African swine fever is a devastating disease that can result in death in almost all infected pigs. The continuing spread of African swine fever from Africa to Europe and recently to the high–pig production countries of China and others in Southeast Asia threatens global pork production and food security. The African swine fever virus is an unusual complex DNA virus and is not related to other viruses. This has presented challenges for vaccine development, and currently none is available. The virus is extremely well adapted to replicate in its hosts in the sylvatic cycle in East and South Africa. Its spread to other regions, with different wildlife hosts, climatic conditions, and pig production systems, has revealed unexpected epidemiological scenarios and different challenges for control. Here we review the epidemiology of African swine fever in these different scenarios and methods used for control. We also discuss progress toward vaccine development and research priorities to better understand this complex disease and improve control.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. 1. 
    Montgomery R. 1921. A form of swine fever occurring in British East Africa (Kenya Colony). J. Comp. Pathol. 34:159–91Provides the first description of African swine fever virus replication in the soft tick vector Ornithodoros moubata in Africa.
    [Google Scholar]
  2. 2. 
    Plowright W, Parker J, Peirce MA 1969. African swine fever virus in ticks (Ornithodoros moubata, Murray) collected from animal burrows in Tanzania. Nature 221:1071–73Provides the first description of African swine fever disease in pigs.
    [Google Scholar]
  3. 3. 
    Mulumba-Mfumu LK, Saegerman C, Dixon LK, Madimba KC, Kazadi E et al. 2019. African swine fever: update on Eastern, Central and Southern Africa. Transbound. Emerg. Dis. 66:1462–80
    [Google Scholar]
  4. 4. 
    Wilkinson PJ. 1989. African swine fever virus. Virus Infections of Porcines M Pensaert 17–35 New York: Elsevier Sci.
    [Google Scholar]
  5. 5. 
    Abrahantes JC, Gogin A, Richardson J, Gervelmeyer A 2017. Epidemiological analyses on African swine fever in the Baltic countries and Poland. EFSA J 15:4732
    [Google Scholar]
  6. 6. 
    Berg C, Bøtner A, Browman H, De Koeijer A, Domingo M et al. 2015. African swine fever EFSA Panel on Animal Health and Welfare (AHAW). EFSA J 13:4163
    [Google Scholar]
  7. 7. 
    Boklund A, Cay B, Depner K, Foldi Z, Guberti V et al. 2018. Epidemiological analyses of African swine fever in the European Union (November 2017 until November 2018). EFSA J 16:5494
    [Google Scholar]
  8. 8. 
    Depner K, Gortazar C, Guberti V, Masiulis M, More S et al. 2017. Epidemiological analyses of African swine fever in the Baltic States and Poland: (update September 2016-September 2017). EFSA J 15:1–59
    [Google Scholar]
  9. 9. 
    World Organ. Anim. Health 2012. Disease information OIE WAHIS https://www.oie.int/wahis_2/public/wahid.php/Diseaseinformation/diseasehome
  10. 10. 
    Food Agric. Organ 2019. ASF situation in Asia update Update, Sept. 12. http://www.fao.org/ag/againfo/programmes/en/empres/ASF/Situation_update.html
  11. 11. 
    Alonso C, Borca M, Dixon L, Revilla Y, Rodriguez F et al. 2018. ICTV virus taxonomy profile: Asfarviridae. J. Gen. Virol. 99:613–14Describes the replication cycle and gene functions of African swine fever virus.
    [Google Scholar]
  12. 12. 
    Dixon LK, Chapman DAG, Netherton CL, Upton C 2013. African swine fever virus replication and genomics. Virus Res 173:3–14Provides the first detailed proteome analysis of the African swine fever virus particle.
    [Google Scholar]
  13. 13. 
    Alejo A, Matamoros T, Guerra M, Andres G 2018. A proteomic atlas of the African swine fever virus particle. J. Virol. 92:e01293–18
    [Google Scholar]
  14. 14. 
    Hernáez B, Guerra M, Salas ML, Andrés G 2016. African swine fever virus undergoes outer envelope disruption, capsid disassembly and inner envelope fusion before core release from multivesicular endosomes. PLOS Pathog 12:e1005595
    [Google Scholar]
  15. 15. 
    Dixon LK, Islam M, Nash R, Reis AL 2019. African swine fever virus evasion of host defences. Virus Res 266:25–33
    [Google Scholar]
  16. 16. 
    Chapman DAG, Darby AC, Da Silva M, Upton C, Radford AD, Dixon LK 2011. Genomic analysis of highly virulent Georgia 2007/1 isolate of African swine fever virus. Emerg. Infect. Dis. 17:599–605
    [Google Scholar]
  17. 17. 
    Jori F, Bastos ADS. 2009. Role of wild suids in the epidemiology of African swine fever. EcoHealth 6:296–310Describes the first pathogenesis study in pigs and wild boar of the African swine fever virus genotype II isolate introduced to the Caucasus in 2007.
