1932

Abstract

White light endoscopic imaging allows for the examination of internal human organs and is essential in the detection and treatment of early-stage cancers. To facilitate diagnosis of precancerous changes and early-stage cancers, label-free optical technologies that provide enhanced malignancy-specific contrast and depth information have been extensively researched. The rapid development of technology in the past two decades has enabled integration of these optical technologies into clinical endoscopy. In recent years, the significant advantages of using these adjunct optical devices have been shown, suggesting readiness for clinical translation. In this review, we provide an overview of the working principles and miniaturization considerations and summarize the clinical and preclinical demonstrations of several such techniques for early-stage cancer detection. We also offer an outlook for the integration of multiple technologies and the use of computer-aided diagnosis in clinical endoscopy.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061622-014208
2024-07-17
2024-10-11
Loading full text...

Full text loading...

/deliver/fulltext/anchem/17/1/annurev-anchem-061622-014208.html?itemId=/content/journals/10.1146/annurev-anchem-061622-014208&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    American Cancer Society. 2023.. Cancer Facts & Figures 2023. Rep. , American Cancer Society, Atlanta, GA:. https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2023/2023-cancer-facts-and-figures.pdf
    [Google Scholar]
  2. 2.
    He Z, Wang P, Liang Y, Fu Z, Ye X. 2021.. Clinically available optical imaging technologies in endoscopic lesion detection: current status and future perspective. . J. Healthc. Eng. 2021::7594513
    [Google Scholar]
  3. 3.
    Coda S, Siersema P, Stamp G, Thillainayagam A. 2015.. Biophotonic endoscopy: a review of clinical research techniques for optical imaging and sensing of early gastrointestinal cancer. . Endosc. Int. Open. 03:(05):E38092
    [Crossref] [Google Scholar]
  4. 4.
    He Z, Wang P, Ye X. 2021.. Novel endoscopic optical diagnostic technologies in medical trial research: recent advancements and future prospects. . BioMed. Eng. OnLine 20::5
    [Crossref] [Google Scholar]
  5. 5.
    De Groen PC. 2017.. History of the endoscope. . Proc. IEEE 105:(10):198795
    [Crossref] [Google Scholar]
  6. 6.
    Hirschowitz BI, Peters CW, Curtiss LE. 1957.. Preliminary report on a long fiberscope for examination of stomach and duodenum. . Med. Bull. 23:(5):17880
    [Google Scholar]
  7. 7.
    Yaqoob Z, Wu J, McDowell EJ, Heng X, Yang C. 2006.. Methods and application areas of endoscopic optical coherence tomography. . J. Biomed. Opt. 11:(6):063001
    [Crossref] [Google Scholar]
  8. 8.
    Heng HPS, Shu C, Zheng W, Lin K, Huang Z. 2021.. Advances in real-time fiber-optic Raman spectroscopy for early cancer diagnosis: pushing the frontier into clinical endoscopic applications. . Transl. Biophoton. 3:(1):e202000018
    [Crossref] [Google Scholar]
  9. 9.
    Septier D, Mytskaniuk V, Habert R, Labat D, Baudelle K, et al. 2022.. Label-free highly multimodal nonlinear endoscope. . Opt. Express 30:(14):2502033
    [Crossref] [Google Scholar]
  10. 10.
    Sharma N, Takeshita N, Ho KY. 2016.. Raman spectroscopy for the endoscopic diagnosis of esophageal, gastric, and colonic diseases. . Clin. Endosc. 49:(5):4047
    [Crossref] [Google Scholar]
  11. 11.
    Fitzgerald S, Marple E, Mahadevan-Jansen A. 2023.. Performance assessment of probe-based Raman spectroscopy systems for biomedical analysis. . Biomed. Opt. Express 14:(7):3597609
    [Crossref] [Google Scholar]
  12. 12.
    Fitzgerald S, Akhtar J, Schartner E, Ebendorff-Heidepriem H, Mahadevan-Jansen A, Li J. 2023.. Multimodal Raman spectroscopy and optical coherence tomography for biomedical analysis. . J. Biophoton. 16:(3):e202200231
    [Crossref] [Google Scholar]
  13. 13.
    Tunnell JW, Haka AS, McGee SA, Mirkovic J, Feld MS. 2003.. Diagnostic tissue spectroscopy and its applications to gastrointestinal endoscopy. . Tech. Gastrointest. Endosc. 5:(2):6573
    [Crossref] [Google Scholar]
  14. 14.
    Barik AK, Sanoop Pavithran M, Lukose J, Upadhya R, Pai MV, et al. 2022.. In vivo spectroscopy: optical fiber probes for clinical applications. . Expert Rev. Med. Devices 19:(9):65775
    [Crossref] [Google Scholar]
  15. 15.
    Heng HPS, Shu C, Zheng W, Huang Z. 2022.. Development of a coaxial DCF-GRIN fiberoptic Raman probe for enhancing in vivo epithelial tissue Raman measurements. . Opt. Lett. 47:(22):598992
    [Crossref] [Google Scholar]
  16. 16.
    Pence IJ, O'Brien CM, Masson LE, Mahadevan-Jansen A. 2021.. Application driven assessment of probe designs for Raman spectroscopy. . Biomed. Opt. Express. 12:(2):85271
    [Crossref] [Google Scholar]
  17. 17.
    Ming LC, Gangodu NR, Loh T, Zheng W, Wang J, et al. 2017.. Real time near-infrared Raman spectroscopy for the diagnosis of nasopharyngeal cancer. . Oncotarget 8:(30):4944350
    [Crossref] [Google Scholar]
  18. 18.
