1932

Abstract

Developing a deeper understanding of dynamic chemical, electronic, and morphological changes at interfaces is key to solving practical issues in electrochemical energy storage systems (EESSs). To unravel this complexity, an assortment of tools with distinct capabilities and spatiotemporal resolutions have been used to creatively visualize interfacial processes as they occur. This review highlights how electrochemical scanning probe techniques (ESPTs) such as electrochemical atomic force microscopy, scanning electrochemical microscopy, scanning ion conductance microscopy, and scanning electrochemical cell microscopy are uniquely positioned to address these challenges in EESSs. We describe the operating principles of ESPTs, focusing on the inspection of interfacial structure and chemical processes involved in Li-ion batteries and beyond. We discuss current examples, performance limitations, and complementary ESPTs. Finally, we discuss prospects for imaging improvements and deep learning for automation. We foresee that ESPTs will play an enabling role in advancing EESSs as we transition to renewable energies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-091422-110703
2023-06-14
2024-05-04
Loading full text...

Full text loading...

/deliver/fulltext/anchem/16/1/annurev-anchem-091422-110703.html?itemId=/content/journals/10.1146/annurev-anchem-091422-110703&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Trahey L, Brushett FR, Balsara NP, Ceder G, Cheng L et al. 2020. Energy storage emerging: a perspective from the Joint Center for Energy Storage Research. PNAS 117:12550–57
    [Google Scholar]
  2. 2.
    Whittingham S. 2014. Introduction: batteries. Chem. Rev. 114:11413
    [Google Scholar]
  3. 3.
    Wood DL, Li J, An SJ. 2019. Formation challenges of lithium-ion battery manufacturing. Joule 3:2884–88
    [Google Scholar]
  4. 4.
    López I, Morey J, Ledeuil JB, Madec L, Martinez H. 2021. A critical discussion on the analysis of buried interfaces in Li solid-state batteries. Ex situ and in situ/operando studies. J. Mater. Chem. A 9:25341–68
    [Google Scholar]
  5. 5.
    Gossage ZT, Schorr NB, Hernández-Burgos K, Hui J, Simpson BH et al. 2017. Interrogating charge storage on redox active colloids via combined Raman spectroscopy and scanning electrochemical microscopy. Langmuir 33:9455–63
    [Google Scholar]
  6. 6.
    Schorr NB, Jiang AG, Rodríguez-López J. 2018. Probing graphene interfacial reactivity via simultaneous and colocalized Raman–scanning electrochemical microscopy imaging and interrogation. Anal. Chem. 90:7848–54
    [Google Scholar]
  7. 7.
    Schorr NB, Gossage ZT, Rodríguez-López J. 2018. Prospects for single-site interrogation using in situ multimodal electrochemical scanning probe techniques. Curr. Opin. Electrochem. 8:89–95
    [Google Scholar]
  8. 8.
    Ren Z, Mastropietro F, Davydok A, Langlais S, Richard M-I et al. 2014. Scanning force microscope for in situ nanofocused X-ray diffraction studies. J. Synchrotron Radiat. 21:1128–33
    [Google Scholar]
  9. 9.
    Slobodskyy T, Zozulya AV, Tholapi R, Liefeith L, Fester M et al. 2015. Versatile atomic force microscopy setup combined with micro-focused X-ray beam. Rev. Sci. Instrum. 86:065104
    [Google Scholar]
  10. 10.
    Hui J, Gossage ZT, Sarbapalli D, Hernández-Burgos K, Rodríguez-López J. 2019. Advanced electrochemical analysis for energy storage interfaces. Anal. Chem. 91:60–83
    [Google Scholar]
  11. 11.
    Bentley CL, Edmondson J, Meloni GN, Perry D, Shkirskiy V, Unwin PR. 2019. Nanoscale electrochemical mapping. Anal. Chem. 91:84–108
    [Google Scholar]
  12. 12.