    [Google Scholar]
  18. 18. 
    Jori F, Vial L, Penrith ML, Pérez-Sánchez R, Etter E et al. 2013. Review of the sylvatic cycle of African swine fever in sub-Saharan Africa and the Indian Ocean. Virus Res 173:212–27
    [Google Scholar]
  19. 19. 
    Blome S, Gabriel C, Beer M 2013. Pathogenesis of African swine fever in domestic pigs and European wild boar. Virus Res 173:122–30
    [Google Scholar]
  20. 20. 
    Pietschmann J, Guinat C, Beer M, Pronin V, Tauscher K et al. 2015. Course and transmission characteristics of oral low-dose infection of domestic pigs and European wild boar with a Caucasian African swine fever virus isolate. Arch. Virol. 160:1657–67
    [Google Scholar]
  21. 21. 
    Sanchez-Cordon PJ, Montoya M, Reis AL, Dixon LK 2018. African swine fever: a re-emerging viral disease threatening the global pig industry. Vet. J. 233:41–48
    [Google Scholar]
  22. 22. 
    Gómez-Villamandos JC, Bautista MJ, Sánchez-Cordón PJ, Carrasco L 2013. Pathology of African swine fever: the role of monocyte-macrophage. Virus Res 173:140–49
    [Google Scholar]
  23. 23. 
    Sánchez-Vizcaíno JM, Mur L, Gomez-Villamandos JC, Carrasco L 2015. An update on the epidemiology and pathology of African swine fever. J. Comp. Pathol. 152:9–21
    [Google Scholar]
  24. 24. 
    Gallardo C, Nurmoja I, Soler A, Delicado V, Simon A et al. 2018. Evolution in Europe of African swine fever genotype II viruses from highly to moderately virulent. Vet. Microbiol. 219:70–79
    [Google Scholar]
  25. 25. 
    Nurmoja I, Petrov A, Breidenstein C, Zani L, Forth JH et al. 2017. Biological characterization of African swine fever virus genotype II strains from north-eastern Estonia in European wild boar. Transbound. Emerg. Dis. 64:2034–41
    [Google Scholar]
  26. 26. 
    de Carvalho Ferreira HC, Backer JA, Weesendorp E, Klinkenberg D, Stegeman JA, Loeffen WLA 2013. Transmission rate of African swine fever virus under experimental conditions. Vet. Microbiol. 165:296–304
    [Google Scholar]
  27. 27. 
    Chenais E, Depner K, Guberti V, Dietze K, Viltrop A, Stahl K 2019. Epidemiological considerations on African swine fever in Europe 2014–2018. Porcine Health Manag 5:6
    [Google Scholar]
  28. 28. 
    More S, Miranda MA, Bicout D, Botner A, Butterworth A et al. 2018. African swine fever in wild boar. EFSA J 16:e05344
    [Google Scholar]
  29. 29. 
    Guinat C, Reis AL, Netherton CL, Goatley L, Pfeiffer DU, Dixon L 2014. Dynamics of African swine fever virus shedding and excretion in domestic pigs infected by intramuscular inoculation and contact transmission. Vet. Res. 45:93
    [Google Scholar]
  30. 30. 
    de Carvalho Ferreira HC, Weesendorp E, Quak S, Stegeman JA, Loeffen WLA 2013. Quantification of airborne African swine fever virus after experimental infection. Vet. Microbiol. 165:243–51
    [Google Scholar]
  31. 31. 
    Gallardo C, Soler A, Nieto R, Sánchez MA, Martins C et al. 2015. Experimental transmission of African swine fever (ASF) low virulent isolate NH/P68 by surviving pigs. Transbound. Emerg. Dis. 62:612–22
    [Google Scholar]
  32. 32. 
    Petrov A, Forth JH, Zani L, Beer M, Blome S 2018. No evidence for long-term carrier status of pigs after African swine fever virus infection. Transbound. Emerg. Dis. 65:1318–28
    [Google Scholar]
  33. 33. 
    Olesen AS, Lohse L, Hansen MF, Boklund A, Halasa T et al. 2018. Infection of pigs with African swine fever virus via ingestion of stable flies (Stomoxys calcitrans). Transbound. Emerg. Dis. 65:1152–57
    [Google Scholar]
  34. 34. 
    Eur. Food Saf. Auth., Boklund A, Cay B, Depner K, Földi Z et al. 2018. Scientific report on the epidemiological analyses of African swine fever in the European Union (November 2017 until November 2018). EFSA J 16:115494
    [Google Scholar]
  35. 35. 
    Guinat C, Gogin A, Blome S, Keil G, Pollin R et al. 2016. Transmission routes of African swine fever virus to domestic pigs: current knowledge and future research directions. Vet. Rec. 178:262–67
    [Google Scholar]
  36. 36. 
