The Genome 10K Project was established in 2009 by a consortium of biologists and genome scientists determined to facilitate the sequencing and analysis of the complete genomes of 10,000 vertebrate species. Since then the number of selected and initiated species has risen from ∼26 to 277 sequenced or ongoing with funding, an approximately tenfold increase in five years. Here we summarize the advances and commitments that have occurred by mid-2014 and outline the achievements and present challenges of reaching the 10,000-species goal. We summarize the status of known vertebrate genome projects, recommend standards for pronouncing a genome as sequenced or completed, and provide our present and future vision of the landscape of Genome 10K. The endeavor is ambitious, bold, expensive, and uncertain, but together the Genome 10K Consortium of Scientists and the worldwide genomics community are moving toward their goal of delivering to the coming generation the gift of genome empowerment for many vertebrate species.

Keyword(s): amphibianbirdfishgenomemammalreptile

Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Genome 10K Community Sci 2009. Genome 10K: a proposal to obtain whole-genome sequence for 10,000 vertebrate species. J. Hered 100:6659–74 [Google Scholar]
  2. Hayden EC. 2009. 10,000 genomes to come. Nature 462:726921 [Google Scholar]
  3. Pennisi E. 2009. No genome left behind. Science 326:5954794–95 [Google Scholar]
  4. Wong PB, Wiley EO, Johnson WE, Ryder OA, O’Brien SJ et al. 2012. Tissue sampling methods and standards for vertebrate genomics. GigaScience 1:8 [Google Scholar]
  5. Salzberg SL, Phillippy AM, Zimin A, Puiu D, Magoc T et al. 2012. GAGE: a critical evaluation of genome assemblies and assembly algorithms. Genome Res. 22:3557–67 [Google Scholar]
  6. Yandell M, Ence D. 2012. A beginner’s guide to eukaryotic genome annotation. Nat. Rev. Genet. 13:5329–42 [Google Scholar]
  7. Earl D, Bradnam K, St. John J, Darling A, Lin D et al. 2011. Assemblathon 1: a competitive assessment of de novo short read assembly methods. Genome Res. 21:122224–41 [Google Scholar]
  8. Bradnam KR, Fass JN, Alexandrov A, Baranay P, Bechner M et al. 2013. Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species. GigaScience 2:110 [Google Scholar]
  9. Azvolinsky A. 2014. Sequencing the tree of life. The Scientist April 24 [Google Scholar]
  10. Mardis ER. 2011. A decade’s perspective on DNA sequencing technology. Nature 470:7333198–203 [Google Scholar]
  11. Sboner A, Mu XJ, Greenbaum D, Auerbach RK, Gerstein MB. 2011. The real cost of sequencing: higher than you think!. Genome Biol. 12:8125 [Google Scholar]
  12. Hayden EC. 2014. The $1000 genome. Nature 507:7492294–95 [Google Scholar]
  13. Li R, Fan W, Tian G, Zhu H, He L et al. 2010. The sequence and de novo assembly of the giant panda genome. Nature 463:7279311–17 [Google Scholar]
  14. Venkatesh B, Lee AP, Ravi V, Maurya AK, Lian MM et al. 2014. Elephant shark genome provides unique insights into gnathostome evolution. Nature 505:7482174–79 [Google Scholar]
  15. Yim H-S, Cho YS, Guang X, Kang SG, Jeong J-Y et al. 2014. Minke whale genome and aquatic adaptation in cetaceans. Nat. Genet. 46:188–92 [Google Scholar]
  16. Bernardi G, Wiley EO, Mansour H, Miller MR, Orti G et al. 2012. The fishes of Genome 10K. Mar. Genomics 7:3–6 [Google Scholar]
  17. Schatz MC, Delcher AL, Salzberg SL. 2010. Assembly of large genomes using second-generation sequencing. Genome Res 20:1165–73 [Google Scholar]
  18. Schatz BMC, Langmead B. 2013. The DNA data deluge. IEEE Spectrum June 27 [Google Scholar]
  19. Warren WC, Hillier LW, Marshall Graves JA, Birney E, Ponting CP et al. 2008. Genome analysis of the platypus reveals unique signatures of evolution. Nature 453:7192175–83 [Google Scholar]
  20. Lewin HA, Larkin DM, Pontius J, O’Brien SJ. 2009. Every genome sequence needs a good map. Genome Res. 19:111925–28 [Google Scholar]
  21. Nagarajan N, Pop M. 2013. Sequence assembly demystified. Nat. Rev. Genet. 14:3157–67 [Google Scholar]
  22. Salzberg SL, Yorke JA. 2005. Beware of mis-assembled genomes. Bioinformatics 21:244320–21 [Google Scholar]
  23. Weisenfeld NI, Yin S, Sharpe T, Lau B, Hegarty R et al. 2014. Comprehensive variation discovery in single human genomes. Nat. Genet 46:1350–55 [Google Scholar]
  24. Clark SC, Egan R, Frazier PI, Wang Z. 2013. ALE: a generic assembly likelihood evaluation framework for assessing the accuracy of genome and metagenome assemblies. Bioinformatics 29:4435–43 [Google Scholar]
  25. Ghodsi M, Hill CM, Astrovskaya I, Lin H, Sommer DD et al. 2013. De novo likelihood-based measures for comparing genome assemblies. BMC Res. Notes 6:334 [Google Scholar]
  26. Rahman A, Pachter L. 2013. CGAL: computing genome assembly likelihoods. Genome Biol. 14:1R8 [Google Scholar]
  27. Alexeyenko A, Nystedt B, Vezzi F, Sherwood E, Ye R et al. 2014. Efficient de novo assembly of large and complex genomes by massively parallel sequencing of fosmid pools. BMC Genomics 15:1439 [Google Scholar]
  28. Huddleston J, Ranade S, Malig M, Antonacci F, Chaisson M et al. 2014. Reconstructing complex regions of genomes using long-read sequencing technology. Genome Res. 24:4688–96 [Google Scholar]
