Chemical detection in complex environments presents numerous challenges for successful implementation. Arrays of sensors are often implemented for complex chemical sensing tasks, but systematic understanding of how individual sensor response characteristics contribute overall detection system performance remains elusive, with generalized strategies for design and optimization of these arrays rarely reported and even less commonly adopted by practitioners. This review focuses on the literature of nonspecific sensor array design and optimization strategies as well as related work that may inform future efforts in complex sensing with arrays.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Marco S. 1.  2014. The need for external validation in machine olfaction: emphasis on health-related applications. Anal. Bioanal. Chem. 406:3941–56 [Google Scholar]
  2. Boeker P. 2.  2014. On “electronic nose” methodology. Sens. Actuators B 204:2–17 [Google Scholar]
  3. Goodner KL, Dreher JG, Rouseff RL. 3.  2001. The dangers of creating false classifications due to noise in electronic nose and similar multivariate analyses. Sens. Actuators B 80:261–66 [Google Scholar]
  4. Smets P. 4.  1988. Belief function. Non-Standard Logics for Automated Reasoning P Smets, A Mamdani, D Dubois, H Prade 253–86 London: Academic [Google Scholar]
  5. Vessman J, Stefan RI, van Staden JF, Danzer K, Lindner W. 5.  et al. 2001. Selectivity in analytical chemistry. Pure Appl. Chem. 73:81381–86 [Google Scholar]
  6. Zubritsky E. 6.  2000. E-noses keep an eye on the future. Anal. Chem. 72:11421A–26A [Google Scholar]
  7. Marco S, Gutiérrez-Gálvez A, Lansner A, Martinez D, Rospars JP. 7.  et al. 2014. A biomimetic approach to machine olfaction, featuring a very large-scale chemical sensor array and embedded neuro-bio-inspired computation. Microsyst. Technol. 20:729–42 [Google Scholar]
  8. Janata J. 8.  2009. Principles of Chemical Sensors. New York: Springer, 2nd ed.. [Google Scholar]
  9. Wilson DM, Hoyt S, Janata J, Booksh K, Obando L. 9.  2001. Chemical sensors for portable, handheld field instruments. IEEE Sens. J. 1:4256–74 [Google Scholar]
  10. Wang C, Yin L, Zhang L, Xiang D, Gao R. 10.  2010. Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10:32088–106 [Google Scholar]
  11. Janata J, Josowicz M. 11.  2003. Conducting polymers in electronic chemical sensors. Nat. Mater. 2:19–24 [Google Scholar]
  12. Kreno LE, Leong K, Farha OK, Allendorf M, Van Duyne RP, Hupp JT. 12.  2011. Metal-organic framework materials as chemical sensors. Chem. Rev. 112:21105–25 [Google Scholar]
  13. Penner RM. 13.  2012. Chemical sensing with nanowires. Annu. Rev. Anal. Chem. 5:461–85 [Google Scholar]
  14. Haick H. 14.  2007. Chemical sensors based on molecularly modified metallic nanoparticles. J. Phys. D 40:237173–86 [Google Scholar]
  15. Kemling JW, Qavi AJ, Bailey RC, Suslick KS. 15.  2011. Nanostructured substrates for optical sensing. J. Phys. Chem. Lett. 2:222934–44 [Google Scholar]
  16. Sibbald A. 16.  1985. A chemical-sensitive integrated-circuit: the operational transducer. Sens. Actuators 7:123–38 [Google Scholar]
  17. Janata J. 17.  1990. Potentiometric microsensors. Chem. Rev. 90:691–703 [Google Scholar]
  18. Grate JW. 18.  2008. Hydrogen-bond acidic polymers for chemical vapor sensing. Chem. Rev. 108:726–45 [Google Scholar]
  19. Grate JW. 19.  2000. Acoustic wave microsensor arrays for vapor sensing. Chem. Rev. 100:2627–48 [Google Scholar]
  20. Raja VB, Singh H, Nimal AT, Sharma MU, Gupta V. 20.  2013. Oxide thin films (ZnO, TeO2, SnO2, and TiO2) based surface acoustic wave (SAW) E-nose for the detection of chemical warfare agents. Sens. Actuators B 178:636–47 [Google Scholar]