    Costard S, Mur L, Lubroth J, Sanchez-Vizcaino JM, Pfeiffer DU 2013. Epidemiology of African swine fever virus. Virus Res 173:191–97
    [Google Scholar]
  37. 37. 
    Petrini S, Feliziani F, Casciari C, Giammarioli M, Torresi C, De Mia GM 2019. Survival of African swine fever virus (ASFV) in various traditional Italian dry-cured meat products. Prev. Vet. Med. 162:126–30
    [Google Scholar]
  38. 38. 
    EFSA Panel Anim. Health Welf 2010. Scientific opinion on African swine fever. EFSA J 8:1556
    [Google Scholar]
  39. 39. 
    Sanchez-Vizcaino JM, Arias Neira M 2012. African swine fever virus. Diseases of Swine JL Zimmerman, LA Karriker, A Ramirez, KJ Schwartz, GW Stevenson 396–404 West Sussex, UK: Wiley-Blackwell
    [Google Scholar]
  40. 40. 
    Guinat C, Relun A, Wall B, Morris A, Dixon L, Pfeiffer DU 2016. Exploring pig trade patterns to inform the design of risk-based disease surveillance and control strategies. Sci. Rep. 6:28429
    [Google Scholar]
  41. 41. 
    Relun A, Grosbois V, Alexandrov T, Sánchez-Vizcaíno JM, Waret-Szkuta A et al. 2017. Prediction of pig trade movements in different European production systems using exponential random graph models. Front. Vet. Sci. 4:27
    [Google Scholar]
  42. 42. 
    Lichoti JK, Davies J, Kitala PM, Githigia SM, Okoth E et al. 2016. Social network analysis provides insights into African swine fever epidemiology. Prev. Vet. Med. 126:1–10
    [Google Scholar]
  43. 43. 
    Penrith ML, Bastos AD, Etter EMC, Beltran-Alcrudo D 2019. Epidemiology of African swine fever in Africa today: sylvatic cycle versus socio-economic imperatives. Transbound. Emerg. Dis. 66:672–86
    [Google Scholar]
  44. 44. 
    Vergne T, Korennoy F, Combelles L, Gogin A, Pfeiffer DU 2016. Modelling African swine fever presence and reported abundance in the Russian Federation using national surveillance data from 2007 to 2014. Spat. Spatiotemporal Epidemiol. 19:70–77
    [Google Scholar]
  45. 45. 
    Cappai S, Rolesu S, Coccollone A, Laddomada A, Loi F 2018. Evaluation of biological and socio-economic factors related to persistence of African swine fever in Sardinia. Prev. Vet. Med. 152:1–11
    [Google Scholar]
  46. 46. 
    Chenais E, Stahl K, Guberti V, Depner K 2018. Identification of wild boar-habitat epidemiologic cycle in African swine fever epizootic. Emerg. Infect. Dis. 24:810–12
    [Google Scholar]
  47. 47. 
    Food Agric. Organ 2012. Secteur Porcin Burkina Faso Rome: Food Agric. Organ.
  48. 48. 
    Food Agric. Organ 2012. Pig Sector Kenya Rome: Food Agric. Organ.
  49. 49. 
    Chenais E, Boqvist S, Emanuelson U, von Bromssen C, Ouma E et al. 2017. Quantitative assessment of social and economic impact of African swine fever outbreaks in northern Uganda. Prev. Vet. Med. 144:134–48
    [Google Scholar]
  50. 50. 
    Eur. Comm 2018. Final report of an audit carried out in Romania from 17 October 2018 to 25 October 2018 in order to evaluate the implementation of animal health controls in relation to African swine fever Rep., Eur. Comm., Brussels. https://ec.europa.eu/food/audits-analysis/act_getPDF.cfm?PDF_ID=14301
  51. 51. 
    Thanapongtharm W, Linard C, Chinson P, Kasemsuwan S, Visser M et al. 2016. Spatial analysis and characteristics of pig farming in Thailand. BMC Vet. Res. 12:218
    [Google Scholar]
  52. 52. 
    McOrist S, Khampee K, Guo A 2011. Modern pig farming in the People's Republic of China: growth and veterinary challenges. Rev. Sci. Tech. 30:961–68
    [Google Scholar]
  53. 53. 
    Lapar MLA. 2014. Review of the pig sector in Vietnam Rep., Sci. Comm. REVALTAR Proj ILRI, Kenya:
  54. 54. 
    Jia X, Huang J, Wang D, Liu H, Cheng Y 2014. Pig production, smallholders, and the transformation of value chains in China Country Rep., Int. Inst. Environ. Dev London:
  55. 55. 