  29. Kuleshov V, Xie D, Chen R, Pushkarev D, Ma Z et al. 2014. Whole-genome haplotyping using long reads and statistical methods. Nat. Biotechnol. 32:3261–66 [Google Scholar]
  30. Chin C-S, Alexander DH, Marks P, Klammer AA, Drake J et al. 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10:563–69 [Google Scholar]
  31. Koren S, Harhay GP, Smith TP, Bono JL, Harhay DM et al. 2013. Reducing assembly complexity of microbial genomes with single-molecule sequencing. Genome Biol. 14:9R101 [Google Scholar]
  32. Roberts RJ, Carneiro MO, Schatz MC. 2013. The advantages of SMRT sequencing. Genome Biol. 14:6405 [Google Scholar]
  33. Koren S, Schatz MC, Walenz BP, Martin J, Howard JT et al. 2012. Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nat. Biotechnol. 30:7693–700 [Google Scholar]
  34. Lu S, Zong C, Fan W, Yang M, Li J et al. 2012. Probing meiotic recombination and aneuploidy of single sperm cells by whole-genome sequencing. Science 338:61141627–30 [Google Scholar]
  35. Wang J, Fan HC, Behr B, Quake SR. 2012. Genome-wide single-cell analysis of recombination activity and de novo mutation rates in human sperm. Cell 150:2402–12 [Google Scholar]
  36. Kirkness EF, Grindberg RV, Yee-Greenbaum J, Marshall CR, Scherer SW et al. 2013. Sequencing of isolated sperm cells for direct haplotyping of a human genome. Genome Res 23:826–32 [Google Scholar]
  37. Dong Y, Xie M, Jiang Y, Xiao N, Du X et al. 2013. Sequencing and automated whole-genome optical mapping of the genome of a domestic goat (Capra hircus). Nat. Biotechnol. 31:2135–41 [Google Scholar]
  38. Lam ET, Hastie A, Lin C, Ehrlich D, Das SK et al. 2012. Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly. Nat. Biotechnol. 30:8771–76 [Google Scholar]
  39. Hastie AR, Dong L, Smith A, Finklestein J, Lam ET et al. 2013. Rapid genome mapping in nanochannel arrays for highly complete and accurate de novo sequence assembly of the complex Aegilops tauschii genome. PLOS ONE 8:2e55864 [Google Scholar]
  40. Lin HC, Goldstein S, Mendelowitz L, Zhou S, Wetzel J et al. 2012. AGORA: assembly guided by optical restriction alignment. BMC Bioinform. 13:1189 [Google Scholar]
  41. Xue W, Li J-T, Zhu Y-P, Hou G-Y, Kong X-F et al. 2013. L_RNA_Scaffolder: scaffolding genomes with transcripts. BMC Genomics 14:1604 [Google Scholar]
  42. Kim J, Larkin DM, Cai Q, Asan, Zhang Y et al. 2013. Reference-assisted chromosome assembly. PNAS 110:51785–90 [Google Scholar]
  43. Bernstein BE, Birney E, Dunham I, Green ED, Gunter C, Snyder M. 2012. An integrated encyclopedia of DNA elements in the human genome. Nature 489:741457–74 [Google Scholar]
  44. Yu X, Sun S. 2013. Comparing a few SNP calling algorithms using low-coverage sequencing data. BMC Bioinform. 14:1274 [Google Scholar]
  45. Steijger T, Abril JF, Engström PG, Kokocinski F, Akerman M et al. 2013. Assessment of transcript reconstruction methods for RNA-seq. Nat. Methods 10:121177–84 [Google Scholar]
  46. Siepel A, Diekhans M, Brejová B, Langton L, Stevens M et al. 2007. Targeted discovery of novel human exons by comparative genomics. Genome Res. 17:121763–73 [Google Scholar]
  47. Alföldi J, Lindblad-Toh K. 2013. Comparative genomics as a tool to understand evolution and disease. Genome Res. 23:71063–68 [Google Scholar]
  48. Kellis M, Wold B, Snyder MP, Bernstein BE, Kundaje A et al. 2014. Defining functional DNA elements in the human genome. PNAS 111:176131–38 [Google Scholar]
  49. Flicek P, Amode MR, Barrell D, Beal K, Billis K et al. 2014. Ensembl 2014. Nucleic Acids Res. 42:Database IssueD749–55 [Google Scholar]
  50. Karolchik D, Barber GP, Casper J, Clawson H, Cline MS et al. 2014. The UCSC genome browser database: 2014 update. Nucleic Acids Res. 42:Database IssueD764–70 [Google Scholar]
  51. Earl D, Nguyen NK, Hickey G, Nguyen N, Harris RS et al. 2014. Alignathon : a competitive assessment of whole genome alignment methods. bioRxiv. http://dx.doi.org/10.1101/003285 [Crossref] [Google Scholar]
  52. Blanchette M, Kent WJ, Riemer C, Elnitski L, Smit AF et al. 2004. Aligning multiple genomic sequences with the threaded blockset aligner. Genome Res. 14:4708–15 [Google Scholar]
  53. Kim J, Ma J. 2011. PSAR: measuring multiple sequence alignment reliability by probabilistic sampling. Nucleic Acids Res. 39:156359–68 [Google Scholar]
  54. Paten B, Herrero J, Beal K, Birney E. 2009. Sequence progressive alignment, a framework for practical large-scale probabilistic consistency alignment. Bioinformatics 25:3295–301 [Google Scholar]
  55. Brenner S, Elgar G, Sandford R, MacRae A, Venkatesh B, Aparicio S. 1993. Characterization of the pufferfish (Fugu) genome as a compact model vertebrate genome. Nature 366:6452265–68 [Google Scholar]
  56. Aparicio S, Chapman J, Stupka E, Putnam N, Chia J-M et al. 2002. Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 297:55851301–10 [Google Scholar]
  57. Jaillon O, Aury J-M, Brunet F, Petit J-L, Stange-Thomann N et al. 2004. Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431:7011946–57 [Google Scholar]
  58. Kasahara M, Naruse K, Sasaki S, Nakatani Y, Qu W et al. 2007. The medaka draft genome and insights into vertebrate genome evolution. Nature 447:7145714–19 [Google Scholar]
  59. Jones FC, Grabherr MG, Chan YF, Russell P, Mauceli E et al. 2012. The genomic basis of adaptive evolution in threespine sticklebacks. Nature 484:739255–61 [Google Scholar]
