1932

Abstract

Animal microbiomes are occasionally considered as an extension of host anatomy, physiology, and even their genomic architecture. Their compositions encompass variable and constant portions when examined across multiple hosts. The latter, termed the core microbiome, is viewed as more accommodated to its host environment and suggested to benefit host fitness. Nevertheless, discrepancies in its definitions, characteristics, and importance to its hosts exist across studies. We survey studies that characterize the core microbiome, detail its current definitions and available methods to identify it, and emphasize the crucial need to upgrade and standardize the methodologies among studies. We highlight ruminants as a case study and discussthe link between the core microbiome and host physiology and genetics, as well as potential factors that shape it. We conclude with main directives of action to better understand the host–core microbiome axis and acquire the necessary insights into its controlled modulation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-013020-020412
2022-02-15
2024-10-11
Loading full text...

Full text loading...

/deliver/fulltext/animal/10/1/annurev-animal-013020-020412.html?itemId=/content/journals/10.1146/annurev-animal-013020-020412&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Moeller AH, Sanders JG. 2020. Roles of the gut microbiota in the adaptive evolution of mammalian species. Philos. Trans. R. Soc. Lond. B 375:180820190597
    [Google Scholar]
  2. 2. 
    Theis KR, Dheilly NM, Klassen JL, Brucker RM, Baines JF et al. 2016. Getting the hologenome concept right: an eco-evolutionary framework for hosts and their microbiomes. mSystems 1:2e00028-16
    [Google Scholar]
  3. 3. 
    Shapira M. 2016. Gut microbiotas and host evolution: scaling up symbiosis. Trends Ecol. Evol. 31:7539–49
    [Google Scholar]
  4. 4. 
    Chung SH, Parker BJ, Blow F, Brisson JA, Douglas AE. 2020. Host and symbiont genetic determinants of nutritional phenotype in a natural population of the pea aphid. Mol. Ecol. 29:4848–58
    [Google Scholar]
  5. 5. 
    Hansen AK, Moran NA. 2011. Aphid genome expression reveals host-symbiont cooperation in the production of amino acids. PNAS 108:72849–54
    [Google Scholar]
  6. 6. 
    Hessen DO, Jeyasingh PD, Neiman M, Weider LJ 2010. Genome streamlining and the elemental costs of growth. Trends Ecol. Evol. 25:275–80
    [Google Scholar]
  7. 7. 
    Mizrahi I 2013. Rumen symbioses. The Prokaryotes: Prokaryotic Biology and Symbiotic Associations E Rosenberg, EF DeLong, S Lory, E Stackebrandt, F Thompson 533–44 Berlin, Heidelberg: Springer
    [Google Scholar]
  8. 8. 
    Mizrahi I, Wallace RJ, Moraïs S. 2021. The rumen microbiome: balancing food security and environmental impacts. Nat. Rev. Microbiol. 19:553–66
    [Google Scholar]
  9. 9. 
    Moraïs S, Mizrahi I. 2019. Islands in the stream: from individual to communal fiber degradation in the rumen ecosystem. FEMS Microbiol. Rev. 43:4362–79
    [Google Scholar]
  10. 10. 
    Hess M, Sczyrba A, Egan R, Kim T-W, Chokhawala H et al. 2011. Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331:6016463–67
    [Google Scholar]
  11. 11. 
    Moraïs S, Mizrahi I. 2019. The road not taken: the rumen microbiome, functional groups, and community states. Trends Microbiol. 27:6538–49
    [Google Scholar]
  12. 12. 
    Bainbridge ML, Cersosimo LM, Wright A-DG, Kraft J. 2016. Rumen bacterial communities shift across a lactation in Holstein, Jersey and Holstein × Jersey dairy cows and correlate to rumen function, bacterial fatty acid composition and production parameters. FEMS Microbiol. Ecol. 92:5fiw059
    [Google Scholar]
  13. 13. 
    Weimer PJ. 2015. Redundancy, resilience, and host specificity of the ruminal microbiota: implications for engineering improved ruminal fermentations. Front. Microbiol. 6:296
    [Google Scholar]
  14. 14. 
    Dill-McFarland KA, Breaker JD, Suen G. 2017. Microbial succession in the gastrointestinal tract of dairy cows from 2 weeks to first lactation. Sci. Rep. 7:40864
    [Google Scholar]
  15. 15. 
    Söllinger A, Tveit AT, Poulsen M, Noel SJ, Bengtsson M et al. 2018. Holistic assessment of rumen microbiome dynamics through quantitative metatranscriptomics reveals multifunctional redundancy during key steps of anaerobic feed degradation. mSystems 3:4e00038-18
    [Google Scholar]
  16. 16. 
    Taxis TM, Wolff S, Gregg SJ, Minton NO, Zhang C et al. 2015. The players may change but the game remains: Network analyses of ruminal microbiomes suggest taxonomic differences mask functional similarity. Nucleic Acids Res 43:209600–12
    [Google Scholar]
  17. 17. 