    Ventosa E. 2021. Why nanoelectrochemistry is necessary in battery research?. Curr. Opin. Electrochem. 25:100635
    [Google Scholar]
  13. 13.
    Sarbapalli D, Mishra A, Hatfield KO, Gossage ZT, Rodríguez-López J 2021. Scanning electrochemical microscopy: a versatile tool for inspecting the reactivity of battery electrodes. Batteries: Materials Principles and Characterization Methods C Liao 9–144 Bristol, UK: IOP Publ.
    [Google Scholar]
  14. 14.
    Zhang Z, Said S, Smith K, Jervis R, Howard CA et al. 2021. Characterizing batteries by in situ electrochemical atomic force microscopy: a critical review. Adv. Energy Mater. 11:2101518
    [Google Scholar]
  15. 15.
    Winter M, Barnett B, Xu K. 2018. Before Li ion batteries. Chem. Rev. 118:11433–56
    [Google Scholar]
  16. 16.
    Bard AJ, Mirkin MV. 2022. Scanning Electrochemical Microscopy Boca Raton: Taylor & Francis
  17. 17.
    Wahab OJ, Kang M, Unwin PR. 2020. Scanning electrochemical cell microscopy: a natural technique for single entity electrochemistry. Curr. Opin. Electrochem. 22:120–28
    [Google Scholar]
  18. 18.
    Ebejer N, Güell AG, Lai SCS, McKelvey K, Snowden ME, Unwin PR. 2013. Scanning electrochemical cell microscopy: a versatile technique for nanoscale electrochemistry and functional imaging. Annu. Rev. Anal. Chem. 6:329–51
    [Google Scholar]
  19. 19.
    Bentley CL, Kang M, Unwin PR. 2017. Scanning electrochemical cell microscopy: new perspectives on electrode processes in action. Curr. Opin. Electrochem. 6:23–30
    [Google Scholar]
  20. 20.
    Zhou L, Zhou Y, Baker LA. 2014. Measuring ions with scanning ion conductance microscopy. Electrochem. Soc. Interface 23:47–52
    [Google Scholar]
  21. 21.
    Choi M-H, Leasor CW, Baker LA. 2021. Analytical applications of scanning ion conductance microscopy: measuring ions and electrons. Scanning Ion Conductance Microscopy TE Schaffer 73–121. Berlin/Heidelberg: Springer
    [Google Scholar]
  22. 22.
    Zhang Z, Smith K, Jervis R, Shearing PR, Miller TS, Brett DJL. 2020. Operando electrochemical atomic force microscopy of solid–electrolyte interphase formation on graphite anodes: the evolution of SEI morphology and mechanical properties. ACS Appl. Mater. Interfaces 12:35132–41
    [Google Scholar]
  23. 23.
    von Cresce A, Russell SM, Baker DR, Gaskell KJ, Xu K. 2014. In situ and quantitative characterization of solid electrolyte interphases. Nano Lett. 14:1405–12
    [Google Scholar]
  24. 24.
    Liu T, Lin L, Bi X, Tian L, Yang K et al. 2019. In situ quantification of interphasial chemistry in Li-ion battery. Nat. Nanotechnol. 14:50–56
    [Google Scholar]
  25. 25.
    Li N-W, Shi Y, Yin Y-X, Zeng X-X, Li J-Y et al. 2018. A flexible solid electrolyte interphase layer for long-life lithium metal anodes. Angew. Chem. Int. Ed. 57:1505–9
    [Google Scholar]
  26. 26.
    Shen X, Li Y, Qian T, Liu J, Zhou J et al. 2019. Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery. Nat. Commun. 10:900
    [Google Scholar]
  27. 27.
    Forster RJ, Keyes TE. 2007. Ultramicroelectrodes. Handbook of Electrochemistry CG Zoski 155–71. Amsterdam: Elsevier
    [Google Scholar]
  28. 28.
