Aging is characterized by an increasing morbidity and functional decline that eventually results in the death of an organism. Aging is the largest risk factor for numerous human diseases, and understanding the aging process may thereby facilitate the development of new treatments for age-associated diseases. The use of humans in aging research is complicated by many factors, including ethical issues; environmental and social factors; and perhaps most importantly, their long natural life span. Although cellular models of human disease provide valuable mechanistic information, they are limited in that they may not replicate the in vivo biology. Almost all organisms age, and thus animal models can be useful for studying aging. Herein, we review some of the major models currently used in aging research and discuss their benefits and pitfalls, including interventions known to extend life span and health span. Finally, we conclude by discussing the future of animal models in aging research.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Freid VM, Bernstein AB, Bush MA. 2012. Multiple chronic conditions among adults aged 45 and over: trends over the past 10 years. NCHS Data Brief 100:1–8 [Google Scholar]
  2. Alemayehu B, Warner KE. 2004. The lifetime distribution of health care costs. Health Serv. Res. 39:627–42 [Google Scholar]
  3. Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM et al. 2009. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460:392–95 [Google Scholar]
  4. Jia K, Chen D, Riddle DL. 2004. The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development 131:3897–906 [Google Scholar]
  5. Kaeberlein M, Powers RW 3rd, Steffen KK, Westman EA, Hu D et al. 2005. Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 310:1193–96 [Google Scholar]
  6. Kapahi P, Zid BM, Harper T, Koslover D, Sapin V, Benzer S. 2004. Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr. Biol. 14:885–90 [Google Scholar]
  7. Lamming DW, Ye L, Katajisto P, Goncalves MD, Saitoh M et al. 2012. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 335:1638–43 [Google Scholar]
  8. Cao K, Graziotto JJ, Blair CD, Mazzulli JR, Erdos MR et al. 2011. Rapamycin reverses cellular phenotypes and enhances mutant protein clearance in Hutchinson-Gilford progeria syndrome cells. Sci. Transl. Med. 3:89ra58 [Google Scholar]
  9. Scheibye-Knudsen M, Ramamoorthy M, Sykora P, Maynard S, Lin P-C et al. 2012. Cockayne syndrome group B protein prevents the accumulation of damaged mitochondria by promoting mitochondrial autophagy. J. Exp. Med. 209:855–69 [Google Scholar]
  10. Neff F, Flores-Dominguez D, Ryan DP, Horsch M, Schröder S et al. 2013. Rapamycin extends murine lifespan but has limited effects on aging. J. Clin. Investig. 123:3272–91 [Google Scholar]
  11. Rogina B, Helfand SL. 2004. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. PNAS 101:15998–6003 [Google Scholar]
  12. Kaeberlein M, McVey M, Guarente L. 1999. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 13:2570–80 [Google Scholar]
  13. Tissenbaum HA, Guarente L. 2001. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410:227–30 [Google Scholar]
  14. Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S et al. 2003. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425:191–96 [Google Scholar]
  15. Baur J, Pearson K, Price N, Jamieson H, Lerin C et al. 2006. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444:337–42 [Google Scholar]
  16. Fiori JL, Shin YK, Kim W, Krzysik-Walker SM, González-Mariscal I et al. 2013. Resveratrol prevents β-cell dedifferentiation in nonhuman primates given a high-fat/high-sugar diet. Diabetes 62:3500–13 [Google Scholar]
  17. Jimenez-Gomez Y, Mattison JA, Pearson KJ, Martin-Montalvo A, Palacios HH et al. 2013. Resveratrol improves adipose insulin signaling and reduces the inflammatory response in adipose tissue of rhesus monkeys on high-fat, high-sugar diet. Cell Metab. 18:533–45 [Google Scholar]