    Visick KL, McFall-Ngai MJ. 2000. An exclusive contract: specificity in the Vibrio fischeri–Euprymna scolopes partnership. J. Bacteriol. 182:71779–87
    [Google Scholar]
  18. 18. 
    Nyholm SV, McFall-Ngai MJ. 2004. The winnowing: establishing the squid-Vibrio symbiosis. Nat. Rev. Microbiol. 2:632–42
    [Google Scholar]
  19. 19. 
    Hacquard S, Garrido-Oter R, González A, Spaepen S, Ackermann G et al. 2015. Microbiota and host nutrition across plant and animal kingdoms. Cell Host Microbe 17:5603–16
    [Google Scholar]
  20. 20. 
    Bhattarai Y, Kashyap PC 2016. Germ-free mice model for studying host-microbial interactions. Mouse Models for Drug Discovery: Methods and Protocols G Proetzel, MV Wiles 123–35 New York: Springer
    [Google Scholar]
  21. 21. 
    Meyer RC, Bohl EH, Kohler EM. 1964. Procurement and maintenance of germ-free swine for microbiological investigations. Appl. Microbiol. 12:295–300
    [Google Scholar]
  22. 22. 
    Hammer TJ, Janzen DH, Hallwachs W, Jaffe SP, Fierer N. 2017. Caterpillars lack a resident gut microbiome. PNAS 114:369641–46
    [Google Scholar]
  23. 23. 
    Phalnikar K, Kunte K, Agashe D. 2019. Disrupting butterfly caterpillar microbiomes does not impact their survival and development. Proc. Biol. Sci. 2861917:20192438
    [Google Scholar]
  24. 24. 
    Moeller AH, Suzuki TA, Phifer-Rixey M, Nachman MW. 2018. Transmission modes of the mammalian gut microbiota. Science 362:6413453–57
    [Google Scholar]
  25. 25. 
    Henry LM, Peccoud J, Simon J-C, Hadfield JD, Maiden MJC et al. 2013. Horizontally transmitted symbionts and host colonization of ecological niches. Curr. Biol. 23:171713–17
    [Google Scholar]
  26. 26. 
    McFall-Ngai MJ, Ruby EG. 1991. Symbiont recognition and subsequent morphogenesis as early events in an animal-bacterial mutualism. Science 254:50371491–94
    [Google Scholar]
  27. 27. 
    Clark MA, Moran NA, Baumann P, Wernegreen JJ. 2000. Cospeciation between bacterial endosymbionts (Buchnera) and a recent radiation of aphids (Uroleucon) and pitfalls of testing for phylogenetic congruence. Evolution 54:2517–25
    [Google Scholar]
  28. 28. 
    Gaulke CA, Arnold HK, Humphreys IR, Kembel SW, O'Dwyer JP, Sharpton TJ. 2018. Ecophylogenetics clarifies the evolutionary association between mammals and their gut microbiota. mBio 9:5e01348-18
    [Google Scholar]
  29. 29. 
    Osawa R, Blanshard WH, Ocallaghan PG. 1993. Microbiological studies of the intestinal microflora of the koala, Phascolarctos-cinereus. 2. Pap, a special maternal feces consumed by juvenile koalas. Aust. J. Zool. 41:6611–20
    [Google Scholar]
  30. 30. 
    Mirabito D, Rosengaus RB. 2016. A double-edged sword? The cost of proctodeal trophallaxis in termites. Insectes Soc 63:1135–41
    [Google Scholar]
  31. 31. 
    Baumann P, Baumann L, Lai CY, Rouhbakhsh D, Moran NA, Clark MA. 1995. Genetics, physiology, and evolutionary relationships of the genus Buchnera: intracellular symbionts of aphids. Annu. Rev. Microbiol. 49:55–94
    [Google Scholar]
  32. 32. 
    Baumann P. 2005. Biology bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu. Rev. Microbiol. 59:155–89
    [Google Scholar]
  33. 33. 
    Martínez I, Maldonado-Gomez MX, Gomes-Neto JC, Kittana H, Ding H et al. 2018. Experimental evaluation of the importance of colonization history in early-life gut microbiota assembly. eLife 7:e36521
    [Google Scholar]
  34. 34. 
    Furman O, Shenhav L, Sasson G, Kokou F, Honig H et al. 2020. Stochasticity constrained by deterministic effects of diet and age drive rumen microbiome assembly dynamics. Nat. Commun. 11:1904
    [Google Scholar]
  35. 35. 
    Costello EK, Stagaman K, Dethlefsen L, Bohannan BJM, Relman DA. 2012. The application of ecological theory toward an understanding of the human microbiome. Science 336:60861255–62
    [Google Scholar]
  36. 36. 
    Fukami T. 2015. Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu. Rev. Ecol. Evol. Syst. 46:1–23
    [Google Scholar]
  37. 37. 
    Jami E, Israel A, Kotser A, Mizrahi I 2013. Exploring the bovine rumen bacterial community from birth to adulthood. ISME J. 7:61069–79
    [Google Scholar]
  38. 38. 