    Mishra A, Sarbapalli D, Hossain MS, Gossage ZT, Li Z et al. 2022. Highly sensitive detection and mapping of incipient and steady-state oxygen evolution from operating Li-ion battery cathodes via scanning electrochemical microscopy. J. Electrochem. Soc. 169:086501
    [Google Scholar]
  29. 29.
    Hansma PK, Drake B, Marti O, Gould SAC, Prater CB. 1989. The scanning ion-conductance microscope. Science 243:641–43
    [Google Scholar]
  30. 30.
    Page A, Perry D, Unwin PR. 2017. Multifunctional scanning ion conductance microscopy. Proc. R. Soc. A 473:20160889
    [Google Scholar]
  31. 31.
    Lipson AL, Ginder RS, Hersam MC. 2011. Nanoscale in situ characterization of Li-ion battery electrochemistry via scanning ion conductance microscopy. Adv. Mater. 23:5613–17
    [Google Scholar]
  32. 32.
    Takahashi Y, Takamatsu D, Korchev YE, Fukuma T. 2022. Correlative analysis of ion concentration profile and surface nanoscale topography changes using operando scanning ion conductance microscopy. ChemRxiv. https://doi.org/10.26434/chemrxiv-2022-2pr2j
  33. 33.
    Lipson AL, Puntambekar K, Comstock DJ, Meng X, Geier ML et al. 2014. Nanoscale investigation of solid electrolyte interphase inhibition on Li-ion battery MnO electrodes via atomic layer deposition of Al2O3. Chem. Mater. 26:935–40
    [Google Scholar]
  34. 34.
    Morris CA, Chen C-C, Baker LA. 2012. Transport of redox probes through single pores measured by scanning electrochemical-scanning ion conductance microscopy (SECM-SICM). Analyst 137:2933–38
    [Google Scholar]
  35. 35.
    Payne NA, Dawkins JIG, Schougaard SB, Mauzeroll J. 2019. Effect of substrate permeability on scanning ion conductance microscopy: uncertainty in tip–substrate separation and determination of ionic conductivity. Anal. Chem. 91:15718–25
    [Google Scholar]
  36. 36.
    Peled E, Menkin S. 2017. Review—SEI: past, present and future. J. Electrochem. Soc. 164:A1703–19
    [Google Scholar]
  37. 37.
    Zhang H, Liu H, Piper LFJ, Whittingham MS, Zhou G. 2022. Oxygen loss in layered oxide cathodes for Li-ion batteries: mechanisms, effects, and mitigation. Chem. Rev. 122:5641–81
    [Google Scholar]
  38. 38.
    Li W. 2020. Review—An unpredictable hazard in lithium-ion batteries from transition metal ions: dissolution from cathodes, deposition on anodes and elimination strategies. J. Electrochem. Soc. 167:090514
    [Google Scholar]
  39. 39.
    Asenbauer J, Eisenmann T, Kuenzel M, Kazzazi A, Chen Z, Bresser D. 2020. The success story of graphite as a lithium-ion anode material—fundamentals, remaining challenges, and recent developments including silicon (oxide) composites. Sustain. Energy Fuels 4:5387–416
    [Google Scholar]
  40. 40.
    Lin D, Liu Y, Cui Y. 2017. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12:194–206
    [Google Scholar]
  41. 41.
    Bülter H, Peters F, Schwenzel J, Wittstock G. 2014. Spatiotemporal changes of the solid electrolyte interphase in lithium-ion batteries detected by scanning electrochemical microscopy. Angew. Chem. Int. Ed. 53:10531–35
    [Google Scholar]
  42. 42.
    Yamada Y, Miyazaki K, Abe T. 2010. Role of edge orientation in kinetics of electrochemical intercalation of lithium-ion at graphite. Langmuir 26:14990–94
    [Google Scholar]
  43. 43.
    Bülter H, Peters F, Wittstock G. 2016. Scanning electrochemical microscopy for the insitu characterization of solid–electrolyte interphases: highly oriented pyrolytic graphite versus graphite composite. Energy Technol. 4:1486–94
    [Google Scholar]
  44. 44.