  18. Mattison J A, Wang M, Bernier M, Zhang J, Park S-S et al. 2014. Resveratrol prevents high fat/sucrose diet-induced central arterial wall inflammation and stiffening in nonhuman primates. Cell Metab. 20:183–90 [Google Scholar]
  19. Mitchell SJ, Martin-Montalvo A, Mercken EM, Palacios HH, Ward TM et al. 2014. The SIRT1 activator SRT1720 extends lifespan and improves health of mice fed a standard diet. Cell Rep. 6:836–43 [Google Scholar]
  20. Mercken EM, Mitchell SJ, Martin-Montalvo A, Minor RK, Almeida M et al. 2014. SRT2104 extends survival of male mice on a standard diet and preserves bone and muscle mass. Aging Cell 13:787–96 [Google Scholar]
  21. McCay CM, Maynard LA, Sperling G, Barnes LL. 1975. The Journal of Nutrition: retarded growth, life span, ultimate body size and age changes in the albino rat after feeding diets restricted in calories. Nutr. Rev. 33:241–43 [Google Scholar]
  22. Ward JM. 2006. Lymphomas and leukemias in mice. Exp. Toxicol. Pathol. 57:377–81 [Google Scholar]
  23. Tremblay ME, Zettel ML, Ison JR, Allen PD, Majewska AK. 2012. Effects of aging and sensory loss on glial cells in mouse visual and auditory cortices. Glia 60:541–58 [Google Scholar]
  24. Yuan R, Tsaih S-W, Petkova SB, De Evsikova CM, Xing S et al. 2009. Aging in inbred strains of mice: study design and interim report on median lifespans and circulating IGF1 levels. Aging Cell 8:277–87 [Google Scholar]
  25. Festing MF, Blackmore DK. 1971. Life span of specified-pathogen-free (MRC category 4) mice and rats. Lab. Anim. 5:179–92 [Google Scholar]
  26. Grubb SC, Bult CJ, Bogue MA. 2014. Mouse Phenome Database. Nucleic Acids Res. 42:D825–34 [Google Scholar]
  27. Chia R, Achilli F, Festing MFW, Fisher EMC. 2005. The origins and uses of mouse outbred stocks. Nat. Genet. 37:1181–86 [Google Scholar]
  28. Miller RA, Buehner G, Chang Y, Harper JM, Sigler R, Smith-Wheelock M. 2005. Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance. Aging Cell 4:119–25 [Google Scholar]
  29. Wolf NS, Penn PE, Jiang D, Fei RG, Pendergrass WR. 1995. Caloric restriction: conservation of in vivo cellular replicative capacity accompanies life-span extension in mice. Exp. Cell Res. 217:317–23 [Google Scholar]
  30. Martin B, Ji S, Maudsley S, Mattson MP. 2010. “Control” laboratory rodents are metabolically morbid: why it matters. PNAS 107:6127–33 [Google Scholar]
  31. Harper JM, Leathers CW, Austad SN. 2006. Does caloric restriction extend life in wild mice?. Aging Cell 5:441–49 [Google Scholar]
  32. Chrisp CE, Turke P, Luciano A, Swalwell S, Peterson J, Miller RA. 1996. Lifespan and lesions in genetically heterogeneous (four-way cross) mice: a new model for aging research. Vet. Pathol. 33:735–43 [Google Scholar]
  33. Miller RA, Harrison DE, Astle CM, Baur JA, Boyd AR et al. 2011. Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. J. Gerontol. A Biol. Sci. Med. Sci. 66:191–201 [Google Scholar]
  34. Flurkey K, Astle CM, Harrison DE. 2010. Life extension by diet restriction and N-acetyl-l-cysteine in genetically heterogeneous mice. J. Gerontol. A Biol. Sci. Med. Sci. 65A:1275–84 [Google Scholar]
  35. Kipling D, Davis T, Ostler EL, Faragher RG. 2004. What can progeroid syndromes tell us about human aging?. Science 305:1426–31 [Google Scholar]
  36. Huang S, Lee L, Hanson NB, Lenaerts C, Hoehn H et al. 2006. The spectrum of WRN mutations in Werner syndrome patients. Hum. Mutat. 27:558–67 [Google Scholar]
  37. Merideth MA, Gordon LB, Clauss S, Sachdev V, Smith AC et al. 2008. Phenotype and course of Hutchinson-Gilford progeria syndrome. N. Engl. J. Med. 358:592–604 [Google Scholar]
  38. Wang LL, Levy ML, Lewis RA, Chintagumpala MM, Lev D et al. 2001. Clinical manifestations in a cohort of 41 Rothmund-Thomson syndrome patients. Am. J. Med. Genet. 102:11–17 [Google Scholar]
  39. Kaneko H, Kondo N. 2004. Clinical features of Bloom syndrome and function of the causative gene, BLM helicase. Expert Rev. Mol. Diagn. 4:393–401 [Google Scholar]
