and Culex quinquefasciatus mosquitoes. Bull. Entomol. Res. 101:541–50
    [Google Scholar]
  31. 31.
    da Silva Paixão K, de Castro Pereira I, Lopes Alves Bottini L, Eiras ÁE. 2015. Volatile semiochemical-conditioned attraction of the male yellow fever mosquito, Aedes aegypti, to human hosts. J. Vector Ecol. 40:1–6
    [Google Scholar]
  32. 32.
    de Ázara TM, Degener CM, Roque RA, Ohly JJ, Geier M, Eiras ÁE. 2013. The impact of CO2 on collection of Aedes aegypti Linnaeus and Culex quinquefasciatus Say by BG-Sentinel traps in Manaus, Brazil. Mem. Inst. Oswaldo Cruz 108:229–32
    [Google Scholar]
  33. 33.
    De Moraes CM, Stanczyk NM, Betz HS, Pulido H, Sim DG et al. 2014. Malaria-induced changes in host odors enhance mosquito attraction. PNAS 111:11079–84
    [Google Scholar]
  34. 34.
    De Obaldia ME, Morita T, Dedmon LC, Boehmler DJ, Jiang CS et al. 2022. Differential mosquito attraction to humans is associated with skin-derived carboxylic acid levels. Cell 185:4099–116
    [Google Scholar]
  35. 35.
    Dekker T, Geier M, Cardé RT. 2005. Carbon dioxide instantly sensitizes female yellow fever mosquitoes to human skin odours. J. Exp. Biol. 208:2963–72
    [Google Scholar]
  36. 36.
    Dekker T, Steib B, Cardé RT, Geier M. 2002. L-lactic acid: a human-signifying host cue for the anthropophilic mosquito Anopheles gambiae. Med. Vet. Entomol. 16:91–98
    [Google Scholar]
  37. 37.
    Díaz-Santiz E, Rojas JC, Casas-Martínez M, Cruz-López L, Malo EA. 2020. Rat volatiles as an attractant source for the Asian tiger mosquito. Aedes albopictus. Sci. Rep. 10:5170
    [Google Scholar]
  38. 38.
    Eiras AE, Resende MC, Acebal JL, Paixao KS. 2016. New cost-benefit of Brazilian technology for vector surveillance using trapping system. Malaria FH Kasenga, art. 78781 London: IntechOpen
    [Google Scholar]
  39. 39.
    Eldridge BF. 1987. Strategies for surveillance, prevention, and control of arbovirus diseases in western North America. Am. J. Trop. Med. Hyg. 37:77S–86S
    [Google Scholar]
  40. 40.
    Faull K, Williams C. 2015. Intraspecific variation in desiccation survival time of Aedes aegypti (L.) mosquito eggs of Australian origin. J. Vector Ecol. 40:292–300
    [Google Scholar]
  41. 41.
    Fawaz EY, Allan SA, Bernier UR, Obenauer PJ, Diclaro JW. 2014. Swarming mechanisms in the yellow fever mosquito: Aggregation pheromones are involved in the mating behavior of Aedes aegypti. J. Vector Ecol. 39:347–54
    [Google Scholar]
  42. 42.
    Ferguson NM. 2018. Challenges and opportunities in controlling mosquito-borne infections. Nature 559:490–97
    [Google Scholar]
  43. 43.
    Floore TG. 2006. Mosquito larval control practices: past and present. J. Am. Mosq. Control Assoc. 22:527–33
    [Google Scholar]
  44. 44.
    Fouet C, Kamdem C. 2019. Integrated mosquito management: Is precision control a luxury or necessity?. Trends Parasitol. 35:85–95
    [Google Scholar]
  45. 45.
    Gaburro J, Paradkar PN, Klein M, Bhatti A, Nahavandi S, Duchemin JB. 2018. Dengue virus infection changes Aedes aegypti oviposition olfactory preferences. Sci. Rep. 8:13179
    [Google Scholar]
  46. 46.