    Lin K, Zheng W, Lim CM, Huang Z. 2017.. Real-time in vivo diagnosis of nasopharyngeal carcinoma using rapid fiber-optic Raman spectroscopy. . Theranostics 7:(14):351726
    [Crossref] [Google Scholar]
  19. 19.
    McGregor HC, Short MA, McWilliams A, Shaipanich T, Ionescu DN, et al. 2017.. Real-time endoscopic Raman spectroscopy for in vivo early lung cancer detection. . J. Biophoton. 10:(1):98110
    [Crossref] [Google Scholar]
  20. 20.
    Bergholt MS, Zheng W, Ho KY, Teh M, Yeoh KG, et al. 2013.. Fiber-optic Raman spectroscopy probes gastric carcinogenesis in vivo at endoscopy. . J. Biophoton. 6:(1):4959
    [Crossref] [Google Scholar]
  21. 21.
    Lin K, Wang J, Zheng W, Ho KY, Teh M, et al. 2016.. Rapid fiber-optic Raman spectroscopy for real-time in vivo detection of gastric intestinal metaplasia during clinical gastroscopy. . Cancer Prev. Res. 9:(6):47683
    [Crossref] [Google Scholar]
  22. 22.
    Almond LM, Hutchings J, Lloyd G, Barr H, Shepherd N, et al. 2014.. Endoscopic Raman spectroscopy enables objective diagnosis of dysplasia in Barrett's esophagus. . Gastrointest. Endosc. 79:(1):3745
    [Crossref] [Google Scholar]
  23. 23.
    Bergholt MS, Zheng W, Ho KY, Teh M, Yeoh KG, et al. 2014.. Fiberoptic confocal Raman spectroscopy for real-time in vivo diagnosis of dysplasia in Barrett's esophagus. . Gastroenterology 146:(1):2732
    [Crossref] [Google Scholar]
  24. 24.
    Bergholt MS, Lin K, Wang J, Zheng W, Xu H, et al. 2016.. Simultaneous fingerprint and high-wavenumber fiber-optic Raman spectroscopy enhances real-time in vivo diagnosis of adenomatous polyps during colonoscopy. . J. Biophoton. 9:(4):33342
    [Crossref] [Google Scholar]
  25. 25.
    Du Z, Qi Y, He J, Zhong D, Zhou M. 2021.. Recent advances in applications of nanoparticles in SERS in vivo imaging. . Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 13:(2):85271
    [Crossref] [Google Scholar]
  26. 26.
    Zhang Z, Sheng S, Wang R, Sun M. 2016.. Tip-enhanced Raman spectroscopy. . Anal. Chem. 88:(19):932846
    [Crossref] [Google Scholar]
  27. 27.
    Wojtkowski M. 2010.. High-speed optical coherence tomography: basics and applications. . Appl. Opt. 49:(16):D3061
    [Crossref] [Google Scholar]
  28. 28.
    Tsai T-H, Fujimoto J, Mashimo H. 2014.. Endoscopic optical coherence tomography for clinical gastroenterology. . Diagnostics 4:(2):5793
    [Crossref] [Google Scholar]
  29. 29.
    Lurie KL, Gurjarpadhye AA, Seibel EJ, Ellerbee AK. 2015.. Rapid scanning catheterscope for expanded forward-view volumetric imaging with optical coherence tomography. . Opt. Lett. 40:(13):316568
    [Crossref] [Google Scholar]
  30. 30.
    Tearney GJ, Brezinski ME, Fujimoto JG, Weissman NJ, Boppart SA, et al. 1996.. Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography: erratum. . Opt. Lett. 21:(7):912
    [Crossref] [Google Scholar]
  31. 31.
    Feussner H, Becker V, Bauer M, Kranzfelder M, Schirren R, et al. 2014.. Developments in flexible endoscopic surgery: a review. . Clin. Exp. Gastroenterol. 8::3142
    [Crossref] [Google Scholar]
  32. 32.
    Swager A, Boerwinkel DF, de Bruin DM, Weusten BL, Faber DJ, et al. 2016.. Volumetric laser endomicroscopy in Barrett's esophagus: a feasibility study on histological correlation. . Dis. Esophagus 29:(6):50512
    [Crossref] [Google Scholar]
  33. 33.
    Kirtane TS, Wagh MS. 2014.. Endoscopic optical coherence tomography (OCT): advances in gastrointestinal imaging. . Gastroenterol. Res. Pract. 2014::376367
    [Crossref] [Google Scholar]
  34. 34.
    Gora MJ, Suter MJ, Tearney GJ, Li X. 2017.. Endoscopic optical coherence tomography: technologies and clinical applications [Invited]. . Biomed. Opt. Express 8:(5):240544
    [Crossref] [Google Scholar]
  35. 35.
    Volgger V, Med C, Stepp H, Hum RB, Ihrler S, et al. 2013.. Evaluation of optical coherence tomography to discriminate lesions of the upper aerodigestive tract. . Head Neck 35:(11):155866
    [Crossref] [Google Scholar]
  36. 36.
    Donner S, Bleeker S, Ripken T, Ptok M, Jungheim M, Krueger A. 2015.. Automated working distance adjustment enables optical coherence tomography of the human larynx in awake patients. . J. Med. Imaging 2:(02):026003
    [Crossref] [Google Scholar]
  37. 37.
    Liang S, Li X, Kang J, Zou J, Liang F, Zhang J. 2020.. Integrated multifunctional laryngoscope for medical diagnosis and treatment. . Appl. Sci. 10:(21):7491
    [Crossref] [Google Scholar]
  38. 38.