  40. Cabanillas R, Cadiñanos J, Villameytide JA, Pérez M, Longo J et al. 2011. Nestor-Guillermo progeria syndrome: a novel premature aging condition with early onset and chronic development caused by BANF1 mutations. Am. J. Med. Genet. A 155A:2617–25 [Google Scholar]
  41. Dokal I. 2000. Dyskeratosis congenita in all its forms. Br. J. Haematol. 110:768–79 [Google Scholar]
  42. Verhagen MM, Martin JJ, van Deuren M, Ceuterick-de Groote C, Weemaes CM et al. 2012. Neuropathology in classical and variant ataxia-telangiectasia. Neuropathology 32:234–44 [Google Scholar]
  43. DiGiovanna JJ, Kraemer KH. 2012. Shining a light on xeroderma pigmentosum. J. Investig. Dermatol. 132:785–96 [Google Scholar]
  44. Nance MA, Berry SA. 1992. Cockayne syndrome: review of 140 cases. Am. J. Med. Genet. 42:68–84 [Google Scholar]
  45. Friedberg EC, Meira LB. 2006. Database of mouse strains carrying targeted mutations in genes affecting biological responses to DNA damage. DNA Repair 5:189–209 [Google Scholar]
  46. Huang S, Lee L, Hanson NB, Lenaerts C, Hoehn H et al. 2006. The spectrum of WRN mutations in Werner syndrome patients. Hum. Mutat. 27:558–67 [Google Scholar]
  47. Okabe E, Takemoto M, Onishi S, Ishikawa T, Ishibashi R et al. 2012. Incidence and characteristics of metabolic disorders and vascular complications in individuals with Werner syndrome in Japan. J. Am. Geriatr. Soc. 60:997–98 [Google Scholar]
  48. Lebel M, Leder P. 1998. A deletion within the murine Werner syndrome helicase induces sensitivity to inhibitors of topoisomerase and loss of cellular proliferative capacity. PNAS 95:13097–102 [Google Scholar]
  49. Lombard DB, Beard C, Johnson B, Marciniak RA, Dausman J et al. 2000. Mutations in the WRN gene in mice accelerate mortality in a p53-null background. Mol. Cell. Biol. 20:3286–91 [Google Scholar]
  50. Chang S, Multani AS, Cabrera NG, Naylor ML, Laud P et al. 2004. Essential role of limiting telomeres in the pathogenesis of Werner syndrome. Nat. Genet. 36:877–82 [Google Scholar]
  51. Musich PR, Zou Y. 2011. DNA-damage accumulation and replicative arrest in Hutchinson-Gilford progeria syndrome. Biochem. Soc. Trans. 39:1764–69 [Google Scholar]
  52. Merideth MA, Gordon LB, Clauss S, Sachdev V, Smith AC et al. 2008. Phenotype and course of Hutchinson-Gilford progeria syndrome. N. Engl. J. Med. 358:592–604 [Google Scholar]
  53. Fong LG, Frost D, Meta M, Qiao X, Yang SH et al. 2006. A protein farnesyltransferase inhibitor ameliorates disease in a mouse model of progeria. Science 311:1621–23 [Google Scholar]
  54. Varga R, Eriksson M, Erdos MR, Olive M, Harten I et al. 2006. Progressive vascular smooth muscle cell defects in a mouse model of Hutchinson-Gilford progeria syndrome. PNAS 103:3250–55 [Google Scholar]
  55. Yang SH, Meta M, Qiao X, Frost D, Bauch J et al. 2006. A farnesyltransferase inhibitor improves disease phenotypes in mice with a Hutchinson-Gilford progeria syndrome mutation. J. Clin. Investig. 116:2115–21 [Google Scholar]
  56. Sagelius H, Rosengardten Y, Schmidt E, Sonnabend C, Rozell B, Eriksson M. 2008. Reversible phenotype in a mouse model of Hutchinson-Gilford progeria syndrome. J. Med. Genet. 45:794–801 [Google Scholar]
  57. Calado RT, Young NS. 2009. Telomere diseases. N. Engl. J. Med. 361:2353–65 [Google Scholar]
  58. Blasco MA. 2007. Telomere length, stem cells and aging. Nat. Chem. Biol. 3:640–49 [Google Scholar]
  59. Blasco MA, Lee HW, Hande MP, Samper E, Lansdorp PM et al. 1997. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91:25–34 [Google Scholar]
  60. Liu Y, Snow BE, Hande MP, Yeung D, Erdmann NJ et al. 2000. The telomerase reverse transcriptase is limiting and necessary for telomerase function in vivo. Curr. Biol. 10:1459–62 [Google Scholar]
  61. Srettabunjong S, Satitsri S, Thongnoppakhun W, Tirawanchai N. 2014. The study on telomere length for age estimation in a Thai population. Am. J. Forensic Med. Pathol. 35:148–53 [Google Scholar]