    Hui J, Burgess M, Zhang J, Rodríguez-López J. 2016. Layer number dependence of Li+ intercalation on few-layer graphene and electrochemical imaging of its solid–electrolyte interphase evolution. ACS Nano 10:4248–57
    [Google Scholar]
  45. 45.
    Zampardi G, Ventosa E, La Mantia F, Schuhmann W 2013. In situ visualization of Li-ion intercalation and formation of the solid electrolyte interphase on TiO2 based paste electrodes using scanning electrochemical microscopy. Chem. Commun. 49:9347–49
    [Google Scholar]
  46. 46.
    Tarnev T, Wilde P, Dopilka A, Schuhmann W, Chan CK, Ventosa E. 2020. Surface properties of battery materials elucidated using scanning electrochemical microscopy: the case of type I silicon clathrate. ChemElectroChem 7:665–71
    [Google Scholar]
  47. 47.
    Martín-Yerga D, Kang M, Unwin PR. 2021. Scanning electrochemical cell microscopy in a glovebox: structure-activity correlations in the early stages of solid-electrolyte interphase formation on graphite. ChemElectroChem 8:4240–51
    [Google Scholar]
  48. 48.
    Martín-Yerga D, Milan DC, Xu X, Fernández-Vidal J, Whalley L et al. 2022. Dynamics of solid-electrolyte interphase formation on silicon electrodes revealed by combinatorial electrochemical screening. Angew. Chem. Int. Ed. 61:e202207184
    [Google Scholar]
  49. 49.
    Campana FP, Kötz R, Vetter J, Novák P, Siegenthaler H. 2005. In situ atomic force microscopy study of dimensional changes during Li+ ion intercalation/de-intercalation in highly oriented pyrolytic graphite. Electrochem. Commun. 7:107–12
    [Google Scholar]
  50. 50.
    Alliata D, Kötz R, Novák P, Siegenthaler H. 2000. Electrochemical SPM investigation of the solid electrolyte interphase film formed on HOPG electrodes. Electrochem. Commun. 2:436–40
    [Google Scholar]
  51. 51.
    Domi Y, Doi T, Yamanaka T, Abe T, Ogumi Z. 2013. Electrochemical AFM study of surface films formed on the HOPG edge plane in propylene carbonate-based electrolytes. J. Electrochem. Soc. 160:A678–83
    [Google Scholar]
  52. 52.
    Wang L, Deng D, Lev LC, Ng S. 2014. In-situ investigation of solid-electrolyte interphase formation on the anode of Li-ion batteries with atomic force microscopy. J. Power Sources 265:140–48
    [Google Scholar]
  53. 53.
    An SJ, Li J, Daniel C, Mohanty D, Nagpure S, Wood DL. 2016. The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon 105:52–76
    [Google Scholar]
  54. 54.
    Domi Y, Ochida M, Tsubouchi S, Nakagawa H, Yamanaka T et al. 2012. Electrochemical AFM observation of the HOPG edge plane in ethylene carbonate-based electrolytes containing film-forming additives. J. Electrochem. Soc. 159:A1292–97
    [Google Scholar]
  55. 55.
    Matsuoka O, Hiwara A, Omi T, Toriida M, Hayashi T et al. 2002. Ultra-thin passivating film induced by vinylene carbonate on highly oriented pyrolytic graphite negative electrode in lithium-ion cell. J. Power Sources 108:128–38
    [Google Scholar]
  56. 56.
    Yan J, Zhang J, Su Y-C, Zhang X-G, Xia B-J. 2010. A novel perspective on the formation of the solid electrolyte interphase on the graphite electrode for lithium-ion batteries. Electrochim. Acta 55:1785–94
    [Google Scholar]
  57. 57.
    Shen C, Hu G, Cheong L-Z, Huang S, Zhang J-G, Wang D. 2018. Direct observation of the growth of lithium dendrites on graphite anodes by operando EC-AFM. Small Methods 2:1700298
    [Google Scholar]
  58. 58.