    Chin V. 2014. Understanding the growth and the decline of small-farm production in the swine industry of Guangdong Province and in China from 1980 to 2010. The Political Economy of Agro-Food Markets in China - The Social Construction of the Markets in an Era of Globalization L Augustin-Jean, B Alpermann 152–79 London: Palgrave Macmillan
    [Google Scholar]
  56. 56. 
    Inouye A. 2019. Specter of African swine fever casts pall over year of the pig; beef imports benefit GAIN Rep. CH19006 US Dep. Agric. Foreign Agric. Serv Washington, DC:
  57. 57. 
    Lui S-K. 2008. An ethnographic comparison of wet markets and supermarkets in Hong Kong. Hong Kong Anthropol 2:1–51
    [Google Scholar]
  58. 58. 
    Chau LTM, Lebailly P, Trung TQ 2017. Enhancing farmers’ market power and income in the pig value chain: a case study in Bac Giang province, Vietnam. Livest. Res. Rural Dev. 29:221
    [Google Scholar]
  59. 59. 
    Karimov AA, Nguyen TT, Cadilhon JJ, Hoang TT, Dang TH et al. 2016. Value chain assessment report for maize, pig, plum and tea in Son La province of Northwest Vietnam Proj. Rep Int. Livest. Res. Inst Nairobi, Kenya:
  60. 60. 
    Marquer P, Rabade T, Forti R 2014. Pig farming in the European Union: considerable variations from one Member State to another Stat. Focus 15/2014 Eurostat, Brussels:
  61. 61. 
    Bellini S, Rutili D, Guberti V 2016. Preventive measures aimed at minimizing the risk of African swine fever virus spread in pig farming systems. Acta Vet. Scand. 58:82
    [Google Scholar]
  62. 62. 
    Mulumba-Mfumu LK, Achenbach JE, Mauldin MR, Dixon LK, Tshilenge CG et al. 2017. Genetic assessment of African swine fever isolates involved in outbreaks in the Democratic Republic of Congo between 2005 and 2012 reveals co-circulation of p72 genotypes I, IX and XIV, including 19 variants. Viruses 9:E31
    [Google Scholar]
  63. 63. 
    Thomson GR. 1985. The epidemiology of African swine fever—the role of free-living hosts in Africa. Onderstepoort J. Vet. Res. 52:201–9
    [Google Scholar]
  64. 64. 
    Penrith ML, Thomson GR, Bastos ADS 2004. African swine fever. In Infectious Diseases of Livestock, Vol. 2 JAW Coetzer, RC Austin 1088–119 Cape Town: Oxford Univ. Press S. Afr.
    [Google Scholar]
  65. 65. 
    Gray JS, Estrada-Peña A, Vial L 2014. Ecology of nidicolous ticks. Biology of Ticks 2 DE Sonenshine, RM Roe 39–60 New York: Oxford Univ. Press
    [Google Scholar]
  66. 66. 
    Quembo CJ, Jori F, Vosloo W, Heath L 2018. Genetic characterization of African swine fever virus isolates from soft ticks at the wildlife/domestic interface in Mozambique and identification of a novel genotype. Transbound. Emerg. Dis. 65:420–31
    [Google Scholar]
  67. 67. 
    Achenbach JE, Gallardo C, Nieto-Pelegrín E, Rivera-Arroyo B, Degefa-Negi T et al. 2017. Identification of a new genotype of African swine fever virus in domestic pigs from Ethiopia. Transbound. Emerg. Dis. 64:1393–404
    [Google Scholar]
  68. 68. 
    Bastos ADS, Penrith ML, Cruciere C, Edrich JL, Hutchings G et al. 2003. Genotyping field strains of African swine fever virus by partial p72 gene characterisation. Arch. Virol. 148:693–706
    [Google Scholar]
  69. 69. 
    Boshoff CI, Bastos ADS, Gerber LJ, Vosloo W 2007. Genetic characterisation of African swine fever viruses from outbreaks in southern Africa (1973–1999). Vet. Microbiol. 121:45–55
    [Google Scholar]
  70. 70. 
    Rowlands RJ, Duarte MM, Boinas F, Hutchings G, Dixon LK 2009. The CD2v protein enhances African swine fever virus replication in the tick vector, Ornithodoros erraticus. Virology 393:319–28
    [Google Scholar]
  71. 71. 
    Rowlands RJ, Michaud V, Heath L, Hutchings G, Oura C et al. 2008. African swine fever virus isolate, Georgia, 2007. Emerg. Infect. Dis. 14:1870–74
    [Google Scholar]
  72. 72. 
    Laddomada A, Patta C, Oggiano A, Caccia A, Ruiu A et al. 1994. Epidemiology of classical swine fever in Sardinia: a serological survey of wild boar and comparison with African swine fever. Vet. Rec. 134:183–87
    [Google Scholar]
  73. 73. 