    Rieu F, Fonty G, Gaillard B, Gouet P. 1990. Electron microscopy study of the bacteria adherent to the rumen wall in young conventional lambs. Can. J. Microbiol. 36:2140–44
    [Google Scholar]
  39. 39. 
    Yáñez-Ruiz DR, Abecia L, Newbold CJ. 2015. Manipulating rumen microbiome and fermentation through interventions during early life: a review. Front. Microbiol. 6:1133
    [Google Scholar]
  40. 40. 
    Shao Y, Forster SC, Tsaliki E, Vervier K, Strang A et al. 2019. Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth. Nature 574:7776117–21
    [Google Scholar]
  41. 41. 
    Dominguez-Bello MG, De Jesus-Laboy KM, Shen N, Cox LM, Amir A et al. 2016. Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nat. Med. 22:3250–53
    [Google Scholar]
  42. 42. 
    Mitchell CM, Mazzoni C, Hogstrom L, Bryant A, Bergerat A et al. 2020. Delivery mode affects stability of early infant gut microbiota. Cell Rep. Med 1:9100156
    [Google Scholar]
  43. 43. 
    Martinez KA2nd, Devlin JC, Lacher CR, Yin Y, Cai Y et al. 2017. Increased weight gain by C-section: functional significance of the primordial microbiome. Sci. Adv. 3:10eaao1874
    [Google Scholar]
  44. 44. 
    Shade A, Handelsman J. 2012. Beyond the Venn diagram: the hunt for a core microbiome. Environ. Microbiol. 14:14–12
    [Google Scholar]
  45. 45. 
    Lemanceau P, Blouin M, Muller D, Moënne-Loccoz Y. 2017. Let the core microbiota be functional. Trends Plant Sci. 22:7583–95
    [Google Scholar]
  46. 46. 
    Parfrey LW, Moreau CS, Russell JA. 2018. Introduction: the host-associated microbiome: pattern, process and function. Mol. Ecol. 27:81749–65
    [Google Scholar]
  47. 47. 
    Risely A. 2020. Applying the core microbiome to understand host-microbe systems. J. Anim. Ecol. 89:71549–58
    [Google Scholar]
  48. 48. 
    Henderson G, Cox F, Ganesh S, Jonker A, Young W et al. 2015. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci. Rep. 5:14567
    [Google Scholar]
  49. 49. 
    Holman DB, Brunelle BW, Trachsel J, Allen HK. 2017. Meta-analysis to define a core microbiota in the swine gut. mSystems 2:3e0004-17
    [Google Scholar]
  50. 50. 
    Hammer TJ, Sanders JG, Fierer N. 2019. Not all animals need a microbiome. FEMS Microbiol. Lett. 366:10fnz117
    [Google Scholar]
  51. 51. 
    Li J, Zhong H, Ramayo-Caldas Y, Terrapon N, Lombard V et al. 2020. A catalog of microbial genes from the bovine rumen unveils a specialized and diverse biomass-degrading environment. Gigascience 9:6giaa057
    [Google Scholar]
  52. 52. 
    Snelling TJ, Auffret MD, Duthie C-A, Stewart RD, Watson M et al. 2019. Temporal stability of the rumen microbiota in beef cattle, and response to diet and supplements. Anim. Microbiome 1:16
    [Google Scholar]
  53. 53. 
    Wang X, Tsai T, Deng F, Wei X, Chai J et al. 2019. Longitudinal investigation of the swine gut microbiome from birth to market reveals stage and growth performance associated bacteria. Microbiome 7:109
    [Google Scholar]
  54. 54. 
    Arfken AM, Frey JF, Summers KL. 2020. Temporal dynamics of the gut bacteriome and mycobiome in the weanling pig. Microorganisms 8:6868
    [Google Scholar]
  55. 55. 
    Kešnerová L, Emery O, Troilo M, Liberti J, Erkosar B, Engel P. 2020. Gut microbiota structure differs between honeybees in winter and summer. ISME J. 14:3801–14
    [Google Scholar]
  56. 56. 
    Gaston KJ, Blackburn TM, Greenwood JJD, Gregory RD, Quinn RM, Lawton JH. 2000. Abundance-occupancy relationships. J. Appl. Ecol. 37:s139–59
    [Google Scholar]
  57. 57. 
    Ze X, Le Mougen F, Duncan SH, Louis P, Flint HJ 2013. Some are more equal than others: the role of “keystone” species in the degradation of recalcitrant substrates. Gut Microbes 4:3236–40
    [Google Scholar]
  58. 58. 
    Martínez-Álvaro M, Auffret MD, Stewart RD, Dewhurst RJ, Duthie C-A et al. 2020. Identification of complex rumen microbiome interaction within diverse functional niches as mechanisms affecting the variation of methane emissions in bovine. Front. Microbiol. 11:659
    [Google Scholar]
  59. 59. 
    Hajishengallis G, Darveau RP, Curtis MA. 2012. The keystone-pathogen hypothesis. Nat. Rev. Microbiol. 10:10717–25
    [Google Scholar]
  60. 60. 