    Ganesan K, Mendki MJ, Suryanarayana MVS, Prakash S, Malhotra RC. 2006. Studies of Aedes aegypti (Diptera: Culicidae) ovipositional responses to newly identified semiochemicals from conspecific eggs. Austr. J. Entomol. 45:75–80
    [Google Scholar]
  47. 47.
    Ghaninia M, Ignell R, Hansson BS. 2007. Functional classification and central nervous projections of olfactory receptor neurons housed in antennal trichoid sensilla of female yellow fever mosquitoes, Aedes aegypti. . Eur. J. Neurosci. 26:1611–23
    [Google Scholar]
  48. 48.
    Ghaninia M, Majeed S, Dekker T, Hill SR, Ignell R. 2019. Hold your breath—differential behavioural and sensory acuity of mosquitoes to acetone and carbon dioxide. PLOS ONE 14:e0226815
    [Google Scholar]
  49. 49.
    Gloria-Soria A, Ayala D, Bheecarry A, Calderon-Arguedas O, Chadee DD et al. 2016. Global genetic diversity of Aedes aegypti. Mol. Ecol. 25:5377–95
    [Google Scholar]
  50. 50.
    Gonzalez PV, Gonzalez Audino PA, Masuh HM. 2014. Electrophysiological and behavioural response of Aedes albopictus to n-heinecosane, an ovipositional pheromone of Aedes aegypti. Entomol. Exp. Appl. 151:191–97
    [Google Scholar]
  51. 51.
    Gratz NG. 2004. Critical review of the vector status of Aedes albopictus. Med. Vet. Entomol. 18:215–27
    [Google Scholar]
  52. 52.
    Grice EA, Segre JA. 2011. The skin microbiome. Nat. Rev. Microbiol. 9:244–53
    [Google Scholar]
  53. 53.
    Gu W, Unnasch TR, Katholi CR, Lampman R, Novak RJ. 2008. Fundamental issues in mosquito surveillance for arboviral transmission. Trans. R. Soc. Trop. Med. Hyg. 102:817–22
    [Google Scholar]
  54. 54.
    Gubler DJ. 2012. The economic burden of dengue. Am. J. Trop. Med. Hyg. 86:743–44
    [Google Scholar]
  55. 55.
    Hall-Mendelin S, Ritchie SA, Johansen CA, Zborowski P, Cortis G et al. 2010. Exploiting mosquito sugar feeding to detect mosquito-borne pathogens. PNAS 107:11255–59
    [Google Scholar]
  56. 56.
    Harrington LC, Fleisher A, Ruiz-Moreno D, Vermeylen F, Wa CV et al. 2014. Heterogeneous feeding patterns of the dengue vector, Aedes aegypti, on individual human hosts in rural Thailand. PLOS Negl. Trop. Dis. 8:e3048
    [Google Scholar]
  57. 57.
    Hartberg W. 1971. Observations on the mating behaviour of Aedes aegypti in nature. Bull. World Health Organ. 45:847–50
    [Google Scholar]
  58. 58.
    Horn GL, Priestman AA. 2002. The chemical characterization of the epicuticular hydrocarbons of Aedes aegypti (Diptera: Culicidae) Bull. . Entomol. Res. 92:287–94
    [Google Scholar]
  59. 59.
    Hwang YS, Schultz GW, Axelrod H, Kramer WL, Mulla MS. 1982. Ovipositional repellency of fatty acids and their derivatives against Culex and Aedes mosquitoes. Environ. Entomol. 11:223–36
    [Google Scholar]
  60. 60.
    Jacob JW, Tchouassi DP, Lagat ZO, Mathenge EM, Mweresa CK, Torto B. 2018. Independent and interactive effect of plant- and mammalian- based odors on the response of the malaria vector, Anopheles gambiae. Acta Trop. 185:98–106
    [Google Scholar]
  61. 61.