  62. Svensson J, Karlsson MK, Ljunggren Ö, Tivesten Å, Mellström D, Movérare-Skrtic S. 2014. Leukocyte telomere length is not associated with mortality in older men. Exp. Gerontol. 57:6–12 [Google Scholar]
  63. Tedone E, Arosio B, Gussago C, Casati M, Ferri E et al. 2014. Leukocyte telomere length and prevalence of age-related diseases in semisupercentenarians, centenarians and centenarians' offspring. Exp. Gerontol. 58:90–95 [Google Scholar]
  64. Anttinen A, Koulu L, Nikoskelainen E, Portin R, Kurki T et al. 2008. Neurological symptoms and natural course of xeroderma pigmentosum. Brain 131:1979–89 [Google Scholar]
  65. Nakane H, Takeuchi S, Yuba S, Saijo M, Nakatsu Y et al. 1995. High incidence of ultraviolet-B-or chemical-carcinogen-induced skin tumours in mice lacking the xeroderma pigmentosum group A gene. Nature 377:165–68 [Google Scholar]
  66. Woods CG, Taylor AM. 1992. Ataxia telangiectasia in the British Isles: the clinical and laboratory features of 70 affected individuals. Q. J. Med. 82:169–79 [Google Scholar]
  67. Murai M, Enokido Y, Inamura N, Yoshino M, Nakatsu Y et al. 2001. Early postnatal ataxia and abnormal cerebellar development in mice lacking Xeroderma pigmentosum Group A and Cockayne syndrome Group B DNA repair genes. PNAS 98:13379–84 [Google Scholar]
  68. Brace LE, Vose SC, Vargas DF, Zhao S, Wang XP, Mitchell JR. 2013. Lifespan extension by dietary intervention in a mouse model of Cockayne syndrome uncouples early postnatal development from segmental progeria. Aging Cell 12:1144–47 [Google Scholar]
  69. Barlow C, Hirotsune S, Paylor R, Liyanage M, Eckhaus M et al. 1996. Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell 86:159–71 [Google Scholar]
  70. Xu Y, Baltimore D. 1996. Dual roles of ATM in the cellular response to radiation and in cell growth control. Genes Dev. 10:2401–10 [Google Scholar]
  71. Yamamoto K, Wang Y, Jiang W, Liu X, Dubois RL et al. 2012. Kinase-dead ATM protein causes genomic instability and early embryonic lethality in mice. J. Cell Biol. 198:305–13 [Google Scholar]
  72. Tian M, Shinkura R, Shinkura N, Alt FW. 2004. Growth retardation, early death, and DNA repair defects in mice deficient for the nucleotide excision repair enzyme XPF. Mol. Cell. Biol. 24:1200–5 [Google Scholar]
  73. McWhir J, Selfridge J, Harrison DJ, Squires S, Melton DW. 1993. Mice with DNA repair gene (ERCC-1) deficiency have elevated levels of p53, liver nuclear abnormalities and die before weaning. Nat. Genet. 5:217–24 [Google Scholar]
  74. Selfridge J, Hsia KT, Redhead NJ, Melton DW. 2001. Correction of liver dysfunction in DNA repair-deficient mice with an ERCC1 transgene. Nucleic Acids Res. 29:4541–50 [Google Scholar]
  75. Niedernhofer LJ, Garinis GA, Raams A, Lalai AS, Robinson AR et al. 2006. A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis. Nature 444:1038–43 [Google Scholar]
  76. Van Der Pluijm I, Garinis GA, Brandt RMC, Gorgels TGMF, Wijnhoven SW et al. 2007. Impaired genome maintenance suppresses the growth hormone-insulin-like growth factor 1 axis in mice with Cockayne syndrome. PLOS Biol. 5:23–38 [Google Scholar]
  77. Balaban RS, Nemoto S, Finkel T. 2005. Mitochondria, oxidants, and aging. Cell 120:483–95 [Google Scholar]
  78. Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT et al. 2004. Premature aging in mice expressing defective mitochondrial DNA polymerase. Nature 429:417–23 [Google Scholar]
  79. Ahlqvist KJ, Hamalainen RH, Yatsuga S, Uutela M, Terzioglu M et al. 2012. Somatic progenitor cell vulnerability to mitochondrial DNA mutagenesis underlies progeroid phenotypes in Polg mutator mice. Cell Metab. 15:100–9 [Google Scholar]
  80. Scheibye-Knudsen M, Scheibye-Alsing K, Canugovi C, Croteau DL, Bohr VA. 2013. A novel diagnostic tool reveals mitochondrial pathology in human diseases and aging. Aging 5:192–208 [Google Scholar]
  81. Schriner SE, Linford NJ, Martin GM, Treuting P, Ogburn CE et al. 2005. Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308:1909–11 [Google Scholar]