    Röttjers L, Faust K. 2019. Can we predict keystones?. Nat. Rev. Microbiol. 17:193
    [Google Scholar]
  61. 61. 
    Lynch MDJ, Neufeld JD. 2015. Ecology and exploration of the rare biosphere. Nat. Rev. Microbiol. 13:4217–29
    [Google Scholar]
  62. 62. 
    Auffret MD, Dewhurst RJ, Duthie C-A, Rooke JA, Wallace RJ et al. 2017. The rumen microbiome as a reservoir of antimicrobial resistance and pathogenicity genes is directly affected by diet in beef cattle. Microbiome 5:159
    [Google Scholar]
  63. 63. 
    Lima J, Auffret MD, Stewart RD, Dewhurst RJ, Duthie C-A et al. 2019. Identification of rumen microbial genes involved in pathways linked to appetite, growth, and feed conversion efficiency in cattle. Front. Genet. 10:701
    [Google Scholar]
  64. 64. 
    Auffret MD, Stewart R, Dewhurst RJ, Duthie C-A, Rooke JA et al. 2017. Identification, comparison, and validation of robust rumen microbial biomarkers for methane emissions using diverse Bos taurus breeds and basal diets. Front. Microbiol. 8:2642
    [Google Scholar]
  65. 65. 
    Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A et al. 2009. A core gut microbiome in obese and lean twins. Nature 457:7228480–84
    [Google Scholar]
  66. 66. 
    Amat S, Lantz H, Munyaka PM, Willing BP. 2020. Prevotella in pigs: the positive and negative associations with production and health. Microorganisms 8:101584
    [Google Scholar]
  67. 67. 
    Shafquat A, Joice R, Simmons SL, Huttenhower C 2014. Functional and phylogenetic assembly of microbial communities in the human microbiome. Trends Microbiol 22:5261–66
    [Google Scholar]
  68. 68. 
    Xiao L, Estellé J, Kiilerich P, Ramayo-Caldas Y, Xia Z et al. 2016. A reference gene catalogue of the pig gut microbiome. Nat. Microbiol. 1:16161
    [Google Scholar]
  69. 69. 
    Kanehisa M, Goto S. 2000. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 28:127–30
    [Google Scholar]
  70. 70. 
    Fisher RM, Henry LM, Cornwallis CK, Kiers ET, West SA 2017. The evolution of host-symbiont dependence. Nat. Commun. 8:15973
    [Google Scholar]
  71. 71. 
    del Rio CM, Karasov WH. 1990. Digestion strategies in nectar- and fruit-eating birds and the sugar composition of plant rewards. Am. Nat. 136:5618–37
    [Google Scholar]
  72. 72. 
    Schwarzer M, Makki K, Storelli G, Machuca-Gayet I, Srutkova D et al. 2016. Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition. Science 351:6275854–57
    [Google Scholar]
  73. 73. 
    Weimer PJ, Stevenson DM, Mantovani HC, Man SLC. 2010. Host specificity of the ruminal bacterial community in the dairy cow following near-total exchange of ruminal contents. J. Dairy Sci. 93:125902–12
    [Google Scholar]
  74. 74. 
    Roehe R, Dewhurst RJ, Duthie C-A, Rooke JA, McKain N et al. 2016. Bovine host genetic variation influences rumen microbial methane production with best selection criterion for low methane emitting and efficiently feed converting hosts based on metagenomic gene abundance. PLOS Genet. 12:2e1005846
    [Google Scholar]
  75. 75. 
    Wallace RJ, Sasson G, Garnsworthy PC, Tapio I, Gregson E et al. 2019. A heritable subset of the core rumen microbiome dictates dairy cow productivity and emissions. Sci. Adv. 5:7eaav8391
    [Google Scholar]
  76. 76. 
    Berg G, Rybakova D, Fischer D, Cernava T, Vergès M-CC et al. 2020. Microbiome definition re-visited: old concepts and new challenges. Microbiome 8:103
    [Google Scholar]
  77. 77. 
    Wu D, Vinitchaikul P, Deng M, Zhang G, Sun L et al. 2021. Exploration of the effects of altitude change on bacteria and fungi in the rumen of yak (Bos grunniens). Arch. Microbiol. 203:2835–46
    [Google Scholar]
  78. 78. 
    Solden LM, Naas AE, Roux S, Daly RA, Collins WB et al. 2018. Interspecies cross-feeding orchestrates carbon degradation in the rumen ecosystem. Nat. Microbiol. 3:111274–84
    [Google Scholar]
  79. 79. 
    Amin N, Schwarzkopf S, Kinoshita A, Tröscher-Mußotter J, Dänicke S et al. 2021. Evolution of rumen and oral microbiota in calves is influenced by age and time of weaning. Anim. Microbiome 3:31
    [Google Scholar]
  80. 80. 
    Wirth R, Kádár G, Kakuk B, Maróti G, Bagi Z et al. 2018. The planktonic core microbiome and core functions in the cattle rumen by next generation sequencing. Front. Microbiol. 9:2285
    [Google Scholar]
  81. 81. 