    Perez J, Fernández AI, Sierra MA, Herráez P, de las Mulas JM 1998. Serological and immunohistochemical study of African swine fever in wild boar in Spain. Vet. Rec. 143:136–39
    [Google Scholar]
  74. 74. 
    Nurmoja I, Schulz K, Staubach C, Sauter-Louis C, Depner K et al. 2017. Development of African swine fever epidemic among wild boar in Estonia—two different areas in the epidemiological focus. Sci. Rep. 7:12562
    [Google Scholar]
  75. 75. 
    Podgórski T, Śmietanka K. 2018. Do wild boar movements drive the spread of African Swine Fever. Transbound. Emerg. Dis. 65:1588–96
    [Google Scholar]
  76. 76. 
    Probst C, Globig A, Knoll B, Conraths FJ, Depner K 2017. Behaviour of free ranging wild boar towards their dead fellows: potential implications for the transmission of African swine fever. R. Soc. Open Sci. 4:170054
    [Google Scholar]
  77. 77. 
    Carrasco-Garcia R, Barroso P, Perez-Olivares J, Montoro V, Vicente J 2018. Consumption of big game remains by scavengers: a potential risk as regards disease transmission in Central Spain. Front. Vet. Sci. 5:4
    [Google Scholar]
  78. 78. 
    Chenais E, Sternberg-Lewerin S, Boqvist S, Liu L, LeBlanc N et al. 2017. African swine fever outbreak on a medium-sized farm in Uganda: biosecurity breaches and within-farm virus contamination. Trop. Anim. Health Prod. 49:337–46
    [Google Scholar]
  79. 79. 
    Boinas F, Ribeiro R, Madeira S, Palma M, de Carvalho IL et al. 2014. The medical and veterinary role of Ornithodoros erraticus complex ticks (Acari: Ixodida) on the Iberian Peninsula. J. Vector Ecol. 39:238–48
    [Google Scholar]
  80. 80. 
    Vial L, Ducheyne E, Filatov S, Gerilovych A, McVey DS et al. 2018. Spatial multi-criteria decision analysis for modelling suitable habitats of Ornithodoros soft ticks in the Western Palearctic region. Vet. Parasitol. 249:2–16
    [Google Scholar]
  81. 81. 
    Wilson AJ, Ribeiro R, Boinas F 2013. Use of a Bayesian network model to identify factors associated with the presence of the tick Ornithodoros erraticus on pig farms in southern Portugal. Prev. Vet. Med. 110:45–53
    [Google Scholar]
  82. 82. 
    Jori F. 2014. African swine fever and the risks of its spread to new territories and wild pig species. Suiform Sound 13:21–24
    [Google Scholar]
  83. 83. 
    Payne A, Ogweng P, Ojok A, Etter E, Gilot-Fromont E et al. 2018. Comparison of three methods to assess the potential for bushpig-domestic pig interactions at the wildlife-livestock interface in Uganda. Front. Vet. Sci. 5:295
    [Google Scholar]
  84. 84. 
    Jori F, Relun A, Trabucco B, Charrier F, Maestrini O et al. 2017. Questionnaire-based assessment of wild boar/domestic pig interactions and implications for disease risk management in Corsica. Front. Vet. Sci. 4:198
    [Google Scholar]
  85. 85. 
    Jori F, Payne A, Stahl A, Nava A, Rossi S 2018. Wild and feral pigs: disease transmission at the interface between wild and domestic pig species in the Old and the New World. Ecology, Evolution and Management of Wild Pigs and Peccaries: Implications for Conservation M Melletti, E Meijaard 388–403 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  86. 86. 
    Boinas FS, Wilson AJ, Hutchings GH, Martins C, Dixon LJ 2011. The persistence of African swine fever virus in field-infected Ornithodoros erraticus during the ASF endemic period in Portugal. PLOS ONE 6:e20383
    [Google Scholar]
  87. 87. 
    Haresnape JM, Wilkinson PJ. 1989. A study of African swine fever virus-infected ticks (Ornithodoros moubata) collected from three villages in the ASF enzootic area of Malawi following an outbreak of the disease in domestic pigs. Epidemiol. Infect. 102:507–22
    [Google Scholar]
  88. 88. 
    Kukielka EA, Jori F, Martínez-López B, Chenais E, Masembe C et al. 2016. Wild and domestic pig interactions at the wildlife-livestock interface of Murchison Falls National Park, Uganda, and the potential association with African swine fever outbreaks. Front. Vet. Sci. 3:31
    [Google Scholar]
  89. 89. 
    Horak IG, Boomker J, Devos V, Potgieter FT 1988. Parasites of domestic and wild animals in South Africa. 23. Helminth and arthropod parasites of warthogs, Phacochoerus aethiopicus, in the eastern Transvaal Lowveld. Onderstepoort J. Vet. Res. 55:145–52
    [Google Scholar]
  90. 90. 