  82. Zhang Y, Ikeno Y, Qi W, Chaudhuri A, Li Y et al. 2009. Mice deficient in both Mn superoxide dismutase and glutathione peroxidase-1 have increased oxidative damage and a greater incidence of pathology but no reduction in longevity. J. Gerontol. A Biol. Sci. Med. Sci. 64:1212–20 [Google Scholar]
  83. McCay CM, Crowell MF, Maynard LA. 1935. The effect of retarded growth upon the length of life span and upon the ultimate body size. J. Nutr. 10:63–79 [Google Scholar]
  84. Orentreich N, Matias JR, DeFelice A, Zimmerman JA. 1993. Low methionine ingestion by rats extends life span. J. Nutr. 123:269–74 [Google Scholar]
  85. Swindell WR. 2012. Dietary restriction in rats and mice: a meta-analysis and review of the evidence for genotype-dependent effects on lifespan. Ageing Res. Rev. 11:254–70 [Google Scholar]
  86. Liao C-Y, Rikke BA, Johnson TE, Diaz V, Nelson JF. 2010. Genetic variation in the murine lifespan response to dietary restriction: from life extension to life shortening. Aging Cell 9:92–95 [Google Scholar]
  87. Turturro A, Witt WW, Lewis S, Hass BS, Lipman RD, Hart RW. 1999. Growth curves and survival characteristics of the animals used in the Biomarkers of Aging Program. J. Gerontol. A Biol. Sci. Med. Sci. 54:B492–501 [Google Scholar]
  88. Forster MJ, Morris P, Sohal RS. 2003. Genotype and age influence the effect of caloric intake on mortality in mice. FASEB J. 17:690–92 [Google Scholar]
  89. Bronson RT, Lipman RD. 1991. Reduction in rate of occurrence of age related lesions in dietary restricted laboratory mice. Growth Dev. Aging 55:169–84 [Google Scholar]
  90. Solon-Biet SM, McMahon AC, Ballard JW, Ruohonen K, Wu LE et al. 2014. The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice. Cell Metab. 19:418–30 [Google Scholar]
  91. Martin-Montalvo A, Mercken EM, Mitchell SJ, Palacios HH, Mote PL et al. 2013. Metformin improves healthspan and lifespan in mice. Nat. Commun. 4:2192 [Google Scholar]
  92. Miller RA, Chu Q, Xie J, Foretz M, Viollet B, Birnbaum MJ. 2013. Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature 494:256–60 [Google Scholar]
  93. Hubbard BP, Gomes AP, Dai H, Li J, Case AW et al. 2013. Evidence for a common mechanism of SIRT1 regulation by allosteric activators. Science 339:1216–19 [Google Scholar]
  94. Kanfi Y, Naiman S, Amir G, Peshti V, Zinman G et al. 2012. The sirtuin SIRT6 regulates lifespan in male mice. Nature 483:218–21 [Google Scholar]
  95. Strong R, Miller Richard A, Astle Clinton M, Floyd Robert A, Flurkey K et al. 2008. Nordihydroguaiaretic acid and aspirin increase lifespan of genetically heterogeneous male mice. Aging Cell 7:641–50 [Google Scholar]
  96. Lamming DW, Ye L, Astle CM, Baur JA, Sabatini DM, Harrison DE. 2013. Young and old genetically heterogeneous HET3 mice on a rapamycin diet are glucose intolerant but insulin sensitive. Aging Cell 12:712–18 [Google Scholar]
  97. Flurkey K, Papaconstantinou J, Miller RA, Harrison DE. 2001. Lifespan extension and delayed immune and collagen aging in mutant mice with defects in growth hormone production. PNAS 98:6736–41 [Google Scholar]
  98. Hsieh C-C, DeFord JH, Flurkey K, Harrison DE, Papaconstantinou J. 2002. Effects of the Pit1 mutation on the insulin signaling pathway: implications on the longevity of the long-lived Snell dwarf mouse. Mech. Ageing Dev. 123:1245–55 [Google Scholar]
  99. Bartke A, Brown-Borg H. 2004. Life extension in the dwarf mouse. Curr. Top. Dev. Biol. 63:189–225 [Google Scholar]
  100. Hauck SJ, Hunter WS, Danilovich N, Kopchick JJ, Bartke A. 2001. Reduced levels of thyroid hormones, insulin, and glucose, and lower body core temperature in the growth hormone receptor/binding protein knockout mouse. Exp. Biol. Med. 226:552–58 [Google Scholar]
  101. Hunter WS, Croson WB, Bartke A, Gentry MV, Meliska CJ. 1999. Low body temperature in long-lived Ames dwarf mice at rest and during stress. Physiol. Behav. 67:433–37 [Google Scholar]