    Hariri LP, Applegate MB, Mino-Kenudson M, Mark EJ, Bouma BE, et al. 2013.. Optical frequency domain imaging of ex vivo pulmonary resection specimens: obtaining one to one image to histopathology correlation. . J. Vis. Exp. 71::e3855
    [Google Scholar]
  39. 39.
    Pahlevaninezhad H, Lee A, Lam S, MacAulay CE, Lane PM. 2014.. Coregistered autofluorescence-optical coherence tomography imaging of human lung sections. . J. Biomed. Opt. 19:(3):36022
    [Crossref] [Google Scholar]
  40. 40.
    Chen Y, Ding M, Guan W, Wang W, Luo W, et al. 2015.. Validation of human small airway measurements using endobronchial optical coherence tomography. . Respir. Med. 109:(11):144653
    [Crossref] [Google Scholar]
  41. 41.
    Ding M, Pan S, Huang J, Yuan C, Zhang Q, et al. 2021.. Optical coherence tomography for identification of malignant pulmonary nodules based on random forest machine learning algorithm. . PLOS ONE 16:(12):e0260600
    [Crossref] [Google Scholar]
  42. 42.
    Chang S, Bowden AK. 2019.. Review of methods and applications of attenuation coefficient measurements with optical coherence tomography. . J. Biomed. Opt. 24:(9):090901
    [Crossref] [Google Scholar]
  43. 43.
    Gora MJ, Simmons LH, Quénéhervé L, Grant CN, Carruth RW, et al. 2016.. Tethered capsule endomicroscopy: from bench to bedside at a primary care practice. . J. Biomed. Opt. 21:(10):104001
    [Crossref] [Google Scholar]
  44. 44.
    Gora MJ, Sauk JS, Carruth RW, Gallagher KA, Suter MJ, et al. 2013.. Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure. . Nat. Med. 19:(2):23840
    [Crossref] [Google Scholar]
  45. 45.
    Gora MJ, Sauk JS, Carruth RW, Lu W, Carlton DT, et al. 2013.. Imaging the upper gastrointestinal tract in unsedated patients using tethered capsule endomicroscopy. . Gastroenterology 145:(4):72325
    [Crossref] [Google Scholar]
  46. 46.
    Struyvenberg MR, de Groof AJ, Kahn A, Weusten BLAM, Fleischer DE, et al. 2020.. Multicenter study on the diagnostic performance of multiframe volumetric laser endomicroscopy targets for Barrett's esophagus neoplasia with histopathology correlation. . Dis. Esophagus 33:(12):doaa062
    [Crossref] [Google Scholar]
  47. 47.
    Houston T, Sharma P. 2020.. Volumetric laser endomicroscopy in Barrett's esophagus: ready for primetime. . Transl. Gastroenterol. Hepatol. 5::27
    [Crossref] [Google Scholar]
  48. 48.
    van der Putten J, Struyvenberg M, de Groof J, Scheeve T, Curvers W, et al. 2020.. Deep principal dimension encoding for the classification of early neoplasia in Barrett's Esophagus with volumetric laser endomicroscopy. . Comput. Med. Imaging Graph. 80::101701
    [Crossref] [Google Scholar]
  49. 49.
    Luo Y, Wang N, Cui D, Yu X, Bo E, et al. 2017.. Micro-optical coherence tomography endoscopic imaging of rat colon ex vivo. . In 2017 Conference on Lasers and Electro-optics Pacific Rim, p. s1532. Washington, DC:: Optica
    [Google Scholar]
  50. 50.
    Lyu J, Ren L, Liu QY, Wang Y, Zhou ZQ, et al. 2022.. Swept-source endoscopic optical coherence tomography real-time imaging system based on GPU acceleration for axial megahertz high-speed scanning. . Eur. Rev. Med. Pharmacol. Sci. 26:(20):734958
    [Google Scholar]
  51. 51.
    Yang B-W, Wang Y-Y, Juan Y-S, Hsu S-J. 2015.. Applying LED in full-field optical coherence tomography for gastrointestinal endoscopy. . Opt. Rev. 22:(4):56064
    [Crossref] [Google Scholar]
  52. 52.
    Gorecki C, Bargiel S, Tanguy Q, Struk P, Passilly N. 2018.. MOEMS-based imaging probe with integrated Mirau micro-interferometer and MEMS microscanner for swept-source OCT endomicroscopy. . Proc. SPIE 10834, SPECKLE 2018 VII Int. Conf. Speckle Metrol., 108340M
    [Google Scholar]
  53. 53.
    Struk P, Billard A, Bargiel S, Tanguy Q, Gorecki C, et al. 2018.. The SS-OCT endomicroscopy probe based on MOEMS Mirau micro-interferometer for early stomach cancer detection. . Proc. SPIE 10678, Opt. Micro-Nanometrol. VII, 1067807
    [Google Scholar]
  54. 54.
    Lu L, Hu Z, Frankel W, Shen R, Chen W, et al. 2021.. Using endoscopic optical coherence tomography to detect and treat early-stage pancreatic cancers. . Front. Oncol. 11::591484
    [Crossref] [Google Scholar]
  55. 55.
    Kong R, Dai C, Zhang Q, Gao L, Chen Z, et al. 2022.. Integrated US-OCT-NIRF tri-modality endoscopic imaging system for pancreaticobiliary duct imaging. . IEEE Trans. Ultrason. Ferroelectr. Freq. Control 69:(6):197079
    [Crossref] [Google Scholar]
  56. 56.
    Harpel K, Leung S, Rice PF, Jones M, Barton JK, Bommireddy R. 2016.. Imaging colon cancer development in mice: IL-6 deficiency prevents adenoma in azoxymethane-treated Smad3 knockouts. . Phys. Med. Biol. 61:(3):N6069
    [Crossref] [Google Scholar]
  57. 57.