  60. Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C et al. 2013. The zebrafish reference genome sequence and its relationship to the human genome. Nature 496:7446498–503 [Google Scholar]
  61. Schartl M, Walter RB, Shen Y, Garcia T, Catchen J et al. 2013. The genome of the platyfish, Xiphophorus maculatus, provides insights into evolutionary adaptation and several complex traits. Nat. Genet. 45:5567–72 [Google Scholar]
  62. Philip S, Machado JP, Maldonado E, Vasconcelos V, O’Brien SJ et al. 2012. Fish lateral line innovation: insights into the evolutionary genomic dynamics of a unique mechanosensory organ. Mol. Biol. Evol. 29:123887–98 [Google Scholar]
  63. Spaink HP, Jansen HJ, Dirks RP. 2014. Advances in genomics of bony fish. Brief. Funct. Genomics 13:2144–56 [Google Scholar]
  64. Köhler J, Vieites DR, Bonett RM, García FH, Glaw F et al. 2005. New amphibians and global conservation: a boost in species discoveries in a highly endangered vertebrate group. Bioscience 55:8693–96 [Google Scholar]
  65. Hellsten U, Harland RM, Gilchrist MJ, Hendrix D, Jurka J et al. 2010. The genome of the western clawed frog Xenopus tropicalis. Science 328:5978633–36 [Google Scholar]
  66. Gregory TR. 2003. Variation across amphibian species in the size of the nuclear genome supports a pluralistic, hierarchical approach to the C-value enigma. Biol. J. Linn. Soc. Lond. 79:2329–39 [Google Scholar]
  67. Dufresne F, Jeffery N. 2011. A guided tour of large genome size in animals: what we know and where we are heading. Chromosome Res. 19:7925–38 [Google Scholar]
  68. Gregory TR. 2005. The C-value enigma in plants and animals: a review of parallels and an appeal for partnership. Ann. Bot 95:1133–46 [Google Scholar]
  69. Sun C, Shepard DB, Chong RA, López Arriaza J, Hall K et al. 2012. LTR retrotransposons contribute to genomic gigantism in plethodontid salamanders. Genome Biol. Evol. 4:2168–83 [Google Scholar]
  70. Shine R. 2010. The ecological impact of invasive cane toads (Bufo marinus) in Australia. Q. Rev. Biol. 85:3253–91 [Google Scholar]
  71. Ryan MJ. 1985. The Túngara Frog: A Study in Sexual Selection and Communication Chicago: Univ. Chicago Press [Google Scholar]
  72. Callery EM, Fang H, Elinson RP. 2001. Frogs without polliwogs: evolution of anuran direct development. BioEssays 23:3233–41 [Google Scholar]
  73. Pfennig KS. 2007. Facultative mate choice drives adaptive hybridization. Science 318:5852965–67 [Google Scholar]
  74. Richards-Zawacki CL, Wang IJ, Summers K. 2012. Mate choice and the genetic basis for colour variation in a polymorphic dart frog: inferences from a wild pedigree. Mol. Ecol. 21:153879–92 [Google Scholar]
  75. Gagliardo R, Crump P, Griffith E, Mendelson J, Ross H, Zippel K. 2008. The principles of rapid response for amphibian conservation, using the programmes in Panama as an example. Int. Zoo Yearb. 42:1125–35 [Google Scholar]
  76. Vandebergh W, Bossuyt F. 2012. Radiation and functional diversification of alpha keratins during early vertebrate evolution. Mol. Biol. Evol. 29:3995–1004 [Google Scholar]
  77. Clarke BT. 1997. The natural history of amphibian skin secretions, their normal functioning and potential medical applications. Biol. Rev. Camb. Philos. Soc. 72:3365–79 [Google Scholar]
  78. La Marca E, Lips KR, Lötters S, Puschendorf R, Ibáñez R et al. 2005. Catastrophic population declines and extinctions in neotropical harlequin frogs (Bufonidae: Atelopus). Biotropica 37:2190–201 [Google Scholar]
  79. Savage AE, Zamudio KR. 2011. MHC genotypes associate with resistance to a frog-killing fungus. PNAS 108:4016705–10 [Google Scholar]
  80. Hedges SB, Vidal N. 2009. Lizards, snakes, and amphisbaenians (Squamata). The Timetree of Life Hedges SB, Kumar S. 383–89 Oxford: Oxford Univ. Press [Google Scholar]
  81. Sarre SD, Ezaz T, Georges A. 2011. Transitions between sex-determining systems in reptiles and amphibians. Annu. Rev. Genomics Hum. Genet. 12:391–406 [Google Scholar]
  82. O’Meally D, Ezaz T, Georges A, Sarre SD, Graves JAM. 2012. Are some chromosomes particularly good at sex? Insights from amniotes. Chromosome Res. 20:17–19 [Google Scholar]
  83. Vicoso B, Emerson JJ, Zektser Y, Mahajan S, Bachtrog D. 2013. Comparative sex chromosome genomics in snakes: differentiation, evolutionary strata, and lack of global dosage compensation. PLOS Biol. 11:8e1001643 [Google Scholar]
  84. Kearney M, Fujita MK, Ridenour J. 2009. Lost sex in the reptiles: constraints and correlations. Lost Sex: The Evolutionary Biology of Parthogenesis Schön I, Martens K, van Dijk P. 447–74 Dordrecht, Neth: Springer Sci. [Google Scholar]
  85. Fujita MK, Moritz C. 2009. Origin and evolution of parthenogenetic genomes in lizards: current state and future directions. Cytogenet. Genome Res. 127:2–4261–72 [Google Scholar]
  86. Organ CL, Moreno RG, Edwards SV. 2008. Three tiers of genome evolution in reptiles. Integr. Comp. Biol. 48:4494–504 [Google Scholar]
  87. Alföldi J, Di Palma F, Grabherr M, Williams C, Kong L et al. 2011. The genome of the green anole lizard and a comparative analysis with birds and mammals. Nature 477:7366587–91 [Google Scholar]
  88. Fujita MK, Edwards SV, Ponting CP. 2011. The Anolis lizard genome: an amniote genome without isochores. Genome Biol. Evol. 3:974–84 [Google Scholar]