    Tokranov A, Kumar R, Li C, Minne S, Xiao X, Sheldon BW. 2016. Control and optimization of the electrochemical and mechanical properties of the solid electrolyte interphase on silicon electrodes in lithium ion batteries. Adv. Energy Mater. 6:1502302
    [Google Scholar]
  59. 59.
    Beaulieu LY, Hatchard TD, Bonakdarpour A, Fleischauer MD, Dahn JR. 2003. Reaction of Li with alloy thin films studied by in situ AFM. J. Electrochem. Soc. 150:A1457
    [Google Scholar]
  60. 60.
    Becker CR, Strawhecker KE, McAllister QP, Lundgren CA. 2013. In situ atomic force microscopy of lithiation and delithiation of silicon nanostructures for lithium ion batteries. ACS Nano 7:9173–82
    [Google Scholar]
  61. 61.
    Krueger B, Balboa L, Dohmann JF, Winter M, Bieker P, Wittstock G. 2020. Solid electrolyte interphase evolution on lithium metal electrodes followed by scanning electrochemical microscopy under realistic battery cycling current densities. ChemElectroChem 7:3590–96
    [Google Scholar]
  62. 62.
    Gossage ZT, Hui J, Zeng Y, Flores-Zuleta H, Rodríguez-López J. 2019. Probing the reversibility and kinetics of Li+ during SEI formation and (de)intercalation on edge plane graphite using ion-sensitive scanning electrochemical microscopy. Chem. Sci. 10:10749–54
    [Google Scholar]
  63. 63.
    Gossage ZT, Hui J, Sarbapalli D, Rodríguez-López J. 2020. Coordinated mapping of Li+ flux and electron transfer reactivity during solid-electrolyte interphase formation at a graphene electrode. Analyst 145:2631–38
    [Google Scholar]
  64. 64.
    Zeng Y, Gossage ZT, Sarbapalli D, Hui J, Rodríguez-López J. 2022. Tracking passivation and cation flux at incipient solid-electrolyte interphases on multi-layer graphene using high resolution scanning electrochemical microscopy. ChemElectroChem 9:e202101445
    [Google Scholar]
  65. 65.
    Manthiram A. 2020. A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 11:1550
    [Google Scholar]
  66. 66.
    Zhang Y, Yang Z, Tian C. 2019. Probing and quantifying cathode charge heterogeneity in Li ion batteries. J. Mater. Chem. A 7:23628–61
    [Google Scholar]
  67. 67.
    Takahashi Y, Kumatani A, Munakata H, Inomata H, Ito K et al. 2014. Nanoscale visualization of redox activity at lithium-ion battery cathodes. Nat. Commun. 5:5450
    [Google Scholar]
  68. 68.
    Takahashi Y, Yamashita T, Takamatsu D, Kumatani A, Fukuma T. 2020. Nanoscale kinetic imaging of lithium ion secondary battery materials using scanning electrochemical cell microscopy. Chem. Commun. 56:9324–27
    [Google Scholar]
  69. 69.
    Snowden ME, Dayeh M, Payne NA, Gervais S, Mauzeroll J, Schougaard SB. 2016. Measurement on isolated lithium iron phosphate particles reveals heterogeneity in material properties distribution. J. Power Sources 325:682–89
    [Google Scholar]
  70. 70.
    Tao B, Yule LC, Daviddi E, Bentley CL, Unwin PR. 2019. Correlative electrochemical microscopy of Li-ion (de)intercalation at a series of individual LiMn2O4 particles. Angew. Chem. Int. Ed. 58:4606–11
    [Google Scholar]
  71. 71.
    Inomata H, Takahashi Y, Takamatsu D, Kumatani A, Ida H et al. 2019. Visualization of inhomogeneous current distribution on ZrO2-coated LiCoO2 thin-film electrodes using scanning electrochemical cell microscopy. Chem. Commun. 55:545–48
    [Google Scholar]
  72. 72.