    Jiang N, Chang H, Weisflog J, Eberl F, Veit D et al. 2023. Ozone exposure disrupts insect sexual communication. Nat. Commun. 14:1186
    [Google Scholar]
  62. 62.
    Kamau WW, Sang R, Rotich G, Agha SB, Menza N et al. 2023. Patterns of Aedes aegypti abundance, survival, human-blood feeding and relationship with dengue risk, Kenya. Front. Trop. Dis. 4:1113531
    [Google Scholar]
  63. 63.
    Kamgang B, Nchoutpouen E, Simard F, Paupy C. 2012. Notes on the blood feeding behavior of Aedes albopictus (Diptera: Culicidae) in Cameroon. Parasit. Vectors 5:57
    [Google Scholar]
  64. 64.
    Kline DL, Allan SA, Bernier UR, Welch CH. 2007. Evaluation of the enantiomers of 1-octen-3-ol and 1-octyn-3-ol as attractants for mosquitoes associated with a freshwater swamp in Florida, U.S.A. Med. Vet. Entomol. 21:323–31
    [Google Scholar]
  65. 65.
    Kline DL, Bernier UR, Posey KH, Barnard DR. 2003. Olfactometric evaluation of spatial repellents for Aedes aegypti. J. Med. Entomol. 40:463–67
    [Google Scholar]
  66. 66.
    Krockel U, Rose A, Eiras AE, Geier M. 2006. New tools for surveillance of adult yellow fever mosquitoes: comparison of trap catches with human landing rates in an urban environment. J. Am. Mosq. Control Assoc. 22:229–38
    [Google Scholar]
  67. 67.
    Lacroix R, Mukabana WR, Gouagna LC, Koella JC. 2005. Malaria infection increases attractiveness of humans to mosquitoes. PLOS Biol. 3:e298
    [Google Scholar]
  68. 68.
    Lahondère C, Vinauger C, Okubo RP, Wolff GH, Chan JK et al. 2020. The olfactory basis of orchid pollination by mosquitoes. PNAS 117:708–16
    [Google Scholar]
  69. 69.
    Le Goff G, Damiens D, Payet L, Ruttee AH, Jean F et al. 2016. Enhancement of the BG-Sentinel trap with varying number of mice for field sampling of male and female Aedes albopictus mosquitoes. Parasit. Vectors 9:514
    [Google Scholar]
  70. 70.
    Leroy EM, Nkoghe D, Ollomo B, Nze-Nkogue C, Becquart P et al. 2009. Concurrent chikungunya and dengue virus infections during simultaneous outbreaks, Gabon. Emerg. Infect. Dis. 15:591–93
    [Google Scholar]
  71. 71.
    Liu H, Liu T, Xie L, Wang X, Deng Y et al. 2016. Functional analysis of Orco and odorant receptors in odor recognition in Aedes albopictus. Parasit. Vectors 9:363
    [Google Scholar]
  72. 72.
    Logan JG, Birkett MA, Clark SJ, Powers S, Seal NJ et al. 2008. Identification of human-derived volatile chemicals that interfere with attraction of Aedes aegypti mosquitoes. J. Chem. Ecol. 34:308–22
    [Google Scholar]
  73. 73.
    Lovinella I, Mandoli A, Luceri C, D'Ambrosio M, Caputo B et al. 2023. Cyclic acetals as novel long-lasting mosquito repellents. J. Agric. Food Chem. 71:42152–59
    [Google Scholar]
  74. 74.
    Lutz EK, Lahondère C, Vinauger C, Riffell JA. 2017. Olfactory learning and chemical ecology of olfaction in disease vector mosquitoes: a life history perspective. Curr. Opin. Insect Sci. 20:75–83
    [Google Scholar]
  75. 75.
    McBride CS, Baier F, Omondi AB, Spitzer SA, Lutomiah J et al. 2014. Evolution of mosquito preference for humans linked to an odorant receptor. Nature 515:222–27
    [Google Scholar]
  76. 76.