    Uilenberg G, Estrada-Pena A, Thal J 2013. Ticks of the Central African Republic. Exp. Appl. Acarol. 60:1–40
    [Google Scholar]
  91. 91. 
    Boomker J, Horak IG, Booyse DG, Meyer S 1991. Parasites of South African wildlife. 8. Helminth and arthropod parasites of warthogs, Phacochoerus aethiopicus, in the eastern Transvaal. Onderstepoort J. Vet. Res. 58:195–202
    [Google Scholar]
  92. 92. 
    Nurmoja I, Mõtus K, Kristian M, Niine T, Schulz K et al. 2018. Epidemiological analysis of the 2015–2017 African swine fever outbreaks in Estonia. Prev. Vet. Med. In press
    [Google Scholar]
  93. 93. 
    World Organ. Anim. Health 2018. Terrestrial Code Paris, France: World Organ. Anim. Health
  94. 94. 
    Hidano A, Enticott G, Christley RM, Gates MC 2018. Modeling dynamic human behavioral changes in animal disease models: challenges and opportunities for addressing bias. Front. Vet. Sci. 5:137
    [Google Scholar]
  95. 95. 
    Barnes AP, Moxey AP, Vosough Ahmadi B, Borthwick FA 2015. The effect of animal health compensation on ‘positive’ behaviours towards exotic disease reporting and implementing biosecurity: a review, a synthesis and a research agenda. Prev. Vet. Med. 122:42–52
    [Google Scholar]
  96. 96. 
    Beltran-Alcrudo D, Arias M, Gallardo C, Kramer S, Penrith ML 2017. African Swine Fever: Detection and DiagnosisA Manual for Veterinarians Rome, Italy: Anim. Prod. Health, Food Agric. Organ88
    [Google Scholar]
  97. 97. 
    Penrith ML, Guberti V, Depner K, Lubroth J 2009. Preparation of African Swine Fever Contingency Plans Rome, Italy: Anim. Prod. Health, Food Agric. Organ69
  98. 98. 
    Honhold N, Douglas I, Geering W, Shimshoni A, Lubroth J 2011. Good Emergency Management Practices: The Essentials Rome, Italy: Anim. Prod. Health, Food Agric. Organ.
  99. 99. 
    Jurado C, Martínez-Avilés M, De La Torre A, Štukelj M, de Carvalho Ferreira HC et al. 2018. Relevant measures to prevent the spread of African swine fever in the European Union domestic pig sector. Front. Vet. Sci. 5:77
    [Google Scholar]
  100. 100. 
    Food Agric. Organ., World Organ. Anim. Health, World Bank 2010. Good practices for biosecurity in the pig sector: issues and options in developing and transition countries Pap. No. 169 FAO Anim. Prod. Health Rome, Italy:
  101. 101. 
    OECD 2017. Producer Incentives in Livestock Disease Management Paris: OECD Publ172
  102. 102. 
    Merrill SC, Koliba CJ, Moegenburg SM, Zia A, Parker J et al. 2019. Decision-making in livestock biosecurity practices amidst environmental and social uncertainty: evidence from an experimental game. PLOS ONE 14:e0214500
    [Google Scholar]
  103. 103. 
    Stärk KDC, Regula G, Hernandez J, Knopf L, Fuchs K et al. 2006. Concepts for risk-based surveillance in the field of veterinary medicine and veterinary public health: review of current approaches. BMC Health Serv. Res. 6:20
    [Google Scholar]
  104. 104. 
    Hoinville LJ, Alban L, Drewe JA, Gibbens JC, Gustafson L et al. 2013. Proposed terms and concepts for describing and evaluating animal-health surveillance systems. Prev. Vet. Med. 112:1–12
    [Google Scholar]
  105. 105. 
    Guinat C, Wall B, Dixon L, Pfeiffer DU 2016. English pig farmers’ knowledge and behaviour towards African swine fever suspicion and reporting. PLOS ONE 11:e0161431
    [Google Scholar]
  106. 106. 
    Halasa T, Botner A, Mortensen S, Christensen H, Toft N, Boklund A 2016. Control of African swine fever epidemics in industrialized swine populations. Vet. Microbiol. 197:142–50
    [Google Scholar]
  107. 107. 
    te Beest DE, Hagenaars TJ, Stegeman JA, Koopmans MPG, van Boven M 2011. Risk based culling for highly infectious diseases of livestock. Vet. Res. 42:81
    [Google Scholar]
  108. 108. 
    Hall MJ, Ng A, Ursano RJ, Holloway H, Fullerton C, Casper J 2004. Psychological impact of the animal-human bond in disaster preparedness and response. J. Psychiatr. Pract. 10:368–74
    [Google Scholar]
  109. 109. 