  102. Romanick MA, Rakoczy SG, Brown-Borg HM. 2004. Long-lived Ames dwarf mouse exhibits increased antioxidant defense in skeletal muscle. Mech. Ageing Dev. 125:269–81 [Google Scholar]
  103. Ikeno Y, Bronson RT, Hubbard GB, Lee S, Bartke A. 2003. Delayed occurrence of fatal neoplastic diseases in Ames dwarf mice: correlation to extended longevity. J. Gerontol. A Biol. Sci. Med. Sci. 58:291–96 [Google Scholar]
  104. Bartke A, Masternak MM, Al-Regaiey KA, Bonkowski MS. 2007. Effects of dietary restriction on the expression of insulin-signaling-related genes in long-lived mutant mice. Interdiscip. Top. Gerontol. 35:69–82 [Google Scholar]
  105. Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T et al. 1997. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390:45–51 [Google Scholar]
  106. Kurosu H, Yamamoto M, Clark JD, Pastor JV, Nandi A et al. 2005. Suppression of aging in mice by the hormone Klotho. Science 309:1829–33 [Google Scholar]
  107. Masternak MM, Bartke A, Wang F, Spong A, Gesing A et al. 2012. Metabolic effects of intra-abdominal fat in GHRKO mice. Aging Cell 11:73–81 [Google Scholar]
  108. Bonkowski MS, Dominici FP, Arum O, Rocha JS, Al Regaiey KA et al. 2009. Disruption of growth hormone receptor prevents calorie restriction from improving insulin action and longevity. PLOS ONE 4:e4567 [Google Scholar]
  109. Bonkowski MS, Rocha JS, Masternak MM, Al Regaiey KA, Bartke A. 2006. Targeted disruption of growth hormone receptor interferes with the beneficial actions of calorie restriction. PNAS 103:7901–5 [Google Scholar]
  110. Muzumdar R, Allison DB, Huffman DM, Ma X, Atzmon G et al. 2008. Visceral adipose tissue modulates mammalian longevity. Aging Cell 7:438–40 [Google Scholar]
  111. Miller SJ, Watson WC, Kerr KA, Labarrere CA, Chen NX et al. 2007. Development of progressive aortic vasculopathy in a rat model of aging. Am. J. Physiol. Heart Circ. Physiol. 293:H2634–43 [Google Scholar]
  112. Shimokawa I, Higami Y, Hubbard GB, McMahan CA, Masoro EJ, Yu BP. 1993. Diet and the suitability of the male Fischer 344 rat as a model for aging research. J. Gerontol. 48:B27–32 [Google Scholar]
  113. Do Carmo S, Cuello AC. 2013. Modeling Alzheimer’s disease in transgenic rats. Mol. Neurodegener. 8:37 [Google Scholar]
  114. Cuenca N, Pinilla I, Sauve Y, Lu B, Wang S, Lund RD. 2004. Regressive and reactive changes in the connectivity patterns of rod and cone pathways of P23H transgenic rat retina. Neuroscience 127:301–17 [Google Scholar]
  115. Villegas-Perez MP, Lawrence JM, Vidal-Sanz M, Lavail MM, Lund RD. 1998. Ganglion cell loss in RCS rat retina: a result of compression of axons by contracting intraretinal vessels linked to the pigment epithelium. J. Comp. Neurol. 392:58–77 [Google Scholar]
  116. Masoro E. 2006. Dietary restriction-induced life extension: a broadly based biological phenomenon. Biogerontology 7:153–55 [Google Scholar]
  117. Weindruch R. 1996. The retardation of aging by caloric restriction: studies in rodents and primates. Toxicol. Pathol. 24:742–45 [Google Scholar]
  118. Yu BP, Masoro EJ, Murata I, Bertrand HA, Lynd FT. 1982. Life span study of SPF Fischer 344 male rats fed ad libitum or restricted diets: longevity, growth, lean body mass and disease. J. Gerontol. 37:130–41 [Google Scholar]
  119. Everitt AV, Seedsman NJ, Jones F. 1980. The effects of hypophysectomy and continuous food restriction, begun at ages 70 and 400 days, on collagen aging, proteinuria, incidence of pathology and longevity in the male rat. Mech. Ageing Dev. 12:161–72 [Google Scholar]
  120. Shimokawa I, Higami Y, Utsuyama M, Tuchiya T, Komatsu T et al. 2002. Life span extension by reduction in growth hormone-insulin-like growth factor-1 axis in a transgenic rat model. Am. J. Pathol. 160:2259–65 [Google Scholar]
  121. Smith DL, Elam CF, Mattison JA, Lane MA, Roth GS et al. 2010. Metformin supplementation and life span in Fischer-344 rats. J. Gerontol. A Biol. Sci. Med. Sci. 65:468–74 [Google Scholar]