    Welge WA, Barton JK. 2016.. Optical coherence tomography imaging of colonic crypts in a mouse model of colorectal cancer. . Proc. SPIE BiOS 9691:, Endosc. Microsc. XI, Opt. Tech. Pulm. Med. III, 96910V
    [Google Scholar]
  58. 58.
    Tang Q, Wang J, Frank A, Lin J, Li Z, et al. 2016.. Depth-resolved imaging of colon tumor using optical coherence tomography and fluorescence laminar optical tomography. . Biomed. Opt. Express 7:(12):5218
    [Crossref] [Google Scholar]
  59. 59.
    Welge WA, Barton JK. 2017.. In vivo endoscopic Doppler optical coherence tomography imaging of the colon. . Lasers Surg. Med. 49:(3):24957
    [Crossref] [Google Scholar]
  60. 60.
    Li Y, Zhu Z, Chen JJ, Jing JC, Sun C-H, et al. 2019.. Multimodal endoscopy for colorectal cancer detection by optical coherence tomography and near-infrared fluorescence imaging. . Biomed. Opt. Express 10:(5):2419
    [Crossref] [Google Scholar]
  61. 61.
    Zeng Y, Xu S, Chapman WC Jr., Li S, Alipour Z, et al. 2020.. Real-time colorectal cancer diagnosis using PR-OCT with deep learning. . Theranostics 10:(6):258796
    [Crossref] [Google Scholar]
  62. 62.
    Mora OC, Zanne P, Zorn L, Nageotte F, Zulina N, et al. 2020.. Steerable OCT catheter for real-time assistance during teleoperated endoscopic treatment of colorectal cancer. . Biomed. Opt. Express 11:(3):123143
    [Crossref] [Google Scholar]
  63. 63.
    Yuan W, Feng Y, Chen D, Gharibani P, Chen JDZ, et al. 2022.. In vivo assessment of inflammatory bowel disease in rats with ultrahigh-resolution colonoscopic OCT. . Biomed. Opt. Express 13:(4):2091
    [Crossref] [Google Scholar]
  64. 64.
    Huang J, Ma X, Zhang L, Jia H, Wang F. 2018.. Diagnostic accuracy of optical coherence tomography in bladder cancer patients: a systematic review and meta-analysis. . Mol. Clin. Oncol. 8:(4):6038
    [Google Scholar]
  65. 65.
    Sung HH, Scherr DS, Slaton J, Liu H, Feeny KL, et al. 2021.. Phase II multi-center trial of optical coherence tomography as an adjunct to white light cystoscopy for intravesical real time imaging and staging of bladder cancer. . Urol. Oncol. Semin. Orig. Investig. 39:(7):434.e2334.e29
    [Google Scholar]
  66. 66.
    Gladkova N, Kiseleva E, Streltsova O, Prodanets N, Snopova L, et al. 2013.. Combined use of fluorescence cystoscopy and cross-polarization OCT for diagnosis of bladder cancer and correlation with immunohistochemical markers. . J. Biophoton. 6:(9):68798
    [Crossref] [Google Scholar]
  67. 67.
    Gonzalez-Cerdas G, Taege Y, Jund F, Bauer C, Sandie D, et al. 2021.. Development of a clinical-grade OCT/OCT-angiography endomicroscope for imaging in the bladder. . In IEEE 2021 21st Int. Conf. Solid-State Sensors, Actuators Microsyst., pp. 144043. New York:: IEEE
    [Google Scholar]
  68. 68.
    Schoeb DS, Wollensak C, Kretschmer S, González-Cerdas G, Ataman C, et al. 2022.. Ex-vivo evaluation of miniaturized probes for endoscopic optical coherence tomography in urothelial cancer diagnostics. . Ann. Med. Surg. 77::103597
    [Crossref] [Google Scholar]
  69. 69.
    Shah RN, Kretschmer S, Nehlich J, Ataman Ç, Zappe H. 2019.. Compact OCT probe for flexible endoscopy enabled by piezoelectric scanning of a fiber/lens assembly. . Proc. SPIE 10931:, MOEMS Miniaturized Syst. XVIII, 109310
    [Google Scholar]
  70. 70.
    Tate T, Keenan M, Swan E, Black J, Utzinger U, Barton J. 2014.. Optical design of an optical coherence tomography and multispectral fluorescence imaging endoscope to detect early stage ovarian cancer. Presented at the International Optical Design Conference, Kohala Coast, Hawaii:, June 22–26
    [Google Scholar]
  71. 71.
    Keenan M, Tate TH, Kieu K, Black JF, Utzinger U, Barton JK. 2017.. Design and characterization of a combined OCT and wide field imaging falloposcope for ovarian cancer detection. . Biomed. Opt. Express 8:(1):124
    [Crossref] [Google Scholar]
  72. 72.
    Kiekens KC, Romano G, Galvez D, Cordova R, Heusinkveld J, et al. 2020.. Reengineering a falloposcope imaging system for clinical use. . Transl. Biophoton. 2:(4):e202000011
    [Crossref] [Google Scholar]
  73. 73.
    Pahlevaninezhad H, Khorasaninejad M, Huang Y-W, Shi Z, Hariri LP, et al. 2018.. Nano-optic endoscope for high-resolution optical coherence tomography in vivo. . Nat. Photon. 12:(9):54047
    [Crossref] [Google Scholar]
  74. 74.
    de Boer JF, Hitzenberger CK, Yasuno Y. 2017.. Polarization sensitive optical coherence tomography—a review. . Biomed. Opt. Express 8:(3):183873
    [Crossref] [Google Scholar]
  75. 75.