    Makita K, Tsuji A, Iki Y, Kurosawa A, Kadowaki H et al. 2015. Mental and physical distress of field veterinarians during and soon after the 2010 foot and mouth disease outbreak in Miyazaki, Japan. Rev. Sci. Tech. 34:699–712
    [Google Scholar]
  110. 110. 
    Greenwood B. 2014. The contribution of vaccination to global health: past, present and future. Philos. Trans. R. Soc. B Biol. Sci. 369:20130433
    [Google Scholar]
  111. 111. 
    Food Agric. Organ 2013. Declaration of Global Freedom from Rinderpest—Thirty-seventh Session of the FAO Conference, Rome, June 25–July 2, 2011. FAO Anim. Prod. Health Proc. No. 17. Rome: FAO:
  112. 112. 
    Cochi SL, Hegg L, Kaur A, Pandak C, Jafari H 2016. The global polio eradication initiative: progress, lessons learned, and polio legacy transition planning. Health Aff 35:277–83
    [Google Scholar]
  113. 113. 
    Henderson DA. 2011. The eradication of smallpox—an overview of the past, present, and future. Vaccine 29:D7–D9
    [Google Scholar]
  114. 114. 
    Eur. Comm 2017. Blueprint and roadmap on the possible development of a vaccine for African Swine Fever prepared by the African Swine Fever EU reference laboratory on Commission request Rep., Eur. Comm Brussels, Belg: https://ec.europa.eu/food/sites/food/files/safety/docs/cff_animal_vet-progs_asf_blue-print-road-map.pdf
  115. 115. 
    Arias M, de la Torre A, Dixon L, Gallardo C, Jori F et al. 2017. Approaches and perspectives for development of African swine fever virus vaccines. Vaccines 5:E35
    [Google Scholar]
  116. 116. 
    Freuling CM, Müller TF, Mettenleiter TC 2017. Vaccines against pseudorabies virus (PrV). Vet. Microbiol. 206:3–9
    [Google Scholar]
  117. 117. 
    Rossi S, Staubach C, Blome S, Guberti V, Thulke H-H et al. 2015. Controlling of CSFV in European wild boar using oral vaccination: a review. Front. Microbiol. 6:1141
    [Google Scholar]
  118. 118. 
    Stone SS, Hess WR. 1967. Antibody response to inactivated preparations of African swine fever virus in pigs. Am. J. Vet. Res. 28:475–81
    [Google Scholar]
  119. 119. 
    Blome S, Gabriel C, Beer M 2014. Modern adjuvants do not enhance the efficacy of an inactivated African swine fever virus vaccine preparation. Vaccine 32:3879–82
    [Google Scholar]
  120. 120. 
    Detray DE. 1957. Persistence of viremia and immunity in African swine fever. Am. J. Vet. Res. 18:811–16
    [Google Scholar]
  121. 121. 
    Oura CAL, Denyer MS, Takamatsu H, Parkhouse RME 2005. In vivo depletion of CD8+ T lymphocytes abrogates protective immunity to African swine fever virus. J. Gen. Virol. 86:2445–50
    [Google Scholar]
  122. 122. 
    Onisk DV, Borca MV, Kutish G, Kramer E, Irusta P, Rock DL 1994. Passively transferred African swine fever virus—antibodies protect swine against lethal infection. Virology 198:350–54
    [Google Scholar]
  123. 123. 
    Boinas FS, Hutchings GH, Dixon LK, Wilkinson PJ 2004. Characterization of pathogenic and non-pathogenic African swine fever virus isolates from Ornithodoros erraticus inhabiting pig premises in Portugal. J. Gen. Virol. 85:2177–87
    [Google Scholar]
  124. 124. 
    Leitao A, Cartaxeiro C, Coelho R, Cruz B, Parkhouse RME et al. 2001. The non-haemadsorbing African swine fever virus isolate ASFV/NH/P68 provides a model for defining the protective anti-virus immune response. J. Gen. Virol. 82:513–23
    [Google Scholar]
  125. 125. 
    O'Donnell V, Holinka LG, Gladue DP, Sanford B, Krug PW et al. 2015. African swine fever virus Georgia isolate harboring deletions of MGF360 and MGF505 genes is attenuated in swine and confers protection against challenge with virulent parental virus. J. Virol. 89:6048–56
    [Google Scholar]
  126. 126. 
    Reis AL, Abrams CC, Goatley LC, Netherton C, Chapman DG et al. 2016. Deletion of African swine fever virus interferon inhibitors from the genome of a virulent isolate reduces virulence in domestic pigs and induces a protective response. Vaccine 34:4698–705
    [Google Scholar]
  127. 127. 
    Reis AL, Goatley LC, Jabbar T, Sanchez-Cordon PJ, Netherton CL et al. 2017. Deletion of the African swine fever virus gene DP148R does not reduce virus replication in culture but reduces virus virulence in pigs and induces high levels of protection against challenge. J. Virol. 91:e01428–17
    [Google Scholar]
  128. 128. 