    Melo N, Wolff GH, Costa-da-Silva AL, Arribas R, Triana MF et al. 2020. Geosmin attracts Aedes aegypti mosquitoes to oviposition sites. Curr. Biol. 30:127–34
    [Google Scholar]
  77. 77.
    Menda G, Nitzany EI, Shamble PS, Wells A, Harrington LC et al. 2019. The long and short of hearing in the mosquito Aedes aegypti. Curr. Biol. 29:709–14
    [Google Scholar]
  78. 78.
    Mendki MJ, Ganesan KSP, Suryanarayana MVS, Malhotra RC, Rao KM, Vaidyanathaswamy R. 2000. Heneicosane: an oviposition-attractant pheromone of larval origin in Aedes aegypti mosquito. Curr. Sci. 78:1295–96
    [Google Scholar]
  79. 79.
    Menger DJ, Van Loon JJA, Takken W. 2014. Assessing the efficacy of candidate mosquito repellents against the background of an attractive source that mimics a human host. Med. Vet. Entomol. 28:407–13
    [Google Scholar]
  80. 80.
    Metz HC, Miller AK, You J, Akorli J, Avila FW et al. 2023. Evolution of a mosquito's hatching behavior to match its human-provided habitat. Am. Nat. 201:2200–14
    [Google Scholar]
  81. 81.
    Morath SU, Hung R, Bennett JW. 2012. Fungal volatile organic compounds: a review with emphasis on their biotechnological potential. Fungal Biol. Rev. 26:73–83
    [Google Scholar]
  82. 82.
    Mulatier M, Boullis A, Vega-Rúa A. 2022. Semiochemical oviposition cues to control Aedes aegypti gravid females: state of the art and proposed framework for their validation. Parasit. Vectors 15:228
    [Google Scholar]
  83. 83.
    Müller GC, Xue RD, Schlein Y. 2011. Differential attraction of Aedes albopictus in the field to flowers, fruits and honeydew. Acta Trop. 118:45–49
    [Google Scholar]
  84. 84.
    Mwingira V, Mboera LE, Dicke M, Takken W. 2020. Exploiting the chemical ecology of mosquito oviposition behavior in mosquito surveillance and control: a review. J. Vector Ecol. 45:155–79
    [Google Scholar]
  85. 85.
    Nyasembe VO, Tchouassi DP, Kirwa HK, Foster WA, Teal PEA et al. 2014. Development and assessment of plant-based synthetic odor baits for surveillance and control of malaria vectors. PLOS ONE 9:e89818
    [Google Scholar]
  86. 86.
    Nyasembe VO, Tchouassi DP, Mbogo CM, Sole CL, Pirk C, Torto B. 2015. Linalool oxide: generalist plant-based lure for mosquito disease vectors. Parasit. Vectors 8:581
    [Google Scholar]
  87. 87.
    Nyasembe VO, Tchouassi DP, Muturi MN, Pirk CW, Sole CL, Torto B. 2021. Plant nutrient quality impacts survival and reproductive fitness of the dengue vector Aedes aegypti. Parasit. Vectors 14:4
    [Google Scholar]
  88. 88.
    Nyasembe VO, Tchouassi DP, Pirk CWW, Sole CL, Torto B. 2018. Host plant forensics and olfactory-based detection in Afro-tropical mosquito disease vectors. PLOS Negl. Trop. Dis. 12:e0006185
    [Google Scholar]
  89. 89.
    Nyasembe VO, Torto B. 2014. Volatile phytochemicals as mosquito semiochemicals. Phytochem. Lett. 8:196–201
    [Google Scholar]
  90. 90.
    Omondi WP, Owino EA, Odongo D, Mwangangi JM, Torto B, Tchouassi DP. 2019. Differential response to plant- and human-derived odorants in field surveillance of the dengue vector, Aedes aegypti. Acta Trop. 200:105163
    [Google Scholar]
  91. 91.