    Anderson CJ, Koester LR, Schmitz-Esser S. 2021. Rumen epithelial communities share a core bacterial microbiota: a meta-analysis of 16S rRNA Gene Illumina MiSeq sequencing datasets. Front. Microbiol. 12:625400
    [Google Scholar]
  82. 82. 
    Stewart RD, Auffret MD, Warr A, Wiser AH, Press MO et al. 2018. Assembly of 913 microbial genomes from metagenomic sequencing of the cow rumen. Nat. Commun. 9:870
    [Google Scholar]
  83. 83. 
    Stewart RD, Auffret MD, Warr A, Walker AW, Roehe R, Watson M 2019. Compendium of 4,941 rumen metagenome-assembled genomes for rumen microbiome biology and enzyme discovery. Nat. Biotechnol. 37:8953–61
    [Google Scholar]
  84. 84. 
    Pasolli E, Asnicar F, Manara S, Zolfo M, Karcher N et al. 2019. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 176:3649–62.e20
    [Google Scholar]
  85. 85. 
    Watson M. 2021. New insights from 33,813 publicly available metagenome-assembled-genomes (MAGs) assembled from the rumen microbiome Work. Pap. Univ. Edinburgh Edinburgh, UK:
    [Google Scholar]
  86. 86. 
    Abu-Ali GS, Mehta RS, Lloyd-Price J, Mallick H, Branck T et al. 2018. Metatranscriptome of human faecal microbial communities in a cohort of adult men. Nat. Microbiol. 3:3356–66
    [Google Scholar]
  87. 87. 
    Bashiardes S, Zilberman-Schapira G, Elinav E. 2016. Use of metatranscriptomics in microbiome research. Bioinform. Biol. Insights 10:19–25
    [Google Scholar]
  88. 88. 
    Li F, Guan LL 2017. Metatranscriptomic profiling reveals linkages between the active rumen microbiome and feed efficiency in beef cattle. Appl. Environ. Microbiol. 83:9e00061-17
    [Google Scholar]
  89. 89. 
    Honan MC, Greenwood SL. 2020. Characterization of variations within the rumen metaproteome of Holstein dairy cattle relative to morning feed offering. Sci. Rep. 10:3179
    [Google Scholar]
  90. 90. 
    Naas AE, Solden LM, Norbeck AD, Brewer H, Hagen LH et al. 2018.. “ Candidatus Paraporphyromonas polyenzymogenes” encodes multi-modular cellulases linked to the type IX secretion system. Microbiome 6:44
    [Google Scholar]
  91. 91. 
    Michalak L, Gaby JC, Lagos L, La Rosa SL, Hvidsten TR et al. 2020. Microbiota-directed fibre activates both targeted and secondary metabolic shifts in the distal gut. Nat. Commun. 11:5773
    [Google Scholar]
  92. 92. 
    Kamke J, Kittelmann S, Soni P, Li Y, Tavendale M et al. 2016. Rumen metagenome and metatranscriptome analyses of low methane yield sheep reveals a Sharpea-enriched microbiome characterised by lactic acid formation and utilisation. Microbiome 4:56
    [Google Scholar]
  93. 93. 
    Shaffer M, Borton MA, McGivern BB, Zayed AA, La Rosa SL et al. 2020. DRAM for distilling microbial metabolism to automate the curation of microbiome function. Nucleic Acids Res. 48:168883–900
    [Google Scholar]
  94. 94. 
    Arkin AP, Cottingham RW, Henry CS, Harris NL, Stevens RL et al. 2018. KBase: the United States Department of Energy Systems Biology Knowledgebase. Nat. Biotechnol. 36:7566–69
    [Google Scholar]
  95. 95. 
    Saborío-Montero A, Gutiérrez-Rivas M, López-García A, García-Rodríguez A, Atxaerandio R et al. 2021. Holobiont effect accounts for more methane emission variance than the additive and microbiome effects on dairy cattle. Livest. Sci. 250:104538
    [Google Scholar]
  96. 96. 
    Mims TS, Abdallah QA, Stewart JD, Watts SP, White CT et al. 2021. The gut mycobiome of healthy mice is shaped by the environment and correlates with metabolic outcomes in response to diet. Commun. Biol. 4:281
    [Google Scholar]
  97. 97. 
    Ramayo-Caldas Y, Prenafeta-Boldú F, Zingaretti LM, Gonzalez-Rodriguez O, Dalmau A et al. 2020. Gut eukaryotic communities in pigs: diversity, composition and host genetics contribution. Anim. Microbiome 2:18
    [Google Scholar]
  98. 98. 
    Lukeš J, Stensvold CR, Jirků-Pomajbíková K, Wegener Parfrey L. 2015. Are human intestinal eukaryotes beneficial or commensals?. PLOS Pathog. 11:8e1005039
    [Google Scholar]
  99. 99. 
    Laforest-Lapointe I, Arrieta M-C. 2018. Microbial eukaryotes: a missing link in gut microbiome studies. mSystems 3:2e00201-17
    [Google Scholar]
  100. 100. 