    Zsak L, Lu Z, Burrage TG, Neilan JG, Kutish GF et al. 2001. African swine fever virus multigene family 360 and 530 genes are novel macrophage host range determinants. J. Virol. 75:3066–76
    [Google Scholar]
  129. 129. 
    Zsak L, Caler E, Lu Z, Kutish GF, Neiland JG, Rock DL 1998. A nonessential African swine fever virus gene UK is a significant virulence determinant in domestic swine. J. Virol. 72:1028–35
    [Google Scholar]
  130. 130. 
    Monteagudo PL, Lacasta A, López E, Bosch L, Collado J et al. 2017. BA71ΔCD2: a new recombinant live attenuated African swine fever virus with cross-protective capabilities. J. Virol. 91:e01058-17
    [Google Scholar]
  131. 131. 
    Borca MV, Carrillo C, Zsak L, Laegreid WW, Kutish GF et al. 1998. Deletion of a CD2-like gene, 8-DR, from African swine fever virus affects viral infection in domestic swine. J. Virol. 72:2881–89
    [Google Scholar]
  132. 132. 
    Lewis T, Zsak L, Burrage TG, Lu Z, Kutish GF et al. 2000. An African swine fever virus ERV1-ALR homologue, 9GL, affects virion maturation and viral growth in macrophages and viral virulence in swine. J. Virol. 74:1275–85
    [Google Scholar]
  133. 133. 
    O'Donnell V, Holinka LG, Krug PW, Gladue DP, Carlson J et al. 2015. African swine fever virus Georgia 2007 with a deletion of virulence-associated gene 9GL (B119L), when administered at low doses, leads to virus attenuation in swine and induces an effective protection against homologous challenge. J. Virol. 89:8556–66
    [Google Scholar]
  134. 134. 
    O'Donnell V, Risatti GR, Holinka LG, Krug PW, Carlson J et al. 2017. Simultaneous deletion of the 9GL and UK genes from the African swine fever virus Georgia 2007 isolate offers increased safety and protection against homologous challenge. J. Virol. 91:e01760–16
    [Google Scholar]
  135. 135. 
    Malogolovkin A, Burmakina G, Titov I, Sereda A, Gogin A et al. 2015. Comparative analysis of African swine fever virus genotypes and serogroups. Emerg. Infect. Dis. 21:312–15
    [Google Scholar]
  136. 136. 
    Malogolovkin A, Burmakina G, Tulman ER, Delhon G, Diel DG et al. 2015. African swine fever virus CD2v and C-type lectin gene loci mediate serological specificity. J. Gen. Virol. 96:866–73
    [Google Scholar]
  137. 137. 
    Simeón-Negrín RE, Frías-Lepoureau MT. 2002. Eradication of African swine fever in Cuba (1971 and 1980). Trends in Emerging Viral Infections of Swine A Morilla, K-J Yoon, JJ Zimmerman 125–31 Ames: Iowa State Press
    [Google Scholar]
  138. 138. 
    Frouco G, Freitas FB, Martins C, Ferreira F 2017. Sodium phenylbutyrate abrogates African swine fever virus replication by disrupting the virus-induced hypoacetylation status of histone H3K9/K14. Virus Res 242:24–29
    [Google Scholar]
  139. 139. 
    Galindo I, Hernáez B, Berná J, Fenoll J, Cenis JL et al. 2011. Comparative inhibitory activity of the stilbenes resveratrol and oxyresveratrol on African swine fever virus replication. Antivir. Res. 91:57–63
    [Google Scholar]
  140. 140. 
    Hakobyan A, Galindo I, Nañez A, Arabyan E, Karalyan Z et al. 2018. Rigid amphipathic fusion inhibitors demonstrate antiviral activity against African swine fever virus. J. Gen. Virol. 99:148–56
    [Google Scholar]
  141. 141. 
    Wells KD, Bardot R, Whitworth KM, Trible BR, Fang Y et al. 2017. Replacement of porcine CD163 scavenger receptor cysteine-rich domain 5 with a CD163-like homolog confers resistance of pigs to genotype 1 but not genotype 2 porcine reproductive and respiratory syndrome virus. J. Virol. 91:e01421–16
    [Google Scholar]
  142. 142. 
    Xie ZC, Pang DX, Yuan HM, Jiao HP, Lu C et al. 2018. Genetically modified pigs are protected from classical swine fever virus. PLOS Pathog 14:e1007193
    [Google Scholar]
  143. 143. 
    Gilbert M, Cinardi G, Zhao Q, Tago D, Robinson T 2019. New global pig data in support of the African Swine Fever epidemics Harvard Dataverse, V. 1. https://doi.org/10.7910/DVN/JEV3WA

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error