  122. Minor RK, Smith DL Jr, Sossong AM, Kaushik S, Poosala S et al. 2010. Chronic ingestion of 2-deoxy-d-glucose induces cardiac vacuolization and increases mortality in rats. Toxicol. Appl. Pharmacol. 243:332–39 [Google Scholar]
  123. Schulz TJ, Zarse K, Voigt A, Urban N, Birringer M, Ristow M. 2007. Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab. 6:280–93 [Google Scholar]
  124. Jarvis JU. 1981. Eusociality in a mammal: cooperative breeding in naked mole-rat colonies. Science 212:571–73 [Google Scholar]
  125. Edrey YH, Hanes M, Pinto M, Mele J, Buffenstein R. 2011. Successful aging and sustained good health in the naked mole rat: a long-lived mammalian model for biogerontology and biomedical research. ILAR J. 52:41–53 [Google Scholar]
  126. Buffenstein R. 2008. Negligible senescence in the longest living rodent, the naked mole rat: insights from a successfully aging species. J. Comp. Physiol. B 178:439–45 [Google Scholar]
  127. Liang S, Mele J, Wu Y, Buffenstein R, Hornsby PJ. 2010. Resistance to experimental tumorigenesis in cells of a long-lived mammal, the naked mole-rat (Heterocephalus glaber). Aging Cell 9:626–35 [Google Scholar]
  128. Csiszar A, Labinskyy N, Zhao X, Hu F, Serpillon S et al. 2007. Vascular superoxide and hydrogen peroxide production and oxidative stress resistance in two closely related rodent species with disparate longevity. Aging Cell 6:783–97 [Google Scholar]
  129. Rao G, Xia E, Nadakavukaren MJ, Richardson A. 1990. Effect of dietary restriction on the age-dependent changes in the expression of antioxidant enzymes in rat liver. J. Nutr. 120:602–9 [Google Scholar]
  130. Bartke A. 2008. Insulin and aging. Cell Cycle 7:3338–43 [Google Scholar]
  131. Kramer B, Buffenstein R. 2004. The pancreas of the naked mole-rat (Heterocephalus glaber): an ultrastructural and immunocytochemical study of the endocrine component of thermoneutral and cold acclimated animals. Gen. Comp. Endocrinol. 139:206–14 [Google Scholar]
  132. Barzilai N, Banerjee S, Hawkins M, Chen W, Rossetti L. 1998. Caloric restriction reverses hepatic insulin resistance in aging rats by decreasing visceral fat. J. Clin. Investig. 101:1353–61 [Google Scholar]
  133. Azpurua J, Ke Z, Chen IX, Zhang Q, Ermolenko DN et al. 2013. Naked mole-rat has increased translational fidelity compared with the mouse, as well as a unique 28S ribosomal RNA cleavage. PNAS 110:17350–55 [Google Scholar]
  134. Rodriguez KA, Edrey YH, Osmulski P, Gaczynska M, Buffenstein R. 2012. Altered composition of liver proteasome assemblies contributes to enhanced proteasome activity in the exceptionally long-lived naked mole-rat. PLOS ONE 7:e35890 [Google Scholar]
  135. Zhao S, Lin L, Kan G, Xu C, Tang Q et al. 2014. High autophagy in the naked mole rat may play a significant role in maintaining good health. Cell. Physiol. Biochem. 33:321–32 [Google Scholar]
  136. Kim EB, Fang X, Fushan AA, Huang Z, Lobanov AV et al. 2011. Genome sequencing reveals insights into physiology and longevity of the naked mole rat. Nature 479:223–27 [Google Scholar]
  137. Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ et al. 2009. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325:201–4 [Google Scholar]
  138. Mattison JA, Roth GS, Beasley TM, Tilmont EM, Handy AM et al. 2012. Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature 489:318–21 [Google Scholar]
  139. Hulbert AJ. 2008. Explaining longevity of different animals: Is membrane fatty acid composition the missing link?. Age 30:89–97 [Google Scholar]
  140. Barja G, Cadenas S, Rojas C, Pérez-Campo R, López-Torres M. 1994. Low mitochondrial free radical production per unit O2 consumption can explain the simultaneous presence of high longevity and high aerobic metabolic rate in birds. Free Radic. Res. 21:317–27 [Google Scholar]
  141. Furness LJ, Speakman JR. 2008. Energetics and longevity in birds. Age 30:75–87 [Google Scholar]