    Chang S, Giannico GA, Chang SS, Bowden AK. 2022.. Differentiation of bladder cancer from inflammation with polarization-sensitive optical coherence tomography. . In Biophotonics Congress: Biomedical Optics 2022 (Translational, Microscopy, OCT, OTS, BRAIN), Tech. Digest Ser., TM2B.5 . Washington, DC:: Optica
    [Google Scholar]
  76. 76.
    Nam HS, Yoo H. 2018.. Spectroscopic optical coherence tomography: a review of concepts and biomedical applications. . Appl. Spectrosc. Rev. 53:(2–4):91111
    [Crossref] [Google Scholar]
  77. 77.
    Perwein MKE, Welzel J, De Carvalho N, Pellacani G, Schuh S. 2022.. Dynamic optical coherence tomography: a non-invasive imaging tool for the distinction of nevi and melanomas. . Cancers 15:(1):20
    [Crossref] [Google Scholar]
  78. 78.
    Plekhanov AA, Sirotkina MA, Gubarkova EV, Kiseleva EB, Sovetsky AA, et al. 2023.. Towards targeted colorectal cancer biopsy based on tissue morphology assessment by compression optical coherence elastography. . Front. Oncol. 13::1121838
    [Crossref] [Google Scholar]
  79. 79.
    De Veld DCG, Witjes MJH, Sterenborg HJCM, Roodenburg JLN. 2005.. The status of in vivo autofluorescence spectroscopy and imaging for oral oncology. . Oral Oncol. 41:(2):11731
    [Crossref] [Google Scholar]
  80. 80.
    Walsh AJ, Cook RS, Manning HC, Hicks DJ, Lafontant A, et al. 2013.. Optical metabolic imaging identifies glycolytic levels, subtypes, and early-treatment response in breast cancer. . Cancer Res. 73:(20):616474
    [Crossref] [Google Scholar]
  81. 81.
    He Q, Wang Q, Wu Q, Feng J, Cao J, Chen BY. 2013.. Value of autofluorescence imaging videobronchoscopy in detecting lung cancers and precancerous lesions: a review. . Respir. Care 58:(12):215059
    [Crossref] [Google Scholar]
  82. 82.
    Bi Y, Min M, Cui Y, Xu Y, Li X. 2021.. Research progress of autofluorescence imaging technology in the diagnosis of early gastrointestinal tumors. . Cancer Control 28:. https://doi.org/10.1177/10732748211044337
    [Crossref] [Google Scholar]
  83. 83.
    Subramanian V, Ragunath K. 2014.. Advanced endoscopic imaging: a review of commercially available technologies. . Clin. Gastroenterol. Hepatol. 12:(3):36876
    [Crossref] [Google Scholar]
  84. 84.
    Mat Lazim N, Kandhro AH, Menegaldo A, Spinato G, Verro B, Abdullah B. 2023.. Autofluorescence image-guided endoscopy in the management of upper aerodigestive tract tumors. . Int. J. Environ. Res. Public Health 20:(1):159
    [Crossref] [Google Scholar]
  85. 85.
    Croce AC, Bottiroli G. 2014.. Autofluorescence spectroscopy and imaging: a tool for biomedical research and diagnosis. . Eur. J. Histochem. 58:(4):32037
    [Google Scholar]
  86. 86.
    Zheng W, Lau W, Cheng C, Soo KC, Olivo M. 2003.. Optimal excitation-emission wavelengths for autofluorescence diagnosis of bladder tumors. . Int. J. Cancer 104:(4):47781
    [Crossref] [Google Scholar]
  87. 87.
    Lagarto JL, Credi C, Villa F, Tisa S, Zappa F, et al. 2019.. Multispectral depth-resolved fluorescence lifetime spectroscopy using SPAD array detectors and fiber probes. . Sensors 19:(12):2678
    [Crossref] [Google Scholar]
  88. 88.
    Arifler D, Schwarz RA, Chang SK, Richards-Kortum R. 2005.. Reflectance spectroscopy for diagnosis of epithelial precancer: model-based analysis of fiber-optic probe designs to resolve spectral information from epithelium and stroma. . Appl. Opt. 44:(20):4291305
    [Crossref] [Google Scholar]
  89. 89.
    Pfefer TJ, Agrawal A, Drezek RA. 2005.. Oblique-incidence illumination and collection for depth-selective fluorescence spectroscopy. . J. Biomed. Opt. 10:(4):044016
    [Crossref] [Google Scholar]
  90. 90.
    Nieman LT, Jakovljevic M, Sokolov K. 2009.. Compact beveled fiber optic probe design for enhanced depth discrimination in epithelial tissues. . Opt. Express 17:(4):2780
    [Crossref] [Google Scholar]
  91. 91.
    Moriichi K, Fujiya M, Okumura T. 2016.. The efficacy of autofluorescence imaging in the diagnosis of colorectal diseases. . Clin. J. Gastroenterol. 9:(4):17583
    [Crossref] [Google Scholar]
  92. 92.
    Holz JA, Boerwinkel DF, Meijer SL, Visser M, Van Leeuwen TG, et al. 2013.. Optimized endoscopic autofluorescence spectroscopy for the identification of premalignant lesions in Barrett's oesophagus. . Eur. J. Gastroenterol. Hepatol. 25:(12):144249
    [Crossref] [Google Scholar]
  93. 93.
    Pietro MD, Boerwinkel DF, Shariff MK, Liu X, Telakis E, et al. 2015.. The combination of autofluorescence endoscopy and molecular biomarkers is a novel diagnostic tool for dysplasia in Barrett's oesophagus. . Gut 64:(1):4956
    [Crossref] [Google Scholar]
  94. 94.