  89. Eckalbar WL, Hutchins ED, Markov GJ, Allen AN, Corneveaux JJ et al. 2013. Genome reannotation of the lizard Anolis carolinensis based on 14 adult and embryonic deep transcriptomes. BMC Genomics 14:49 [Google Scholar]
  90. Castoe TA, de Koning APJ, Hall KT, Yokoyama KD, Gu W et al. 2011. Sequencing the genome of the Burmese python (Python molurus bivittatus) as a model for studying extreme adaptations in snakes. Genome Biol. 12:7406 [Google Scholar]
  91. Castoe TA, de Koning APJ, Hall KT, Card DC, Schield DR et al. 2013. The Burmese python genome reveals the molecular basis for extreme adaptation in snakes. PNAS 110:5120645–50 [Google Scholar]
  92. Vonk FJ, Casewell NR, Henkel CV, Heimberg AM, Jansen HJ et al. 2013. The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system. PNAS 110:5120651–56 [Google Scholar]
  93. Green RE, Braun EL, Armstrong J, Earl D, Nguyen N et al. 2014. Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs. Science 346:62151254449 [Google Scholar]
  94. Wan Q-H, Pan S-K, Hu L, Zhu Y, Xu P-W et al. 2013. Genome analysis and signature discovery for diving and sensory properties of the endangered Chinese alligator. Cell Res. 23:91091–105 [Google Scholar]
  95. Shaffer HB, Minx P, Warren DE, Shedlock AM, Thomson RC et al. 2013. The western painted turtle genome, a model for the evolution of extreme physiological adaptations in a slowly evolving lineage. Genome Biol. 14:3R28 [Google Scholar]
  96. Wang Z, Pascual-Anaya J, Zadissa A, Li W, Niimura Y et al. 2013. The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body plan. Nat. Genet. 45:6701–6 [Google Scholar]
  97. Fry BG, Roelants K, Champagne DE, Scheib H, Tyndall JDA et al. 2009. The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms. Annu. Rev. Genomics Hum. Genet. 10:483–511 [Google Scholar]
  98. Ezaz T, Quinn AE, Miura I, Sarre SD, Georges A, Marshall Graves JA. 2005. The dragon lizard Pogona vitticeps has ZZ/ZW micro-sex chromosomes. Chromosome Res. 13:8763–76 [Google Scholar]
  99. Quinn AE, Georges A, Sarre SD, Guarino F, Ezaz T, Marshall Graves JA. 2007. Temperature sex reversal implies sex gene dosage in a reptile. Science 316:5823411 [Google Scholar]
  100. Feduccia A. 1999. The Origin and Evolution of Birds New Haven, CT: Yale Univ. Press [Google Scholar]
  101. Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO. 2012. The global diversity of birds in space and time. Nature 491:444–48 [Google Scholar]
  102. Lee MSY, Cau A, Naish D, Dyke GJ. 2014. Morphological clocks in paleontology, and a mid-Cretaceous origin of crown. Aves. Syst. Biol 63:442–49 [Google Scholar]
  103. Int. Chicken Genome Seq. Consort 2004. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432:7018695–716 [Google Scholar]
  104. Dalloul RA, Long JA, Zimin AV, Aslam L, Beal K et al. 2010. Multi-platform next-generation sequencing of the domestic turkey (Meleagris gallopavo): genome assembly and analysis. PLOS Biol. 8:9e1000475 [Google Scholar]
  105. Warren WC, Clayton DF, Ellegren H, Arnold AP, Hillier LW et al. 2010. The genome of a songbird. Nature 464:7289757–62 [Google Scholar]
  106. Hackett SJ, Kimball RT, Reddy S, Bowie RCK, Braun EL et al. 2008. A phylogenomic study of birds reveals their evolutionary history. Science 320:58841763–68 [Google Scholar]
  107. Pacheco MA, Battistuzzi FU, Lentino M, Aguilar RF, Kumar S, Escalante AA. 2011. Evolution of modern birds revealed by mitogenomics: timing the radiation and origin of major orders. Mol. Biol. Evol. 28:61927–42 [Google Scholar]
  108. McCormack JE, Harvey MG, Faircloth BC, Crawford NG, Glenn TC, Brumfield RT. 2013. A phylogeny of birds based on over 1,500 loci collected by target enrichment and high-throughput sequencing. PLOS ONE 8:1e54848 [Google Scholar]
  109. Bonneaud C, Burnside J, Edwards SV. 2008. High-speed developments in avian genomics. Bioscience 58:7587 [Google Scholar]
  110. Zhang G, Li B, Li C, Gilbert MTP, Jarvis E et al. 2014. The avian phylogenomics project data. GigaScience Database http://dx.doi.org/10.5524/101000 [Crossref] [Google Scholar]
  111. O'Brien SJ, Haussler D, Ryder O. 2014. The birds of Genome10K. GigaScience 3:132 [Google Scholar]
  112. Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P et al. 2014. Whole genome analyses resolve early branches in the tree of life of modern birds. Science 346:62151320–31 [Google Scholar]
  113. Zhang G, Li C, Li Q, Li B, Larkin DM et al. 2014. Comparative genomics reveals insights into avian genome evolution and adaptation. Science 346:62151311–20 [Google Scholar]
  114. Lindblad-Toh K, Garber M, Zuk O, Lin MF, Parker BJ et al. 2011. A high-resolution map of human evolutionary constraint using 29 mammals. Nature 478:7370476–82 [Google Scholar]
  115. Johnson WE, Eizirik E, Pecon-Slattery J, Murphy WJ, Antunes A et al. 2006. The late miocene radiation of modern Felidae: a genetic assessment. Science 311:575773–77 [Google Scholar]
  116. Qiu Q, Zhang G, Ma T, Qian W, Wang J et al. 2012. The yak genome and adaptation to life at high altitude. Nat. Genet. 44:8946–49 [Google Scholar]
  117. Rogers J, Gibbs RA. 2014. Comparative primate genomics: emerging patterns of genome content and dynamics. Nat. Rev. Genet. 15:5347–59 [Google Scholar]