    Ong SQ, Jaal Z. 2015. Investigation of mosquito oviposition pheromone as lethal lure for the control of Aedes aegypti (L.) (Diptera: Culicidae). Parasit. Vectors 8:28
    [Google Scholar]
  92. 92.
    Owino EA, Sang R, Sole CL, Pirk C, Mbogo C, Torto B. 2014. Field evaluation of natural human odours and the biogent-synthetic lure in trapping Aedes aegypti, vector of dengue and chikungunya viruses in Kenya. Parasit. Vectors 7:451
    [Google Scholar]
  93. 93.
    Paton RS, Bonsall MB. 2019. The ecological and epidemiological consequences of reproductive interference between the vectors Aedes aegypti and Aedes albopictus. J. R. Soc. Interface 16:20190270
    [Google Scholar]
  94. 94.
    Peach DA, Carroll C, Meraj S, Gomes S, Galloway E et al. 2021. Nectar-dwelling microbes of common tansy are attractive to its mosquito pollinator, Culex pipiens L. BMC Ecol. Evol. 21:29
    [Google Scholar]
  95. 95.
    Peach DA, Gries R, Young N, Lakes R, Galloway E et al. 2019. Attraction of female Aedes aegypti (L.) to aphid honeydew. Insects 10:43
    [Google Scholar]
  96. 96.
    Pitts RJ, Mozūraitis R, Gauvin-Bialecki A, Lemperiere G. 2014. The roles of kairomones, synomones and pheromones in the chemically-mediated behaviour of male mosquitoes. Acta Trop. 132:S26–34
    [Google Scholar]
  97. 97.
    Ponlawat A, Harrington LC. 2005. Blood feeding patterns of Aedes aegypti and Aedes albopictus in Thailand. J. Med. Entomol. 42:5844–49
    [Google Scholar]
  98. 98.
    Ponnusamy L, Xu N, Nojima S, Wesson DM, Schal C, Apperson CS. 2008. Identification of bacteria and bacteria-associated chemical cues that mediate oviposition site preferences by Aedes aegypti. PNAS 105:9262–67
    [Google Scholar]
  99. 99.
    Powell JR, Tabachnick WJ. 2013. History of domestication and spread of Aedes aegypti—a review. Mem. Inst. Oswaldo Cruz 108:11–17
    [Google Scholar]
  100. 100.
    Qualls WA, Xue RD, Beier JC, Müller GC. 2013. Survivorship of adult Aedes albopictus (Diptera: Culicidae) feeding on indoor ornamental plants with no inflorescence. Parasitol. Res. 112:2313–18
    [Google Scholar]
  101. 101.
    Raji JI, DeGennaro M. 2017. Genetic analysis of mosquito detection of humans. Curr. Opin. Insect Sci. 20:34–38
    [Google Scholar]
  102. 102.
    Raji JI, Melo N, Castillo JS, Gonzalez S, Saldana V et al. 2019. Aedes aegypti mosquitoes detect acidic volatiles found in human odor using the IR8a pathway. Curr. Biol. 29:1253–62
    [Google Scholar]
  103. 103.
    Rering CC, Beck JJ, Hall GW, McCartney MM, Vannette RL. 2018. Nectar-inhabiting microorganisms influence nectar volatile composition and attractiveness to a generalist pollinator. New Phytol. 220:750–59
    [Google Scholar]
  104. 104.
    Revay EE, Müller GC, Qualls WA, Kline DL, Naranjo DP et al. 2014. Control of Aedes albopictus with attractive toxic sugar baits (ATSB) and potential impact on non-target organisms in St. Augustine, Florida. Parasitol. Res. 113:73–79
    [Google Scholar]
  105. 105.
    Rey JR, Nishimura N, Wagner B, Braks MAH, O'Connell SM, Lounibos LP. 2006. Habitat segregation of mosquito arbovirus vectors in south Florida. J. Med. Entomol. 43:1134–41
    [Google Scholar]
  106. 106.