    Filip MM, Iordache S, Burtea ED, Căliţa M, Săftoiu A. 2018.. Red-flag techniques for the assessment of pre-neoplastic gastric lesions: autofluorescence imaging versus virtual chromoendoscopy. . Surgery Gastroenterol. Oncol. 23:(2):1038
    [Google Scholar]
  95. 95.
    McAlpine JN, El Hallani S, Lam SF, Kalloger SE, Luk M, et al. 2011.. Autofluorescence imaging can identify preinvasive or clinically occult lesions in fallopian tube epithelium: a promising step towards screening and early detection. . Gynecol. Oncol. 120:(3):38592
    [Crossref] [Google Scholar]
  96. 96.
    Kamath SD, Bhat RA, Ray S, Mahato KK. 2009.. Autofluorescence of normal, benign, and malignant ovarian tissues: a pilot study. . Photomed. Laser Surg. 27:(2):32535
    [Crossref] [Google Scholar]
  97. 97.
    Tate TH, Baggett B, Rice PFS, Koevary JW, Orsinger GV, et al. 2016.. Multispectral fluorescence imaging of human ovarian and fallopian tube tissue for early-stage cancer detection. . J. Biomed. Opt. 21:(5):056005
    [Crossref] [Google Scholar]
  98. 98.
    Li LZ, Masek M, Wang T, Xu HN, Nioka S, et al. 2020.. Two-photon autofluorescence imaging of fixed tissues: feasibility and potential values for biomedical applications. . Adv. Exp. Med. Biol. 1232::37581
    [Crossref] [Google Scholar]
  99. 99.
    Kretschmer S, Pieper M, Hüttmann G, Bölke T, Wollenberg B, et al. 2016.. Autofluorescence multiphoton microscopy for visualization of tissue morphology and cellular dynamics in murine and human airways. . Lab. Investig. 96:(8):91831
    [Crossref] [Google Scholar]
  100. 100.
    Brown CM, Rivera DR, Ouzounov DG, Webb WW, Xu C, et al. 2012.. In vivo imaging of unstained tissues using a compact and flexible multiphoton microendoscope. . J. Biomed. Opt. 17:(4):040505
    [Crossref] [Google Scholar]
  101. 101.
    Huland DM, Brown CM, Howard SS, Ouzounov DG, Pavlova I, et al. 2012.. In vivo imaging of unstained tissues using long gradient index lens multiphoton endoscopic systems. . Biomed. Opt. Express. 3:(5):1077
    [Crossref] [Google Scholar]
  102. 102.
    Wróbel MS, Popov AP, Bykov AV, Kinnunen M, Jędrzejewska-Szczerska M, Tuchin VV. 2015.. Multi-layered tissue head phantoms for noninvasive optical diagnostics. . J. Innov. Opt. Health Sci. 8:(3):1541005
    [Crossref] [Google Scholar]
  103. 103.
    Frei RW, Zeitlin H. 1971.. Diffuse reflectance spectroscopy. . Crit. Rev. Anal. Chem. 2:(2):179246
    [Crossref] [Google Scholar]
  104. 104.
    Akter S, Hossain MG, Nishidate I, Hazama H, Awazu K. 2018.. Medical applications of reflectance spectroscopy in the diffusive and sub-diffusive regimes. . J. Near Infrared Spectrosc. 26:(6):33750
    [Crossref] [Google Scholar]
  105. 105.
    Zhu C, Palmer GM, Breslin TM, Harter J, Ramanujam N. 2006.. Diagnosis of breast cancer using diffuse reflectance spectroscopy: comparison of a Monte Carlo versus partial least squares analysis based feature extraction technique. . Lasers Surg. Med. 38:(7):71424
    [Crossref] [Google Scholar]
  106. 106.
    Nogueira MS, Maryam S, Amissah M, Lu H, Lynch N, et al. 2021.. Evaluation of wavelength ranges and tissue depth probed by diffuse reflectance spectroscopy for colorectal cancer detection. . Sci. Rep. 11::798
    [Crossref] [Google Scholar]
  107. 107.
    Richards-Kortum RR. 2003.. Fiber optic probes for biomedical optical spectroscopy. . J. Biomed. Optics 8:(1):12147
    [Crossref] [Google Scholar]
  108. 108.
    Skala MC, Palmer GM, Zhu C, Liu Q, Vrotsos KM, et al. 2004.. Investigation of fiber-optic probe designs for optical spectroscopic diagnosis of epithelial pre-cancers. . Lasers Surg. Med. 34:(1):2538
    [Crossref] [Google Scholar]
  109. 109.
    Lin D, Qiu S, Huang W, Pan J, Xu Z, et al. 2018.. Autofluorescence and white light imaging-guided endoscopic Raman and diffuse reflectance spectroscopy for in vivo nasopharyngeal cancer detection. . J. Biophoton. 11:(4):e201700251
    [Crossref] [Google Scholar]
  110. 110.
    Lariviere B, Garman KS, Ferguson NL, Fisher DA, Jokerst NM. 2018.. Spatially resolved diffuse reflectance spectroscopy endoscopic sensing with custom Si photodetectors. . Biomed. Opt. Express. 9:(3):1164
    [Crossref] [Google Scholar]
  111. 111.
    Rodriguez-Diaz E, Huang Q, Cerda SR, Brien MJO. 2015.. Endoscopic histological assessment of colonic polyps by using elastic scattering spectroscopy. . Gastrointest. Endosc. 81:(3):53947
    [Crossref] [Google Scholar]
  112. 112.