    Zhu X, Ong CS, Xu X, Hu B, Shang J et al. 2013. Direct observation of lithium-ion transport under an electrical field in LixCoO2 nanograins. Sci. Rep. 3:1084
    [Google Scholar]
  73. 73.
    Sharifi-Asl S, Lu J, Amine K, Shahbazian-Yassar R. 2019. Oxygen release degradation in Li-ion battery cathode materials: mechanisms and mitigating approaches. Adv. Energy Mater. 9:1900551
    [Google Scholar]
  74. 74.
    Wang H, Rus E, Sakuraba T, Kikuchi J, Kiya Y, Abruña HD. 2014. CO2 and O2 evolution at high voltage cathode materials of Li-ion batteries: a differential electrochemical mass spectrometry study. Anal. Chem. 86:6197–201
    [Google Scholar]
  75. 75.
    La Mantia F, Rosciano F, Tran N, Novák P 2008. Direct evidence of oxygen evolution from Li1+x(Ni1/3Mn1/3Co1/3)1−xO2 at high potentials. J. Appl. Electrochem. 38:893–96
    [Google Scholar]
  76. 76.
    Papp JK, Li N, Kaufman LA, Naylor AJ, Younesi R et al. 2021. A comparison of high voltage outgassing of LiCoO2, LiNiO2, and Li2MnO3 layered Li-ion cathode materials. Electrochim. Acta 368:137505
    [Google Scholar]
  77. 77.
    Xu C, Märker K, Lee J, Mahadevegowda A, Reeves PJ et al. 2021. Bulk fatigue induced by surface reconstruction in layered Ni-rich cathodes for Li-ion batteries. Nat. Mater. 20:84–92
    [Google Scholar]
  78. 78.
    Huang D, Engtrakul C, Nanayakkara S, Mulder DW, Han S-D et al. 2021. Understanding degradation at the lithium-ion battery cathode/electrolyte interface: connecting transition-metal dissolution mechanisms to electrolyte composition. ACS Appl. Mater. Interfaces 13:11930–39
    [Google Scholar]
  79. 79.
    Scipioni R, Isheim D, Barnett SA. 2020. Revealing the complex layered-mosaic structure of the cathode electrolyte interphase in Li-ion batteries. Appl. Mater. Today 20:100748
    [Google Scholar]
  80. 80.
    Lu W, Zhang J, Xu J, Wu X, Chen L. 2017. In situ visualized cathode electrolyte interphase on LiCoO2 in high voltage cycling. ACS Appl. Mater. Interfaces 9:19313–18
    [Google Scholar]
  81. 81.
    Liu S, Liu D, Wang S, Cai X, Qian K et al. 2019. Understanding the cathode electrolyte interface formation in aqueous electrolyte by scanning electrochemical microscopy. J. Mater. Chem. A 7:12993–96
    [Google Scholar]
  82. 82.
    Zampardi G, Trocoli R, Schuhmann W, La Mantia F. 2017. Revealing the electronic character of the positive electrode/electrolyte interface in lithium-ion batteries. Phys. Chem. Chem. Phys. 19:28381–87
    [Google Scholar]
  83. 83.
    Kumatani A, Takahashi Y, Miura C, Ida H, Inomata H et al. 2019. Scanning electrochemical cell microscopy for visualization and local electrochemical activities of lithium-ion (de) intercalation process in lithium-ion batteries electrodes. Surf. Interface Anal. 51:27–30
    [Google Scholar]
  84. 84.
    Dayeh M, Ghavidel MRZ, Mauzeroll J, Schougaard SB. 2019. Micropipette contact method to investigate high-energy cathode materials by using an ionic liquid. ChemElectroChem 6:195–201
    [Google Scholar]
  85. 85.
    Bentley CL, Kang M, Unwin PR. 2020. Scanning electrochemical cell microscopy (SECCM) in aprotic solvents: practical considerations and applications. Anal. Chem. 92:11673–80
    [Google Scholar]
  86. 86.