  118. Prado-Martinez J, Sudmant PH, Kidd JM, Li H, Kelley JL et al. 2013. Great ape genetic diversity and population history. Nature 499:7459471–75 [Google Scholar]
  119. Ellegren H, Smeds L, Burri R, Olason PI, Backström N et al. 2012. The genomic landscape of species divergence in Ficedula flycatchers. Nature 491:7426756–60 [Google Scholar]
  120. Seim I, Fang X, Xiong Z, Lobanov AV, Huang Z et al. 2013. Genome analysis reveals insights into physiology and longevity of the Brandt’s bat Myotis brandtii. Nat. Commun. 4:2212 [Google Scholar]
  121. Xu Y, Shao C, Fedorov VB, Goropashnaya AV, Barnes BM, Yan J. 2013. Molecular signatures of mammalian hibernation: comparisons with alternative phenotypes. BMC Genomics 14:1567 [Google Scholar]
  122. Steiner CC, Putnam AS, Hoeck PEA, Ryder OA. 2013. Conservation genomics of threatened animal species. Annu. Rev. Anim. Biosci. 1:1261–81 [Google Scholar]
  123. Miller W, Hayes VM, Ratan A, Petersen C, Wittekindt NE et al. 2012. Genetic diversity and population structure of the endangered marsupial Sarcophilus harrisii (Tasmanian devil). PNAS 108:3012348–53 [Google Scholar]
  124. Green RE, Krause J, Briggs AW, Maricic T, Stenzel U et al. 2010. A draft sequence of the Neandertal genome. Science 328:5979710–22 [Google Scholar]
  125. Rasmussen M, Li Y, Lindgreen S, Pedersen JS, Albrechtsen A et al. 2010. Ancient human genome sequence of an extinct Palaeo-Eskimo. Nature 463:7282757–62 [Google Scholar]
  126. Meyer M, Kircher M, Gansauge M-T, Li H, Racimo F et al. 2012. A high-coverage genome sequence from an archaic Denisovan individual. Science 338:6104222–26 [Google Scholar]
  127. Orlando L, Ginolhac A, Zhang G, Froese D, Albrechtsen A et al. 2013. Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature 499:745674–78 [Google Scholar]
  128. Hung C-M, Shaner P-JL, Zink RM, Liu W-C, Chu T-C et al. 2014. Drastic population fluctuations explain the rapid extinction of the passenger pigeon. PNAS 111:10636–41 [Google Scholar]
  129. Miller W, Drautz DI, Ratan A, Pusey B, Qi J et al. 2008. Sequencing the nuclear genome of the extinct woolly mammoth. Nature 456:7220387–90 [Google Scholar]
  130. Shapiro B, Hofreiter M. 2014. A paleogenomic perspective on evolution and gene function: new insights from ancient DNA. Science 343:61691236573 [Google Scholar]
  131. Chen S, Zhang G, Shao C, Huang Q, Liu G et al. 2014. Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle. Nat. Genet. 46:3253–60 [Google Scholar]
  132. Stein LD, Mungall C, Shu S, Caudy M, Mangone M et al. 2002. The Generic Genome Browser: a building block for a model organism system database. Genome Res. 12:101599–610 [Google Scholar]
  133. Skinner ME, Uzilov AV, Stein LD, Mungall CJ, Holmes IH. 2009. JBrowse: a next-generation genome browser. Genome Res. 19:91630–38 [Google Scholar]
  134. Raney BJ, Dreszer TR, Barber GP, Clawson H, Fujita PA et al. 2014. Track data hubs enable visualization of user-defined genome-wide annotations on the UCSC genome browser. Bioinformatics 30:71003–5 [Google Scholar]
  135. Mehta TK, Ravi V, Yamasaki S, Lee AP, Lian MM et al. 2013. Evidence for at least six hox clusters in the Japanese lamprey (Lethenteron japonicum). PNAS 110:4016044–49 [Google Scholar]
  136. Smith JJ, Kuraku S, Holt C, Sauka-Spengler T, Jiang N et al. 2013. Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution. Nat. Genet. 45:4415–21 [Google Scholar]
  137. Kai W, Kikuchi K, Tohari S, Chew AK, Tay A et al. 2011. Integration of the genetic map and genome assembly of fugu facilitates insights into distinct features of genome evolution in teleosts and mammals. Genome Biol. Evol. 3:424–42 [Google Scholar]
  138. Star B, Nederbragt AJ, Jentoft S, Grimholt U, Malmstrøm M et al. 2011. The genome sequence of Atlantic cod reveals a unique immune system. Nature 477:7363207–10 [Google Scholar]
  139. Henkel CV, Dirks RP, de Wijze DL, Minegishi Y, Aoyama J et al. 2012. First draft genome sequence of the Japanese eel, Anguilla japonica. Gene 511:2195–201 [Google Scholar]
  140. Nakamura Y, Mori K, Saitoh K, Oshima K, Mekuchi M et al. 2013. Evolutionary changes of multiple visual pigment genes in the complete genome of Pacific bluefin tuna. PNAS 110:2711061–66 [Google Scholar]
  141. Berthelot C, Brunet F, Chalopin D, Juanchich A, Bernard M et al. 2014. The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates. Nat. Commun. 5:3657 [Google Scholar]
  142. Gallant JR, Traeger LL, Volkening JD, Moffett H, Chen P-H et al. 2014. Genomic basis for the convergent evolution of electric organs. Science 344:61911522–25 [Google Scholar]
  143. Xu P, Zhang X, Wang X, Li J, Liu G et al. 2014. Genome sequence and genetic diversity of the common carp, Cyprinus carpio. Nat. Genet 46:111212–19 [Google Scholar]
  144. McGaugh SE, Gross JB, Aken B, Blin M, Borowsky R et al. 2014. The cavefish genome reveals candidate genes for eye loss. Nat. Commun 5:5307 [Google Scholar]
  145. Wu C, Zhang D, Kan M, Lv Z, Zhu A et al. 2014. The draft genome of the large yellow croaker reveals well-developed innate immunity. Nat. Commun 5:5227 [Google Scholar]
  146. You X, Bian C, Zan Q, Xu X, Liu X et al. 2014. Mudskipper genomes provide insights into the terrestrial adaptation of amphibious fishes. Nat. Commun 5:5594 [Google Scholar]