    Tate TH, Keenan M, Black J, Utzinger U, Barton JK. 2017.. Ultraminiature optical design for multispectral fluorescence imaging endoscopes. . J. Biomed. Opt. 22:(3):036013
    [Crossref] [Google Scholar]
  113. 113.
    Gkouzionis I, Nazarian S, Kawka M, Darzi A, Patel N, et al. 2022.. Real-time tracking of a diffuse reflectance spectroscopy probe used to aid histological validation of margin assessment in upper gastrointestinal cancer resection surgery. . J. Biomed. Opt. 27:(2):025001
    [Crossref] [Google Scholar]
  114. 114.
    Tseregorodtseva PS, Buiankin KE, Yakimov BP, Kamalov AA, Budylin GS, Shirshin EA. 2021.. Single-fiber diffuse reflectance spectroscopy and spatial frequency domain imaging in surgery guidance: a study on optical phantoms. . Materials 14:(24):7502
    [Crossref] [Google Scholar]
  115. 115.
    Lu G, Fei B. 2014.. Medical hyperspectral imaging: a review. . J. Biomed. Opt. 19:(1):010901
    [Crossref] [Google Scholar]
  116. 116.
    ul Rehman A, Qureshi SA. 2021.. A review of the medical hyperspectral imaging systems and unmixing algorithms’ in biological tissues. . Photodiagnos. Photodyn. Ther. 33::102165
    [Crossref] [Google Scholar]
  117. 117.
    Hinderberger P, Grusche S, Losekamm MJ. 2023.. Double-dispersive spatio-spectral scanning for hyperspectral Earth observation. . Optica 10:(6):74051
    [Crossref] [Google Scholar]
  118. 118.
    Lim H, Murukeshan VM. 2016.. A four-dimensional snapshot hyperspectral video-endoscope for bio-imaging applications. . Sci. Rep. 6::24044
    [Crossref] [Google Scholar]
  119. 119.
    Gao L, Kester RT, Hagen N, Tkaczyk TS. 2010.. Snapshot image mapping spectrometer (IMS) with high sampling density for hyperspectral microscopy. . Opt. Express 18:(14):14330
    [Crossref] [Google Scholar]
  120. 120.
    Modir N, Shahedi M, Dormer JD, Ma L, Ghaderi M, et al. 2022.. LED-based hyperspectral endoscopic imaging. . Proc. SPIE 11954:, Int. Soc. Opt. Eng., 1195408
    [Google Scholar]
  121. 121.
    Slomka B, Duan S, Knapp TG, Lima N, Sontz R, et al. 2023.. Design, fabrication, and preclinical testing of a miniaturized, multispectral, chip-on-tip, imaging probe for intraluminal fluorescence imaging of the gastrointestinal tract. . Front. Photon. 3::1067651
    [Crossref] [Google Scholar]
  122. 122.
    Faraji-Dana M, Arbabi E, Kwon H, Kamali SM, Arbabi A, Faraon A. 2019.. Miniaturized folded metasurface hyperspectral imager. . In Frontiers in Optics + Laser Science APS/DLS, Tech. Digest, JW4A.70 . Washington, DC:: Optica
    [Google Scholar]
  123. 123.
    Wu IC, Syu HY, Jen CP, Lu MY, Chen YT, et al. 2018.. Early identification of esophageal squamous neoplasm by hyperspectral endoscopic imaging. . Sci. Rep. 8::13797
    [Crossref] [Google Scholar]
  124. 124.
    Yoon J, Joseph J, Waterhouse DJ, Luthman AS, Gordon GSD, et al. 2019.. A clinically translatable hyperspectral endoscopy (HySE) system for imaging the gastrointestinal tract. . Nat. Commun. 10::1902
    [Crossref] [Google Scholar]
  125. 125.
    Sato D, Takamatsu T, Umezawa M, Kitagawa Y, Maeda K, et al. 2020.. Distinction of surgically resected gastrointestinal stromal tumor by near-infrared hyperspectral imaging. . Sci. Rep. 10::19030
    [Crossref] [Google Scholar]
  126. 126.
    Yoon J, Joseph J, Waterhouse DJ, Borzy C, Siemens K, et al. 2021.. First experience in clinical application of hyperspectral endoscopy for evaluation of colonic polyps. . J. Biophoton. 14:(9):e202100078
    [Crossref] [Google Scholar]
  127. 127.
    Lee J, Yoon J. 2022.. Assessment of angle-dependent spectral distortion to develop accurate hyperspectral endoscopy. . Sci. Rep. 12::11892
    [Crossref] [Google Scholar]
  128. 128.
    Steelman ZA, Ho DS, Chu KK, Wax A. 2019.. Light scattering methods for tissue diagnosis. . Optica 6:(4):47989
    [Crossref] [Google Scholar]
  129. 129.
    Qiu L, Zhang L, Turzhitsky V, Khan U, Zakharov Y, et al. 2019.. Multispectral endoscopy with light gating for early cancer detection. . IEEE J. Sel. Top. Quantum Electron. 25:(1):7201309
    [Crossref] [Google Scholar]
  130. 130.
    Backman V, Gurjar R, Badizadegan K, Itzkan I, Dasari RR, et al. 1999.. Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ. . IEEE J. Sel. Top. Quantum Electron. 5:(4):101926
    [Crossref] [Google Scholar]
  131. 131.
    Pyhtila JW, Boyer JD, Chalut KJ, Wax A. 2006.. Fourier-domain angle-resolved low coherence interferometry through an endoscopic fiber bundle for light-scattering spectroscopy. . Opt. Lett. 31:(6):77274
    [Crossref] [Google Scholar]
  132. 132.
    Morgner U, Drexler W, Kärtner FX, Li X, Pitris C, et al. 2000.. Spectroscopic optical coherence tomography. . Opt. Lett. 25::11113
    [Crossref] [Google Scholar]
  133. 133.