    Chudnovskiy A, Mortha A, Kana V, Kennard A, Ramirez JD et al. 2016. Host-protozoan interactions protect from mucosal infections through activation of the inflammasome. Cell 167:2444–56.e14
    [Google Scholar]
  101. 101. 
    Newbold CJ, de la Fuente G, Belanche A, Ramos-Morales E, McEwan NR. 2015. The role of ciliate protozoa in the rumen. Front. Microbiol. 6:1313
    [Google Scholar]
  102. 102. 
    Huws SA, Creevey CJ, Oyama LB, Mizrahi I, Denman SE et al. 2018. Addressing global ruminant agricultural challenges through understanding the rumen microbiome: past, present, and future. Front. Microbiol. 9:2161
    [Google Scholar]
  103. 103. 
    Gutierrez J, Davis RE. 1962. Culture and metabolism of the rumen ciliate Epidinium ecaudatum Crawley. Appl. Microbiol. 10:4305–8
    [Google Scholar]
  104. 104. 
    Solomon R, Wein T, Levy B, Reiss V, Zehavi T et al. 2020. Rumen protozoa shape microbiome composition and metabolic output of fermentation Work. Pap. Volcani Cent. Rishon LeZion, Israel:
    [Google Scholar]
  105. 105. 
    Bauchop T. 1979. Rumen anaerobic fungi of cattle and sheep. Appl. Environ. Microbiol. 38:1148–58
    [Google Scholar]
  106. 106. 
    Mountfort DO. 1987. The rumen anaerobic fungi. FEMS Microbiol. Lett. 46:4401–8
    [Google Scholar]
  107. 107. 
    Borneman WS, Akin DE, Ljungdahl LG. 1989. Fermentation products and plant cell wall-degrading enzymes produced by monocentric and polycentric anaerobic ruminal fungi. Appl. Environ. Microbiol. 55:51066–73
    [Google Scholar]
  108. 108. 
    Bauchop T, Mountfort DO. 1981. Cellulose fermentation by a rumen anaerobic fungus in both the absence and the presence of rumen methanogens. Appl. Environ. Microbiol. 42:61103–10
    [Google Scholar]
  109. 109. 
    Hagen LH, Brooke CG, Shaw CA, Norbeck AD, Piao H et al. 2021. Proteome specialization of anaerobic fungi during ruminal degradation of recalcitrant plant fiber. ISME J. 15:2421–34
    [Google Scholar]
  110. 110. 
    Comtet-Marre S, Parisot N, Lepercq P, Chaucheyras-Durand F, Mosoni P et al. 2017. Metatranscriptomics reveals the active bacterial and eukaryotic fibrolytic communities in the rumen of dairy cow fed a mixed diet. Front. Microbiol. 8:67
    [Google Scholar]
  111. 111. 
    Park T, Wijeratne S, Meulia T, Firkins J, Yu Z 2018. Draft macronuclear genome sequence of the ruminal ciliate Entodinium caudatum. Microbiol. Resour. Announc. 7:1e00826-18
    [Google Scholar]
  112. 112. 
    Haitjema CH, Gilmore SP, Henske JK, Solomon KV, de Groot R et al. 2017. A parts list for fungal cellulosomes revealed by comparative genomics. Nat. Microbiol. 2:17087
    [Google Scholar]
  113. 113. 
    Almeida A, Mitchell AL, Boland M, Forster SC, Gloor GB et al. 2019. A new genomic blueprint of the human gut microbiota. Nature 568:7753499–504
    [Google Scholar]
  114. 114. 
    Peng X, Wilken SE, Lankiewicz TS, Gilmore SP, Brown JL et al. 2021. Genomic and functional analyses of fungal and bacterial consortia that enable lignocellulose breakdown in goat gut microbiomes. Nat. Microbiol. 6:4499–511
    [Google Scholar]
  115. 115. 
    Ahrendt SR, Quandt CA, Ciobanu D, Clum A, Salamov A et al. 2018. Leveraging single-cell genomics to expand the fungal tree of life. Nat. Microbiol. 3:121417–28
    [Google Scholar]
  116. 116. 
    Díaz-Viraqué F, Pita S, Greif G, de Cássia Moreira de Souza R, Iraola G, Robello C 2019. Nanopore sequencing significantly improves genome assembly of the protozoan parasite Trypanosoma cruzi. . Genome Biol. Evol. 11:71952–57
    [Google Scholar]
  117. 117. 
    West PT, Probst AJ, Grigoriev IV, Thomas BC, Banfield JF 2018. Genome-reconstruction for eukaryotes from complex natural microbial communities. Genome Res. 28:4569–80
    [Google Scholar]
  118. 118. 
    Gilbert RA, Townsend EM, Crew KS, Hitch TCA, Friedersdorff JCA et al. 2020. Rumen virus populations: technological advances enhancing current understanding. Front. Microbiol. 11:450
    [Google Scholar]
  119. 119. 