    Kwak W-J, Rosy S, Sharon D, Xia C, Kim H et al. 2020. Lithium–oxygen batteries and related systems: potential, status, and future. Chem. Rev. 120:6626–83
    [Google Scholar]
  87. 87.
    Sánchez-Díez E, Ventosa E, Guarnieri M, Trovò A, Flox C et al. 2021. Redox flow batteries: status and perspective towards sustainable stationary energy storage. J. Power Sources 481:228804
    [Google Scholar]
  88. 88.
    Schwager P, Fenske D, Wittstock G. 2015. Scanning electrochemical microscopy of oxygen permeation through air-electrodes in lithium–air batteries. J. Electroanal. Chem. 740:82–87
    [Google Scholar]
  89. 89.
    Torres WR, Herrera SE, Tesio AY, del Pozo M, Calvo EJ. 2015. Soluble TTF catalyst for the oxidation of cathode products in Li-oxygen battery: a chemical scavenger. Electrochim. Acta 182:1118–23
    [Google Scholar]
  90. 90.
    Chen Y, Gao X, Johnson LR, Bruce PG. 2018. Kinetics of lithium peroxide oxidation by redox mediators and consequences for the lithium–oxygen cell. Nat. Commun. 9:767
    [Google Scholar]
  91. 91.
    Wen R, Hong M, Byon HR. 2013. In situ AFM imaging of Li–O2 electrochemical reaction on highly oriented pyrolytic graphite with ether-based electrolyte. J. Am. Chem. Soc. 135:10870–76
    [Google Scholar]
  92. 92.
    Virwani K, Ansari Y, Nguyen K, Moreno-Ortiz FJA, Kim J et al. 2019. In situ AFM visualization of Li–O2 battery discharge products during redox cycling in an atmospherically controlled sample cell. Beilstein J. Nanotechnol. 10:930–40
    [Google Scholar]
  93. 93.
    Wen R, Byon HR. 2014. In situ monitoring of the Li–O2 electrochemical reaction on nanoporous gold using electrochemical AFM. Chem. Commun. 50:2628–31
    [Google Scholar]
  94. 94.
    Liu C, Ye S. 2016. In situ atomic force microscopy (AFM) study of oxygen reduction reaction on a gold electrode surface in a dimethyl sulfoxide (DMSO)-based electrolyte solution. J. Phys. Chem. C 120:25246–55
    [Google Scholar]
  95. 95.
    Baran MJ, Braten MN, Montoto EC, Gossage ZT, Ma L et al. 2018. Designing redox-active oligomers for crossover-free, nonaqueous redox-flow batteries with high volumetric energy density. Chem. Mater. 30:3861–66
    [Google Scholar]
  96. 96.
    Burgess M, Chénard E, Hernández-Burgos K, Nagarjuna G, Assary RS et al. 2016. Impact of backbone tether length and structure on the electrochemical performance of viologen redox active polymers. Chem. Mater. 28:7362–74
    [Google Scholar]
  97. 97.
    Watkins TS, Sarbapalli D, Counihan MJ, Danis AS, Zhang J et al. 2020. A combined SECM and electrochemical AFM approach to probe interfacial processes affecting molecular reactivity at redox flow battery electrodes. J. Mater. Chem. A 8:15734–45
    [Google Scholar]
  98. 98.
    Huang J, Pan B, Duan W, Wei X, Assary RS et al. 2016. The lightest organic radical cation for charge storage in redox flow batteries. Sci. Rep. 6:32102
    [Google Scholar]
  99. 99.
    Wang R, Mitchell JB, Gao Q, Tsai W-Y, Boyd S et al. 2018. Operando atomic force microscopy reveals mechanics of structural water driven battery-to-pseudocapacitor transition. ACS Nano 12:6032–39
    [Google Scholar]
  100. 100.
    Wang X, Han L, Xin H, Mirkin MV. 2019. TEM-assisted fabrication of sub-10 nm scanning electrochemical microscopy tips. Anal. Chem. 91:15355–59
    [Google Scholar]
  101. 101.