    Gomes AJ, Ruderman S, DelaCruz M, Wali RK, Roy HK, Backman V. 2012.. In vivo measurement of the shape of the tissue-refractive-index correlation function and its application to detection of colorectal field carcinogenesis. . J. Biomed. Opt. 17:(4):047005
    [Crossref] [Google Scholar]
  134. 134.
    Qiu L, Chuttani R, Pleskow DK, Turzhitsky V, Khan U, et al. 2018.. Multispectral light scattering endoscopic imaging of esophageal precancer. . Light Sci. Appl. 7::17174
    [Crossref] [Google Scholar]
  135. 135.
    Qi J, Clement B, Elson DS. 2012.. Polarized multispectral imaging in a rigid endoscope based on polarized light scattering spectroscopy. . In Biomedical Optics and 3-D Imaging, OSA Tech. Digest, BW4B.7 . Washington, DC:: Optica
    [Google Scholar]
  136. 136.
    Patel M, Gomes A, Ruderman S, Hardee D, Crespo S, et al. 2014.. Polarization gating spectroscopy of normal-appearing duodenal mucosa to detect pancreas cancer. . Gastrointest. Endosc. 80:(5):78693
    [Crossref] [Google Scholar]
  137. 137.
    Zhang L, Pleskow DK, Turzhitsky V, Yee EU, Berzin TM, et al. 2017.. Light scattering spectroscopy identifies the malignant potential of pancreatic cysts during endoscopy. . Nat. Biomed. Eng. 1::0040
    [Crossref] [Google Scholar]
  138. 138.
    Pleskow DK, Sawhney MS, Upputuri PK, Berzin TM, Coughlan MF, et al. 2023.. In vivo detection of bile duct pre-cancer with endoscopic light scattering spectroscopy. . Nat. Commun. 14::109
    [Crossref] [Google Scholar]
  139. 139.
    Zhang H, Steelman ZA, Ceballos S, Chu KK, Wax A. 2020.. Reconstruction of angle-resolved backscattering through a multimode fiber for cell nuclei and particle size determination. . APL Photon. 5:(7):076105
    [Crossref] [Google Scholar]
  140. 140.
    Chatterjee S, Das NK, Kumar S, Mohapatra S, Pradhan A, et al. 2013.. Probing multi-scale self-similarity of tissue structures using light scattering spectroscopy: prospects in pre-cancer detection. . Proc. SPIE 8699, Saratov Fall Meet. 2012, Opt. Technol. Biophys. Med. XIV, Laser Phys. Photonics XIV, 86990D
    [Google Scholar]
  141. 141.
    Ren W, Qu Y, Pei J, Xiao L, Zhang S, et al. 2016.. In vivo detection of cervical intraepithelial neoplasia by multimodal colposcopy. . Proc. SPIE 9701, Multimodal Biomed. Imaging XI, 97010E
    [Google Scholar]
  142. 142.
    Malone J, Hohert G, Hoang L, Miller DM, McAlpine JN, et al. 2020.. Endoscopic optical coherence tomography (OCT) and autofluorescence imaging (AFI) of ex vivo fallopian tubes. . Proc. SPIE 11232, Multimodal Biomed. Imaging XV, 1123202
    [Google Scholar]
  143. 143.
    Zhang H, Bordas J, Chu KK, Moussa L, Santiago A, et al. 2022.. In vivo detection of esophageal dysplasia using a/LCI light scattering with OCT image guidance. . Proc. SPIE PC11974, Biomed. Appl. Light Scatt. XII, PC1197402
    [Google Scholar]
  144. 144.
    Bovenkamp D, Sentosa R, Rank E, Erkkilä M, Placzek F, et al. 2018.. Combination of high-resolution optical coherence tomography and Raman spectroscopy for improved staging and grading in bladder cancer. . Appl. Sci. 8:(12):2371
    [Crossref] [Google Scholar]
  145. 145.
    Aihara H, Saito S, Inomata H, Ide D, Tamai N, et al. 2013.. Computer-aided diagnosis of neoplastic colorectal lesions using “real-time” numerical color analysis during autofluorescence endoscopy. . Eur. J. Gastroenterol. Hepatol. 25:(4):48894
    [Crossref] [Google Scholar]
  146. 146.
    Eminaga O, Eminaga N, Semjonow A, Breil B. 2018.. Diagnostic classification of cystoscopic images using deep convolutional neural networks. . JCO Clin. Cancer Informat. 2:. https://doi.org/10.1200/CCI.17.00126
    [Google Scholar]
  147. 147.
    Lurie KL, Angst R, Zlatev DV, Liao JC, Ellerbee Bowden AK. 2017.. 3D reconstruction of cystoscopy videos for comprehensive bladder records. . Biomed. Opt. Express 8:(4):210623
    [Crossref] [Google Scholar]
  148. 148.
    Lurie KL, Angst R, Seibel EJ, Liao JC, Ellerbee Bowden AK. 2016.. Registration of free-hand OCT daughter endoscopy to 3D organ reconstruction. . Biomed. Opt. Express 7:(12):49955009
    [Crossref] [Google Scholar]
  149. 149.
    Schmidbauer J, Remzi M, Klatte T, Waldert M, Mauermann J, et al. 2009.. Fluorescence cystoscopy with high-resolution optical coherence tomography imaging as an adjunct reduces false-positive findings in the diagnosis of urothelial carcinoma of the bladder. . Eur. Urol. 56:(6):91419
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-anchem-061622-014208
Loading
/content/journals/10.1146/annurev-anchem-061622-014208
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error