    Roiz D, Duperier S, Roussel M, Boussès P, Fontenille D et al. 2016. Trapping the tiger: efficacy of the novel BG-Sentinel 2 with several attractants and carbon dioxide for collecting Aedes albopictus (Diptera: Culicidae) in Southern France. J. Med. Entomol. 53:460–65
    [Google Scholar]
  107. 107.
    Roque RA. 2007. Avaliação de atraentes de oviposição, identificados em infusões de capim colonião (Panicum maximum) para fêmeas de Aedes aegypti (L. 1762) (Diptera: Culicidae) em condições de semicampo ecampo PhD Thesis Univ. Fed. Minas Gerais Belo Horizonte, Braz.:
    [Google Scholar]
  108. 108.
    Rose NH, Sylla M, Badolo A, Lutomiah J, Ayala D et al. 2020. Climate and urbanization drive mosquito preference for humans. Curr. Biol. 30:3570–79
    [Google Scholar]
  109. 109.
    Rudolfs W. 1922. Chemotropism of mosquitoes. Bull. N. J. Agric. Exp. Stations 367:4–23
    [Google Scholar]
  110. 110.
    Samson DM, Qualls WA, Roque D, Naranjo DP, Alimi T et al. 2013. Resting and energy reserves of Aedes albopictus collected in common landscaping vegetation in St. Augustine, Florida. J. Am. Mosq. Control Assoc. 30:231–36
    [Google Scholar]
  111. 111.
    Sang R, Lutomiah J, Chepkorir E, Tchouassi DP. 2022. Evolving dynamics of Aedes-borne diseases in Africa: a cause for concern. Curr. Opin. Insect Sci. 53:100958
    [Google Scholar]
  112. 112.
    Scholte EJ, Knols BG, Samson RA, Takken W. 2004. Entomopathogenic fungi for mosquito control: a review. J. Insect Sci. 4:19
    [Google Scholar]
  113. 113.
    Scott-Fiorenzano JM, Fulcher AP, Seeger KE, Allan SA, Kline DL et al. 2017. Evaluations of dual attractant toxic sugar baits for surveillance and control of Aedes aegypti and Aedes albopictus in Florida. Parasit. Vectors 10:9
    [Google Scholar]
  114. 114.
    Seenivasagan T, Guha L, Parashar BD, Agrawal OP, Sukumaran D. 2014. Olfaction in Asian tiger mosquito Aedes albopictus: flight orientation response to certain saturated carboxylic acids in human skin emanations. Parasitol. Res. 113:1927–32
    [Google Scholar]
  115. 115.
    Sharma KR, Seenivasagan T, Rao AN, Ganesan K, Agarwal OP et al. 2008. Oviposition responses of Aedes aegypti and Aedes albopictus to certain fatty acid esters. Parasitol. Res. 103:1065–73
    [Google Scholar]
  116. 116.
    Simard F, Nchoutpouen E, Toto JC, Fontenille D. 2005. Geographic distribution and breeding site preference of Aedes albopictus and Aedes aegypti (Diptera: Culicidae) in Cameroon, Central Africa. J. Med. Entomol. 42:726–31
    [Google Scholar]
  117. 117.
    Sippy R, Rivera GE, Sanchez V, Heras F, Morejón B et al. 2020. Ingested insecticide to control Aedes aegypti: developing a novel dried attractive toxic sugar bait device for intra-domiciliary control. Parasit. Vectors 13:78
    [Google Scholar]
  118. 118.
    Sissoko F, Junnila A, Traore MM, Traore SF, Doumbia S et al. 2019. Frequent sugar feeding behavior by Aedes aegypti in Bamako, Mali makes them ideal candidates for control with attractive toxic sugar baits (ATSB). PLOS ONE 14:e0214170
    [Google Scholar]
  119. 119.
    Sota T, Mogi M. 1992. Interspecific variation in desiccation survival time of Aedes (Stegomyia) mosquito eggs is correlated with habitat and egg size. Oecologia 90:353–58
    [Google Scholar]
  120. 120.