  142. Bidder GP. 1932. Senescence. Br. Med. J. 2:583–85 [Google Scholar]
  143. Comfort A. 1963. Effect of delayed and resumed growth on the longevity of a fish (Lebistes reticulatus, Peters) in captivity. Gerontologia 49:150–55 [Google Scholar]
  144. Lepilina A, Coon AN, Kikuchi K, Holdway JE, Roberts RW et al. 2006. A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell 127:607–19 [Google Scholar]
  145. Gerhard GS. 2007. Small laboratory fish as models for aging research. Ageing Res. Rev. 6:64–72 [Google Scholar]
  146. Graf M, Cellerino A, Englert C. 2010. Gender separation increases somatic growth in females but does not affect lifespan in Nothobranchius furzeri. PLOS ONE 5:e11958 [Google Scholar]
  147. Terzibasi E, Valenzano DR, Cellerino A. 2007. The short-lived fish Nothobranchius furzeri as a new model system for aging studies. Exp. Gerontol. 42:81–89 [Google Scholar]
  148. Fast R, Schutt T, Toft N, Moller A, Berendt M. 2013. An observational study with long-term follow-up of canine cognitive dysfunction: clinical characteristics, survival, and risk factors. J. Vet. Intern. Med. 27:822–29 [Google Scholar]
  149. Freeman LM. 2012. Cachexia and sarcopenia: emerging syndromes of importance in cats and dogs. J. Vet. Intern. Med. 26:3–17 [Google Scholar]
  150. Kim SA, Lee KH, Won HY, Park S, Chung JH et al. 2013. Quantitative assessment of aortic elasticity with aging using velocity-vector imaging and its histologic correlation. Arterioscler. Thromb. Vasc. Biol. 33:1306–12 [Google Scholar]
  151. Selman C, Nussey DH, Monaghan P. 2013. Aging: It’s a dog’s life. Curr. Biol. 23:R451–53 [Google Scholar]
  152. Jucker M. 2010. The benefits and limitations of animal models for translational research in neurodegenerative diseases. Nat. Med. 16:1210–14 [Google Scholar]
  153. Borras D, Ferrer I, Pumarola M. 1999. Age-related changes in the brain of the dog. Vet. Pathol. 36:202–11 [Google Scholar]
  154. Gowan RA, Baral RM, Lingard AE, Catt MJ, Stansen W et al. 2012. A retrospective analysis of the effects of meloxicam on the longevity of aged cats with and without overt chronic kidney disease. J. Feline Med. Surg. 14:876–81 [Google Scholar]
  155. Reynolds BS, Chetboul V, Nguyen P, Testault I, Concordet DV et al. 2013. Effects of dietary salt intake on renal function: a 2-year study in healthy aged cats. J. Vet. Intern. Med. 27:507–15 [Google Scholar]
  156. Ryan JM, Lascelles BD, Benito J, Hash J, Smith SH et al. 2013. Histological and molecular characterisation of feline humeral condylar osteoarthritis. BMC Vet. Res. 9:110 [Google Scholar]
  157. Taylor EJ, Adams C, Neville R. 1995. Some nutritional aspects of ageing in dogs and cats. Proc. Nutr. Soc. 54:645–56 [Google Scholar]
  158. Hickey AJ, Jullig M, Aitken J, Loomes K, Hauber ME, Phillips AR. 2012. Birds and longevity: Does flight driven aerobicity provide an oxidative sink?. Ageing Res. Rev. 11:242–53 [Google Scholar]
  159. Braun EJ, Sweazea KL. 2008. Glucose regulation in birds. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 151:1–9 [Google Scholar]
  160. Holmes DJ, Thomson SL, Wu J, Ottinger MA. 2003. Reproductive aging in female birds. Exp. Gerontol. 38:751–56 [Google Scholar]
  161. Ottinger MA, Mobarak M, Abdelnabi M, Roth G, Proudman J, Ingram DK. 2005. Effects of calorie restriction on reproductive and adrenal systems in Japanese quail: Are responses similar to mammals, particularly primates?. Mech. Ageing Dev. 126:967–75 [Google Scholar]
  162. Breslow JL. 1996. Mouse models of atherosclerosis. Science 272:685–88 [Google Scholar]
  163. Gomes AC, Falcao-Pires I, Pires AL, Bras-Silva C, Leite-Moreira AF. 2013. Rodent models of heart failure: an updated review. Heart Fail. Rev. 18:219–49 [Google Scholar]
  164. Yang SH, Cheng PH, Banta H, Piotrowska-Nitsche K, Yang JJ et al. 2008. Towards a transgenic model of Huntington’s disease in a non-human primate. Nature 453:921–24 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error