  21. Dufour I, Josse F, Heinrich SM, Lucat C, Ayela C. 21.  et al. 2012. Unconventional uses of microcantilevers as chemical sensors in gas and liquid media. Sens. Actuators B 170:115–21 [Google Scholar]
  22. Baldini F, Giannetti G, Trono C. 22.  2012. Fundamentals of optical chemical sensors. Optochemical Nanosensors A Cusano, FJ Arregui, M Giordano, A Cutolo 35–50 Boca Raton: CRC Press [Google Scholar]
  23. Qazi HH, bin Mohammad AB, Akram M. 23.  2012. Recent progress in optical chemical sensors. Sensors 12:1216522–56 [Google Scholar]
  24. Rakow NA, Suslick KS. 24.  2000. A colorimetric sensor array for odour visualization. Nature 406:710–71 [Google Scholar]
  25. LaGasse MK, Rankin JM, Askim JR, Suslick KS. 25.  2014. Colorimetric sensor arrays: interplay of geometry, substrate and immobilization. Sens. Actuators B 197:116–22 [Google Scholar]
  26. Khan MRR, Kang BH, Lee SW, Kim SH, Yeom SH. 26.  et al. 2013. Fiber-optic multi-sensor array for detection of low concentration volatile organic compounds. Optics Express 21:1720119–30 [Google Scholar]
  27. Dickinson TA, Michael KL, Kauer JS, Walt DR. 27.  1999. Convergent, self-encoded bead sensor arrays in the design of an artificial nose. Anal. Chem. 71:2192–98 [Google Scholar]
  28. Sohn H, Sailor MJ, Magde D, Trogler WC. 28.  2002. Detection of nitroaromatic explosives based on photoluminescent polymers containing metalloles. J. Am. Chem. Soc. 125:3821–30 [Google Scholar]
  29. Sutter JM, Jurs PC. 29.  1997. Neural network classification and quantification of organic vapors based on fluorescence data from a fiber-optic sensor array. Anal. Chem. 69:856–62 [Google Scholar]
  30. Collins GE, Rose-Pehrsson SL. 30.  1996. Chemiluminescent chemical sensors for inorganic and organic vapors. Sens. Actuators B 34:1–2317–22 [Google Scholar]
  31. Zhang Z, Zhang S, Zhang X. 31.  2005. Recent developments and applications of chemiluminescence sensors. Anal. Chim. Acta 541:1–237–46 [Google Scholar]
  32. Shalabney A, Abdulhalm I. 32.  2011. Sensitivity-enhancement methods for surface plasmon sensors. Laser Photonics Rev. 5:4571–606 [Google Scholar]
  33. Homola J, Yee SS, Gauglitz G. 33.  1999. Surface plasmon resonance sensors: review. Sens. Actuators B 54:1–23–15 [Google Scholar]
  34. Riley CM. 34.  1996. Statistical parameters and analytical figures of merit. Development and Validation of Analytical Methods CM Riley, TW Rosanske 15–71 New York: Elsevier [Google Scholar]
  35. Brown CD, Davis HT. 35.  2006. Receiver operating characteristics curves and related decision measures: a tutorial. Chemom. Intel. Lab. Sys. 80:24–38 [Google Scholar]
  36. Faber K, Kowalski BR. 36.  1997. Propagation of measurement errors for the validation of predictions obtained by principal component regression and partial least squares. J. Chemom. 11:181–238 [Google Scholar]
  37. Pierna JAF, Jin L, Wahl F, Faber NM, Massart DL. 37.  2003. Estimation of partial least squares regression prediction uncertainty when the reference values carry a sizeable measurement error. J. Chemom. Intel. Lab. Sys. 65:281–91 [Google Scholar]
  38. Booksh KS, Kowalski BR. 38.  1994. Theory of analytical chemistry. Anal. Chem. 66:782A–91A [Google Scholar]
  39. Carey PW, Beebe KR, Kowalski BR. 39.  1986. Selection of adsorbates for chemical sensor arrays by pattern recognition. Anal. Chem. 58:149–53 [Google Scholar]
  40. Buck LB. 40.  2005. Unraveling the sense of smell. Angew. Chem. Int. Ed. 44:6128–40 [Google Scholar]
  41. Pearce TC. 41.  1997. Computational parallels between the biological olfactory pathway and its analogue “the electronic nose”: Part II. Sensor-based machine olfaction. Biosystems 41:69–90 [Google Scholar]
  42. Persaud K, Dodd G. 42.  1982. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature 299:352–55 [Google Scholar]