    Steib BM, Geier M, Boeckh J. 2001. The effect of lactic acid on odour-related host preference of yellow fever mosquitoes. Chem. Senses 26:523–28
    [Google Scholar]
  121. 121.
    Swan T, Ritmejerytė E, Sebayang B, Jones R, Devine G et al. 2021. Sugar prevalence in Aedes albopictus differs by habitat, sex and time of day on Masig Island, Torres Strait, Australia. Parasit. Vectors 14:520
    [Google Scholar]
  122. 122.
    Syed Z, Leal WS. 2008. Mosquitoes smell and avoid the insect repellent DEET. PNAS 105:3613598–603
    [Google Scholar]
  123. 123.
    Tchouassi DP, Agha SB, Villinger J, Sang R, Torto B. 2022. The distinctive bionomics of Aedes aegypti populations in Africa. Curr. Opin. Insect Sci. 54:100986
    [Google Scholar]
  124. 124.
    Tchouassi DP, Jacob JW, Ogola EO, Sang R, Torto B. 2019. Aedes vector-host olfactory interactions in sylvatic and domestic dengue transmission environments. Proc. R. Soc. B 286:20192136
    [Google Scholar]
  125. 125.
    Tchouassi DP, Sang R, Sole CL, Bastos ADS, Teal PEA et al. 2013. Common host-derived chemicals increase catches of disease-transmitting mosquitoes and can improve early warning systems for Rift Valley fever virus. PLOS Negl. Trop. Dis. 7:e2007
    [Google Scholar]
  126. 126.
    Tchouassi DP, Wanjiku C, Torto B 2022. Host-derived attractants for surveillance and control of mosquitoes. Sensory Ecology of Disease Vectors R Ignell, CR Lazzari, MG Lorenzo, SR Hill 851–77. Wageningen, Neth: Wageningen Acad. Publ.
    [Google Scholar]
  127. 127.
    Tenywa FS, Musa JJ, Musiba RM, Swai JK, Mpelepele AB et al. 2022. Evaluation of an ivermectin-based attractive targeted sugar bait (ATSB) against Aedes aegypti in Tanzania. Wellcome Open Res. 7:4
    [Google Scholar]
  128. 128.
    Thavara U, Tawatsin A, Chompoosri J. 2004. Evaluation of attractants and egg-laying substrate preference for oviposition by Aedes albopictus (Diptera: Culicidae). J. Vector Ecol. 29:66–72
    [Google Scholar]
  129. 129.
    Torres-Estrada JL, Rodríguez MH, Cruz-López L, Arredondo-Jimenez JI. 2001. Selective oviposition by Aedes aegypti (Diptera: Culicidae) in response to Mesocyclops longisetus (Copepoda: Cyclopoidea) under laboratory and field conditions. J. Med. Entomol. 38:188–92
    [Google Scholar]
  130. 130.
    Trexler JD, Apperson CS, Schal C. 1998. Laboratory and field evaluations of oviposition responses of Aedes albopictus and Aedes triseriatus (Diptera: Culicidae) to oak leaf infusions. J. Med. Entomol. 35:967–76
    [Google Scholar]
  131. 131.
    Tripet F, Lounibos LP, Robbins D, Moran J, Nishimura N, Blosser EM. 2011. Competitive reduction by satyrization? Evidence for interspecific mating in nature and asymmetric reproductive competition between invasive mosquito vectors. Am. J. Trop. Med. Hyg. 85:265–70
    [Google Scholar]
  132. 132.
    Vinauger C, Lahondère C, Wolff GH, Locke LT, Liaw JE et al. 2018. Modulation of host learning in Aedes aegypti mosquitoes. Curr. Biol. 28:333–44
    [Google Scholar]
  133. 133.