    Kai T, Zoski CG, Bard AJ. 2018. Scanning electrochemical microscopy at the nanometer level. Chem. Commun. 54:1934–47
    [Google Scholar]
  102. 102.
    Shi X, Qing W, Marhaba T, Zhang W. 2020. Atomic force microscopy-scanning electrochemical microscopy (AFM-SECM) for nanoscale topographical and electrochemical characterization: principles, applications and perspectives. Electrochim. Acta 332:135472
    [Google Scholar]
  103. 103.
    Takahashi Y, Shevchuk AI, Novak P, Murakami Y, Shiku H et al. 2010. Simultaneous noncontact topography and electrochemical imaging by SECM/SICM featuring ion current feedback regulation. J. Am. Chem. Soc. 132:10118–26
    [Google Scholar]
  104. 104.
    Pollard AJ, Faruqui N, Shaw M, Clifford CA, Takahashi Y et al. 2012. Development of a novel combined scanning electrochemical microscope (SECM) and scanning ion-conductance microscope (SICM) probe for soft sample imaging. MRS Proc. 1422:13–18
    [Google Scholar]
  105. 105.
    Comstock DJ, Elam JW, Pellin MJ, Hersam MC. 2010. Integrated ultramicroelectrode−nanopipet probe for concurrent scanning electrochemical microscopy and scanning ion conductance microscopy. Anal. Chem. 82:1270–76
    [Google Scholar]
  106. 106.
    de Haan K, Ballard ZS, Rivenson Y, Wu Y, Ozcan A. 2019. Resolution enhancement in scanning electron microscopy using deep learning. Sci. Rep. 9:12050
    [Google Scholar]
  107. 107.
    Stephens LI, Payne NA, Mauzeroll J. 2020. Super-resolution scanning electrochemical microscopy. Anal. Chem. 92:3958–63
    [Google Scholar]
  108. 108.
    Unwin P. 2022. Concluding remarks: next generation nanoelectrochemistry—next generation nanoelectrochemists. Faraday Discuss. 233:374–91
    [Google Scholar]
  109. 109.
    Balla RJ, Jantz DT, Kurapati N, Chen R, Leonard KC, Amemiya S. 2019. Nanoscale intelligent imaging based on real-time analysis of approach curve by scanning electrochemical microscopy. Anal. Chem. 91:10227–35
    [Google Scholar]
  110. 110.
    Krull A, Hirsch P, Rother C, Schiffrin A, Krull C. 2020. Artificial-intelligence-driven scanning probe microscopy. Commun. Phys. 3:54
    [Google Scholar]
  111. 111.
    Sotres J, Boyd H, Gonzalez-Martinez JF. 2021. Enabling autonomous scanning probe microscopy imaging of single molecules with deep learning. Nanoscale 13:9193–203
    [Google Scholar]
  112. 112.
    Ziatdinov M, Liu Y, Kelley K, Vasudevan R, Kalinin SV. 2022. Bayesian active learning for scanning probe microscopy: from Gaussian processes to hypothesis learning. ACS Nano 16:13492–512
    [Google Scholar]
  113. 113.
    Ziatdinov M, Dyck O, Maksov A, Li X, Sang X et al. 2017. Deep learning of atomically resolved scanning transmission electron microscopy images: chemical identification and tracking local transformations. ACS Nano 11:12742–52
    [Google Scholar]
  114. 114.
    Okunev AG, Mashukov MY, Nartova AV, Matveev AV. 2020. Nanoparticle recognition on scanning probe microscopy images using computer vision and deep learning. Nanomaterial 10:1285
    [Google Scholar]
  115. 115.
    Ge M, Su F, Zhao Z, Su D. 2020. Deep learning analysis on microscopic imaging in materials science. Mater. Today Nano 11:100087
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-091422-110703
Loading
/content/journals/10.1146/annurev-anchem-091422-110703
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error