    Kwok KTT, Nieuwenhuijse DF, Phan MVT, Koopmans MPG. 2020. Virus metagenomics in farm animals: a systematic review. Viruses 12:1107
    [Google Scholar]
  120. 120. 
    Anderson CL, Sullivan MB, Fernando SC. 2017. Dietary energy drives the dynamic response of bovine rumen viral communities. Microbiome 5:1155
    [Google Scholar]
  121. 121. 
    Gilbert RA, Klieve AV 2015. Ruminal viruses (Bacteriophages, Archaeaphages). Rumen Microbiology: From Evolution to Revolution AK Puniya, R Singh, DN Kamra 121–41 New Delhi: Springer India
    [Google Scholar]
  122. 122. 
    Wilson DB. 2011. Microbial diversity of cellulose hydrolysis. Curr. Opin. Microbiol. 14:3259–63
    [Google Scholar]
  123. 123. 
    La Rosa SL, Leth ML, Michalak L, Hansen ME, Pudlo NA et al. 2019. The human gut Firmicute Roseburia intestinalis is a primary degrader of dietary β-mannans. Nat. Commun. 10:905
    [Google Scholar]
  124. 124. 
    McKee LS, La Rosa SL, Westereng B, Eijsink VG, Pope PB, Larsbrink J 2021. Polysaccharide degradation by the Bacteroidetes: mechanisms and nomenclature. Environ. Microbiol. Rep. 13:5559–81
    [Google Scholar]
  125. 125. 
    Arntzen , Várnai A, Mackie RI, Eijsink VGH, Pope PB. 2017. Outer membrane vesicles from Fibrobacter succinogenes S85 contain an array of carbohydrate-active enzymes with versatile polysaccharide-degrading capacity. Environ. Microbiol. 19:72701–14
    [Google Scholar]
  126. 126. 
    Moore WE, Holdeman LV 1974. Human fecal flora: the normal flora of 20 Japanese-Hawaiians. Appl. Microbiol. 27:5961–79
    [Google Scholar]
  127. 127. 
    Forster SC, Kumar N, Anonye BO, Almeida A, Viciani E et al. 2019. A human gut bacterial genome and culture collection for improved metagenomic analyses. Nat. Biotechnol. 37:2186–92
    [Google Scholar]
  128. 128. 
    Seshadri R, Leahy SC, Attwood GT, Teh KH, Lambie SC et al. 2018. Cultivation and sequencing of rumen microbiome members from the Hungate1000 Collection. Nat. Biotechnol. 36:4359–67
    [Google Scholar]
  129. 129. 
    Lagier J-C, Khelaifia S, Alou MT, Ndongo S, Dione N et al. 2016. Culture of previously uncultured members of the human gut microbiota by culturomics. Nat. Microbiol. 1:16203
    [Google Scholar]
  130. 130. 
    Zehavi T, Probst M, Mizrahi I. 2018. Insights into culturomics of the rumen microbiome. Front. Microbiol. 9:1999
    [Google Scholar]
  131. 131. 
    Iannotti EL, Kafkewitz D, Wolin MJ, Bryant MP. 1973. Glucose fermentation products in Ruminococcus albus grown in continuous culture with Vibrio succinogenes: changes caused by interspecies transfer of H2. J. Bacteriol. 114:31231–40
    [Google Scholar]
  132. 132. 
    Williams AG, Withers SE, Joblin KN. 1994. The effect of cocultivation with hydrogen-consuming bacteria on xylanolysis by Ruminococcus flavefaciens. Curr. Microbiol. 29:3133–38
    [Google Scholar]
  133. 133. 
    McInerney MJ, Bryant MP. 1981. Basic principles of bioconversions in anaerobic digestion and methanogenesis. Biomass Conversion Processes for Energy and Fuels SS Sofer, OR Zaborsky 277–96 Boston: Springer US
    [Google Scholar]
  134. 134. 
    Greening C, Geier R, Wang C, Woods LC, Morales SE et al. 2019. Diverse hydrogen production and consumption pathways influence methane production in ruminants. ISME J. 13:102617–32
    [Google Scholar]
  135. 135. 
    Pope PB, Smith W, Denman SE, Tringe SG, Barry K et al. 2011. Isolation of Succinivibrionaceae implicated in low methane emissions from Tammar wallabies. Science 333:6042646–48
    [Google Scholar]
  136. 136. 
    Pope PB, Denman SE, Jones M, Tringe SG, Barry K et al. 2010. Adaptation to herbivory by the Tammar wallaby includes bacterial and glycoside hydrolase profiles different from other herbivores. PNAS 107:3314793–98
    [Google Scholar]
  137. 137. 
    Jami E, Mizrahi I. 2020. Host-rumen microbiome interactions and influences on feed conversion efficiency (FCE), methane production and other productivity traits. Improving Rumen Function C McSweeney, R Mackie 547–66 Cambridge, UK: Burleigh Dodds Sci. Publ.
    [Google Scholar]
  138. 138. 
    Li F, Li C, Chen Y, Liu J, Zhang C et al. 2019. Host genetics influence the rumen microbiota and heritable rumen microbial features associate with feed efficiency in cattle. Microbiome 7:92
    [Google Scholar]
  139. 139. 