    Visser TM, De Cock MP, Hiwat H, Wongsokarijo M, Verhulst NO, Koenraadt CJ. 2020. Optimisation and field validation of odour-baited traps for surveillance of Aedes aegypti adults in Paramaribo, Suriname. Parasit. Vectors 13:121
    [Google Scholar]
  134. 134.
    Waliwitiya R, Kennedy CJ, Lowenberger CA. 2009. Larvicidal and oviposition-altering activity of monoterpenoids, trans-anithole and rosemary oil to the yellow fever mosquito Aedes aegypti (Diptera: Culicidae). Pest Manag. Sci. 65:241–48
    [Google Scholar]
  135. 135.
    Wang F, Delannay C, Goindin D, Deng L, Guan S et al. 2019. Cartography of odor chemicals in the dengue vector mosquito (Aedesaegypti L., Diptera/Culicidae). Sci. Rep. 9:8510
    [Google Scholar]
  136. 136.
    Wanjiku C, Tchouassi DP, Sole CL, Pirk CWW, Torto B. 2021. Plant sugar feeding patterns of Aedes aegypti from dengue endemic and non-endemic areas of Kenya. Med. Vet. Entomol. 35:417–25
    [Google Scholar]
  137. 137.
    Wheelwright M, Whittle CR, Riabinina O. 2021. Olfactory systems across mosquito species. Cell Tissue Res. 383:75–90
    [Google Scholar]
  138. 138.
    Williams CR, Bergbauer R, Geier M, Kline DL, Bernier UR. 2006. Laboratory and field assessment of some kairomone blends for host-seeking Aedes aegypti. J. Am. Mosq. Control Assoc. 22:641–47
    [Google Scholar]
  139. 139.
    Wong J, Stoddard ST, Astete H, Morrison AC, Scott TW. 2011. Oviposition site selection by the dengue vector Aedes aegypti and its implications for dengue control. PLOS Negl. Trop. Dis. 5:e1015
    [Google Scholar]
  140. 140.
    Wooding M, Naudé Y, Rohwer E, Bouwer M. 2020. Controlling mosquitoes with semiochemicals: a review. Parasit. Vectors 13:80
    [Google Scholar]
  141. 141.
    World Health Organization 2023. Dengue and severe dengue Fact Sheet World Health Organ. Geneva: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue
  142. 142.
    Xia S, Dweck HK, Lutomiah J, Sang R, McBride CS et al. 2021. Larval sites of the mosquito Aedes aegypti formosus in forest and domestic habitats in Africa and the potential association with oviposition evolution. Ecol. Evol. 11:16327–43
    [Google Scholar]
  143. 143.
    Xie L, Yang W, Liu H, Liu T, Xie Y et al. 2019. Enhancing attraction of the vector mosquito Aedes albopictus by using a novel synthetic odorant blend. Parasit. Vectors 12:382
    [Google Scholar]
  144. 144.
    Zeng F, Xu P, Leal WS. 2019. Odorant receptors from Culex quinquefasciatus and Aedes aegypti sensitive to floral compounds. Insect Biochem. Mol. Biol. 113:103213
    [Google Scholar]
  145. 145.
    Zhang H, Zhu Y, Liu Z, Peng Y, Peng W et al. 2022. A volatile from the skin microbiota of flavivirus-infected hosts promotes mosquito attractiveness. Cell 185:2510–22
    [Google Scholar]
  146. 146.
    Zhao Z, Zung JL, Hinze A, Kriete AL, Iqbal A et al. 2022. Mosquito brains encode unique features of human odour to drive host seeking. Nature 605:706–12
    [Google Scholar]
  147. 147.
    Zhu J, Arena S, Spinelli S, Liu D, Zhang G et al. 2017. Reverse chemical ecology: olfactory proteins from the giant panda and their interactions with putative pheromones and bamboo volatiles. PNAS 114:E9802–10
    [Google Scholar]
/content/journals/10.1146/annurev-ento-020123-015755
Loading
/content/journals/10.1146/annurev-ento-020123-015755
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error