  147. Amemiya CT, Alföldi J, Lee AP, Fan S, Philippe H et al. 2013. The African coelacanth genome provides insights into tetrapod evolution. Nature 496:7445311–16 [Google Scholar]
  148. Nikaido M, Noguchi H, Nishihara H, Toyoda A, Suzuki Y et al. 2013. Coelacanth genomes reveal signatures for evolutionary transition from water to land. Genome Res. 23:101740–48 [Google Scholar]
  149. Gilbert C, Meik JM, Dashevsky D, Card DC, Castoe TA, Schaack S. 2014. Endogenous hepadnaviruses, bornaviruses and circoviruses in snakes. Proc. Biol. Sci 281:179120141122 [Google Scholar]
  150. Oleksyk TK, Pombert J-F, Siu D, Mazo-Vargas A, Ramos B et al. 2012. A locally funded Puerto Rican parrot (Amazona vittata) genome sequencing project increases avian data and advances young researcher education. GigaScience 1:114 [Google Scholar]
  151. Huang Y, Li Y, Burt DW, Chen H, Zhang Y et al. 2013. The duck genome and transcriptome provide insight into an avian influenza virus reservoir species. Nat. Genet. 45:7776–83 [Google Scholar]
  152. Seabury CM, Dowd SE, Seabury PM, Raudsepp T, Brightsmith DJ et al. 2013. A multi-platform draft de novo genome assembly and comparative analysis for the scarlet macaw (Ara macao). PLOS ONE 8:5e62415 [Google Scholar]
  153. Shapiro MD, Kronenberg Z, Li C, Domyan ET, Pan H et al. 2013. Genomic diversity and evolution of the head crest in the rock pigeon. Science 339:61231063–67 [Google Scholar]
  154. Kawahara-Miki R, Sano S, Nunome M, Shimmura T, Kuwayama T et al. 2013. Next-generation sequencing reveals genomic features in the Japanese quail. Genomics 101:6345–53 [Google Scholar]
  155. Zhan X, Pan S, Wang J, Dixon A, He J et al. 2013. Peregrine and saker falcon genome sequences provide insights into evolution of a predatory lifestyle. Nat. Genet. 45:5563–66 [Google Scholar]
  156. Rands CM, Darling A, Fujita M, Kong L, Webster MT et al. 2013. Insights into the evolution of Darwin’s finches from comparative analysis of the Geospiza magnirostris genome sequence. BMC Genomics 14:95 [Google Scholar]
  157. Ganapathy G, Howard JT, Ward JM, Li J, Li B et al. 2014. High-coverage sequencing and annotated assemblies of the budgerigar genome. GigaScience 3:11 [Google Scholar]
  158. Cai Q, Qian X, Lang Y, Luo Y, Xu J et al. 2013. Genome sequence of ground tit Pseudopodoces humilis and its adaptation to high altitude. Genome Biol. 14:3R29 [Google Scholar]
  159. Qu Y, Zhao H, Han N, Zhou G, Song G et al. 2013. Ground tit genome reveals avian adaptation to living at high altitudes in the Tibetan plateau. Nat. Commun. 4:May2071 [Google Scholar]
  160. Doyle JM, Katzner TE, Bloom PH, Ji Y, Wijayawardena BK, Dewoody JA. 2014. The genome sequence of a widespread apex predator, the golden eagle (Aquila chrysaetos). PLOS ONE 9:4e95599 [Google Scholar]
  161. Halley YA, Dowd SE, Decker JE, Seabury PM, Bhattarai E et al. 2014. A draft de novo genome assembly for the northern bobwhite (Colinus virginianus) reveals evidence for a rapid decline in effective population size beginning in the late Pleistocene. PLOS ONE 9:3e90240 [Google Scholar]
  162. Poelstra JW, Vijay N, Bossu CM, Lantz H, Ryll B et al. 2014. The genomic landscape underlying phenotypic integrity in the face of gene flow in crows. Science 344:61901410–14 [Google Scholar]
  163. Wang B, Ekblom R, Bunikis I, Siitari H, Höglund J. 2014. Whole genome sequencing of the black grouse (Tetrao tetrix): Reference guided assembly suggests faster-Z and MHC evolution. BMC Genomics 15:180 [Google Scholar]
  164. Callicrate T, Dikow R, Thomas JW, Mullikin JC, NISC Comp. Seq. Progr., et al. 2014. Genomic resources for the endangered Hawaiian honeycreepers. BMC Genomics 15:1098
  165. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ et al. 2001. The sequence of the human genome. Science 291:55071304–51 [Google Scholar]
  166. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC et al. 2001. Initial sequencing and analysis of the human genome. Nature 409:6822860–921 [Google Scholar]
  167. Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF et al. 2002. Initial sequencing and comparative analysis of the mouse genome. Nature 420:6915520–62 [Google Scholar]
  168. Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ et al. 2004. Genome sequence of the brown Norway rat yields insights into mammalian evolution. Nature 428:6982493–521 [Google Scholar]
  169. Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB et al. 2005. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438:7069803–19 [Google Scholar]
  170. Chimpanzee Seq. Anal. Consort 2005. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437:705569–87 [Google Scholar]
  171. Pontius JU, Mullikin JC, Smith DR, Lindblad-Toh K, Gnerre S et al. 2007. Initial sequence and comparative analysis of the cat genome. Genome Res. 17:111675–89 [Google Scholar]
  172. Gibbs RA, Rogers J, Katze MG, Bumgarner R, Weinstock GM et al. 2007. Evolutionary and biomedical insights from the rhesus macaque genome. Science 316:5822222–34 [Google Scholar]
  173. Yan G, Zhang G, Fang X, Zhang Y, Li C et al. 2011. Genome sequencing and comparison of two nonhuman primate animal models, the cynomolgus and Chinese rhesus macaques. Nat. Biotechnol. 29:111019–23 [Google Scholar]