    Kokou F, Sasson G, Nitzan T, Doron-Faigenboim A, Harpaz S et al. 2018. Host genetic selection for cold tolerance shapes microbiome composition and modulates its response to temperature. eLife 7:e36398
    [Google Scholar]
  140. 140. 
    Benson AK, Kelly SA, Legge R, Ma F, Low SJ et al. 2010. Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. PNAS 107:4418933–38
    [Google Scholar]
  141. 141. 
    Martínez-Álvaro M, Zubiri-Gaitán A, Hernández P, Greenacre M, Ferrer A, Blasco A. 2021. Comprehensive functional core microbiome comparison in genetically obese and lean hosts under the same environment. Commun. Biol. 4:11246
    [Google Scholar]
  142. 142. 
    Sandoval-Motta S, Aldana M, Martínez-Romero E, Frank A. 2017. The human microbiome and the missing heritability problem. Front. Genet. 8:80
    [Google Scholar]
  143. 143. 
    Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T et al. 2018. Environment dominates over host genetics in shaping human gut microbiota. Nature 555:7695210–15
    [Google Scholar]
  144. 144. 
    Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O et al. 2014. Human genetics shape the gut microbiome. Cell 159:4789–99
    [Google Scholar]
  145. 145. 
    Ren T, Boutin S, Humphries MM, Dantzer B, Gorrell JC et al. 2017. Seasonal, spatial, and maternal effects on gut microbiome in wild red squirrels. Microbiome 5:163
    [Google Scholar]
  146. 146. 
    Maurice CF, Knowles SCL, Ladau J, Pollard KS, Fenton A et al. 2015. Marked seasonal variation in the wild mouse gut microbiota. ISME J. 9:112423–34
    [Google Scholar]
  147. 147. 
    Petri RM, Schwaiger T, Penner GB, Beauchemin KA, Forster RJ et al. 2013. Characterization of the core rumen microbiome in cattle during transition from forage to concentrate as well as during and after an acidotic challenge. PLOS ONE 8:12e83424
    [Google Scholar]
  148. 148. 
    Lima FS, Oikonomou G, Lima SF, Bicalho MLS, Ganda EK et al. 2015. Prepartum and postpartum rumen fluid microbiomes: characterization and correlation with production traits in dairy cows. Appl. Environ. Microbiol. 81:41327–37
    [Google Scholar]
  149. 149. 
    Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G et al. 2011. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J. 5:2220–30
    [Google Scholar]
  150. 150. 
    David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE et al. 2014. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:7484559–63
    [Google Scholar]
  151. 151. 
    Friedman N, Shriker E, Gold B, Durman T, Zarecki R et al. 2017. Diet-induced changes of redox potential underlie compositional shifts in the rumen archaeal community. Environ. Microbiol. 19:1174–84
    [Google Scholar]
  152. 152. 
    Kokou F, Sasson G, Friedman J, Eyal S, Ovadia O et al. 2019. Core gut microbial communities are maintained by beneficial interactions and strain variability in fish. Nat. Microbiol. 4:122456–65
    [Google Scholar]
  153. 153. 
    Coyte KZ, Rao C, Rakoff-Nahoum S, Foster KR 2021. Ecological rules for the assembly of microbiome communities. PLOS Biol. 19:2e3001116
    [Google Scholar]
  154. 154. 
    Coyte KZ, Schluter J, Foster KR. 2015. The ecology of the microbiome: networks, competition, and stability. Science 350:6261663–66
    [Google Scholar]
  155. 155. 
    Spor A, Koren O, Ley R 2011. Unravelling the effects of the environment and host genotype on the gut microbiome. Nat. Rev. Microbiol. 9:4279–90
    [Google Scholar]
  156. 156. 
    Lapébie P, Lombard V, Drula E, Terrapon N, Henrissat B 2019. Bacteroidetes use thousands of enzyme combinations to break down glycans. Nat. Commun. 10:2043
    [Google Scholar]
  157. 157. 
    Jami E, Mizrahi I 2012. Composition and similarity of bovine rumen microbiota across individual animals. PLOS ONE 7:3e33306
    [Google Scholar]
  158. 158. 
    Glendinning L, Genç B, Wallace RJ, Watson M 2021. Metagenomic analysis of the cow, sheep, reindeer and red deer rumen. Sci. Rep. 11:1990
    [Google Scholar]
  159. 159. 
    Tapio I, Snelling TJ, Strozzi F, Wallace RJ. 2017. The ruminal microbiome associated with methane emissions from ruminant livestock. J. Anim. Sci. Biotechnol. 8:7
    [Google Scholar]
  160. 160. 
    Clauss M, Dittmann MT, Vendl C, Hagen KB, Frei S et al. 2020. Review: comparative methane production in mammalian herbivores. Animal 14:S1S113–23
    [Google Scholar]
/content/journals/10.1146/annurev-animal-013020-020412
Loading
/content/journals/10.1146/annurev-animal-013020-020412
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error