  43. Zaromb S, Stetter JR. 43.  1984. Theoretical basis for identification and measurement of air contaminants using an array of sensors having partly overlapping sensitivities. Sens. Actuators 6:4225–43 [Google Scholar]
  44. Rose-Pehrsson SL, Grate JW, Ballantine DS, Jurs PC. 44.  1988. Detection of hazardous vapors including mixtures using pattern recognition analysis of responses from surface acoustic wave devices. Anal. Chem. 60:2801–11 [Google Scholar]
  45. Carey WP, Beebe KR, Kowalski BR. 45.  1987. Multicomponent analysis using an array of piezoelectric crystal sensors. Anal. Chem. 59:1529–34 [Google Scholar]
  46. Hierold C, Mueller R. 46.  1989. Quantitative analysis of gas mixtures with non-selective gas sensors. Sens. Actuators 17:3–4587–92 [Google Scholar]
  47. Ema K, Yokoyama M, Nakamoto T, Moriizumi T. 47.  1989. Odor-sensing system using a quartz-resonator sensor array and neural-network pattern recognition. Sens. Actuators 18:3–4291–96 [Google Scholar]
  48. Grate JW, Abraham MH. 48.  1991. Solubility interactions and the design of chemically selective sorbent coatings for chemical sensors and arrays. Sens. Actuators B 3:85–111 [Google Scholar]
  49. Grate JW, Patrash SJ, Abraham MH. 49.  1995. Method for estimating polymer-coated wave vapor sensor responses. Anal. Chem. 67:2162–69 [Google Scholar]
  50. Grate JW, Wise BM, Abraham MH. 50.  1999. Method for unknown vapor characterization and classification using a multivariate sorption detector. Initial derivation and modeling based on polymer-coated acoustic wave sensor arrays and linear solvation energy relationships. Anal. Chem. 71:4544–53 [Google Scholar]
  51. Grate JW, Patrash SJ, Kaganove SN, Abraham MH, Wise BM, Gallagher NB. 51.  2001. Inverse least-squares modeling of vapor descriptors using polymer-coated surface acoustic wave sensor array responses. Anal. Chem. 73:5247–59 [Google Scholar]
  52. Hsieh MD, Zellers ET. 52.  2004. Limits of recognition for simple vapor mixtures determined with a microsensor array. Anal. Chem. 76:1885–95 [Google Scholar]
  53. Jin C, Kurzawski P, Kierlemann A, Zellers ET. 53.  2008. Evaluation of multitransducer arrays for the determination of organic vapor mixtures. Anal. Chem. 80:227–36 [Google Scholar]
  54. Jin C, Zellers ET. 54.  2008. Limits of recognition for binary and ternary vapor mixtures determined with multitransducer arrays. Anal. Chem. 80:7283–93 [Google Scholar]
  55. Bohrer FI, Covington E, Kurdak Ç, Zellers ET. 55.  2011. Characterization of dense arrays of chemiresistor vapor sensors with submicrometer features and patterned nanoparticle interface layers. Anal. Chem. 83:3687–95 [Google Scholar]
  56. Rakow NA, Suslick KS. 56.  2000. A colorimetric sensor array for odour visualization. Nature 406:710–13 [Google Scholar]
  57. Feng L, Musto CJ, Kemling JW, Lim SH, Zhong W, Suslick KS. 57.  2010. Colorimetric sensor array for determination and identification of toxic industrial chemicals. Anal. Chem. 82:9433–40 [Google Scholar]
  58. Mazzone PJ, Wang XF, Xu Y, Mekhail T, Beukemann MC. 58.  et al. 2012. Exhaled breath analysis with a colorimetric sensor array for the identification and characterization of lung cancer. J. Thorac. Oncol. 7:1137–42 [Google Scholar]
  59. Zhang Y, Askim JR, Zhong W, Orlean P, Suslick KS. 59.  2014. Identification of pathogenic fungi with an optoelectronic nose. Analyst 139:81922–28 [Google Scholar]
  60. Askim JR, Mahmoudi M, Suslick KS. 60.  2013. Optical sensor arrays for chemical sensing: the optoelectronic nose. Chem. Soc. Rev. 42:228649–82 [Google Scholar]
  61. Lichtenstein A, Havivi E, Shacham R, Hahamy E, Leibovich R. 61.  et al. 2014. Supersensitive fingerprinting of explosives by chemically modified nanosensors arrays. Nat. Comm. 5:4195 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error