  174. Mikkelsen TS, Wakefield MJ, Aken B, Amemiya CT, Chang JL et al. 2007. Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences. Nature 447:7141167–77 [Google Scholar]
  175. Elsik CG, Tellam RL, Worley KC. Bovine Genome Seq. Anal. Consort. 2009. The genome sequence of Taurine cattle: a window to ruminant biology and evolution. Science 324:5926522–28 [Google Scholar]
  176. Zimin AV, Delcher AL, Florea L, Kelley DR, Schatz MC et al. 2009. A whole-genome assembly of the domestic cow, Bos taurus. Genome Biol. 10:4R42 [Google Scholar]
  177. Wade CM, Giulotto E, Sigurdsson S, Zoli M, Gnerre S et al. 2009. Genome sequence, comparative analysis, and population genetics of the domestic horse. Science 326:5954865–67 [Google Scholar]
  178. Huang J, Zhao Y, Shiraigol W, Li B, Bai D et al. 2014. Analysis of horse genomes provides insight into the diversification and adaptive evolution of karyotype. Sci. Rep. 4:4958 [Google Scholar]
  179. Archibald AL, Cockett NE, Dalrymple BP, Faraut T, Kijas JW et al. 2010. The sheep genome reference sequence: a work in progress. Anim. Genet 41:5449–53 [Google Scholar]
  180. Jiang Y, Xie M, Chen W, Talbot R, Maddox JF et al. 2014. The sheep genome illuminates biology of the rumen and lipid metabolism. Science 344:61881168–73 [Google Scholar]
  181. Xu X, Nagarajan H, Lewis NE, Pan S, Cai Z et al. 2011. The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line. Nat. Biotechnol. 29:8735–41 [Google Scholar]
  182. Brinkrolf K, Rupp O, Laux H, Kollin F, Ernst W et al. 2013. Chinese hamster genome sequenced from sorted chromosomes. Nat. Biotechnol. 31:8694–95 [Google Scholar]
  183. Lewis NE, Liu X, Li Y, Nagarajan H, Yerganian G et al. 2013. Genomic landscapes of Chinese hamster ovary cell lines as revealed by the Cricetulus griseus draft genome. Nat. Biotechnol. 31:8759–65 [Google Scholar]
  184. Kim EB, Fang X, Fushan AA, Huang Z, Lobanov AV et al. 2011. Genome sequencing reveals insights into physiology and longevity of the naked mole rat. Nature 479:7372223–27 [Google Scholar]
  185. Higashino A, Sakate R, Kameoka Y, Takahashi I, Hirata M et al. 2012. Whole-genome sequencing and analysis of the Malaysian cynomolgus macaque (Macaca fascicularis) genome. Genome Biol. 13:7R58 [Google Scholar]
  186. Renfree MB, Papenfuss AT, Deakin JE, Lindsay J, Heider T et al. 2011. Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development. Genome Biol. 12:8R81 [Google Scholar]
  187. Seabury CM, Bhattarai EK, Taylor JF, Viswanathan GG, Cooper SM et al. 2011. Genome-wide polymorphism and comparative analyses in the white-tailed deer (Odocoileus virginianus): a model for conservation genomics. PLOS ONE 6:1e15811 [Google Scholar]
  188. Locke DP, Hillier LW, Warren WC, Worley KC, Nazareth LV et al. 2011. Comparative and demographic analysis of orang-utan genomes. Nature 469:7331529–33 [Google Scholar]
  189. Murchison EP, Schulz-Trieglaff OB, Ning Z, Alexandrov LB, Bauer MJ et al. 2012. Genome sequencing and analysis of the Tasmanian devil and its transmissible cancer. Cell 148:4780–91 [Google Scholar]
  190. Wu H, Guang X, Al-Fageeh MB, Cao J, Pan S et al. 2014. Camelid genomes reveal evolution and adaptation to desert environments. Nat. Commun 5:5188 [Google Scholar]
  191. Canavez FC, Luche DD, Stothard P, Leite KRM, Sousa-Canavez JM et al. 2012. Genome sequence and assembly of Bos indicus. J. Hered. 103:3342–48 [Google Scholar]
  192. Bactrian Camels Genome Seq. Anal. Consort 2012. Genome sequences of wild and domestic Bactrian camels. Nat. Commun. 3:1202 [Google Scholar]
  193. Perry GH, Reeves D, Melsted P, Ratan A, Miller W et al. 2012. A genome sequence resource for the aye-aye (Daubentonia madagascariensis), a nocturnal lemur from Madagascar. Genome Biol. Evol. 4:2126–35 [Google Scholar]
  194. Perry GH, Louis EE, Ratan A, Bedoya-Reina OC, Burhans RC et al. 2013. Aye-aye population genomic analyses highlight an important center of endemism in northern Madagascar. PNAS 110:155823–28 [Google Scholar]
  195. Scally A, Dutheil JY, Hillier LW, Jordan GE, Goodhead I et al. 2012. Insights into hominid evolution from the gorilla genome sequence. Nature 483:7388169–75 [Google Scholar]
  196. Zhang G, Cowled C, Shi Z, Huang Z, Bishop-Lilly KA et al. 2013. Comparative analysis of bat genomes provides insight into the evolution of flight and immunity. Science 339:6118456–60 [Google Scholar]
  197. Prüfer K, Munch K, Hellmann I, Akagi K, Miller JR et al. 2012. The bonobo genome compared with the chimpanzee and human genomes. Nature 486:7404527–31 [Google Scholar]
  198. Fang X, Mou Y, Huang Z, Li Y, Han L et al. 2012. The sequence and analysis of a Chinese pig genome. GigaScience 1:116 [Google Scholar]
  199. Groenen MAM, Archibald AL, Uenishi H, Tuggle CK, Takeuchi Y et al. 2012. Analyses of pig genomes provide insight into porcine demography and evolution. Nature 491:7424393–98 [Google Scholar]
  200. Parker J, Tsagkogeorga G, Cotton JA, Liu Y, Provero P et al. 2013. Genome-wide signatures of convergent evolution in echolocating mammals. Nature 502:7470228–31 [Google Scholar]
  201. Zhou X, Sun F, Xu S, Fan G, Zhu K et al. 2013. Baiji genomes reveal low genetic variability and new insights into secondary aquatic adaptations. Nat. Commun. 4:2708 [Google Scholar]
  202. Cho YS, Hu L, Hou H, Lee H, Xu J et al. 2013. The tiger genome and comparative analysis with lion and snow leopard genomes. Nat. Commun. 4:May2433 [Google Scholar]
  203. Ge R-L, Cai Q, Shen Y-Y, San A, Ma L et al. 2013. Draft genome sequence of the Tibetan antelope. Nat. Commun. 4:May1858 [Google Scholar]
  204. Fan Y, Huang Z-Y, Cao C-C, Chen C-S, Chen Y-X et al. 2013. Genome of the Chinese tree shrew. Nat. Commun. 4:1426 [Google Scholar]
  205. Marmoset Genome Seq. Anal. Consort. 2014. The common marmoset genome provides insight into primate biology and evolution. Nat. Genet. 46:850–57 [Google Scholar]
  206. Fan Z, Zhao G, Li P, Osada N, Xing J et al. 2014. Whole-genome sequencing of Tibetan macaque (Macaca thibetana) provides new insight into the macaque evolutionary history. Mol. Biol. Evol. 31:61475–89 [Google Scholar]
  207. Fang X, Nevo E, Han L, Levanon EY, Zhao J et al. 2014. Genome-wide adaptive complexes to underground stresses in blind mole rats Spalax. Nat. Commun. 5:3966 [Google Scholar]
  208. Liu S, Lorenzen ED, Fumagalli M, Li B, Harris K et al. 2014. Population genomics reveal recent speciation and rapid evolutionary adaptation in polar bears. Cell 157:4785–94 [Google Scholar]
  209. Carbone L, Harris RA, Gnerre S, Veeramah KR, Lorente-Galdos B et al. 2014. Gibbon genome and the fast karyotype evolution of small apes. Nature 513:7517195–201 [Google Scholar]
  210. Zhou X, Wang B, Pan Q, Zhang J, Kumar S et al. 2014. Whole-genome sequencing of the snub-nosed monkey provides insights into folivory and evolutionary history. Nat. Genet 46:121303–10 [Google Scholar]
  211. Gnerre S, MacCallum I, Przybylski D, Ribeiro FJ, Burton JN et al. 2011. High-quality draft assemblies of mammalian genomes from massively parallel sequence data. PNAS 108:41513–18 [Google Scholar]
  212. Luo R, Liu B, Xie Y, Li Z, Huang W et al. 2012. Soapdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience 1:118 [Google Scholar]
  213. Burge C, Karlin S. 1997. Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268:178–94 [Google Scholar]
  214. Stanke M, Keller O, Gunduz I, Hayes A, Waack S, Morgenstern B. 2006. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res 34:W435–39 [Google Scholar]
  215. Deleted in proof.
  216. Birney E, Clamp M, Durbin R. 2004. Genewise and Genomewise. Genome Res. 14:5988–95 [Google Scholar]
  217. Slater GSC, Birney E. 2005. Automated generation of heuristics for biological sequence comparison. BMC Bioinform. 6:31 [Google Scholar]
  218. Kapustin Y, Souvorov A, Tatusova T, Lipman D. 2008. Splign: algorithms for computing spliced alignments with identification of paralogs. Biol. Direct 3:20 [Google Scholar]
  219. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:162078–79 [Google Scholar]
  220. Danecek P, Auton A, Abecasis G, Albers CA, Banks E et al. 2011. The variant call format and VCFtools. Bioinformatics 27:152156–58 [Google Scholar]
  221. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K et al. 2010. The genome analysis toolkit : a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20:91297–303 [Google Scholar]
  222. Chen K, Wallis JW, McLellan MD, Larson DE, Kalicki JM et al. 2013. BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. Nat. Methods 6:9677–81 [Google Scholar]
  223. Hormozdiari F, Hajirasouliha I, Dao P, Hach F, Yorukoglu D et al. 2010. Next-generation VariationHunter: combinatorial algorithms for transposon insertion discovery. Bioinformatics 26:12i350–57 [Google Scholar]
  224. Iqbal Z, Caccamo M, Turner I, Flicek P, McVean G. 2012. De novo assembly and genotyping of variants using colored de Bruijn graphs. Nat. Genet. 44:2226–32 [Google Scholar]
  225. Nijkamp JF, van den Broek MA, Geertman J-MA, Reinders MJT, Daran J-MG, de Ridder D. 2012. De novo detection of copy number variation by co-assembly. Bioinformatics 28:243195–202 [Google Scholar]
  226. Alkan C, Kidd JM, Marques-Bonet T, Aksay G, Antonacci F et al. 2009. Personalized copy number and segmental duplication maps using next-generation sequencing. Nat. Genet. 41:101061–67 [Google Scholar]
  227. Klambauer G, Schwarzbauer K, Mayr A, Clevert DA, Mitterecker A et al. 2012. Cn.MOPS: mixture of Poissons for discovering copy number variations in next-generation sequencing data with a low false discovery rate. Nucleic Acids Res. 40:9e69 [Google Scholar]
  228. Morgulis A, Gertz EM, Schäffer AA, Agarwala R. 2006. WindowMasker: window-based masker for sequenced genomes. Bioinformatics 22:2134–41 [Google Scholar]
  229. Benson G. 1999. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27:2573–80 [Google Scholar]
  230. Morgulis A, Gertz EM, Schäffer AA, Agarwala R. 2006. A fast and symmetric dust implementation to mask low-complexity DNA sequences. J. Comput. Biol. 13:51028–40 [Google Scholar]
  231. Deleted in proof.
  232. Thiel T, Michalek W, Varshney RK, Graner A. 2003. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare l.). Theor. Appl. Genet. 106:3411–22 [Google Scholar]
  233. Wang X, Lu P, Luo Z. 2013. GMATo: a novel tool for the identification and analysis of microsatellites in large genomes. Bioinformation 9:10541–44 [Google Scholar]
  234. Sperber GO, Airola T, Jern P, Blomberg J. 2007. Automated recognition of retroviral sequences in genomic data–RetroTector©. Nucleic Acids Res. 35:154964–76 [Google Scholar]
  235. McCarthy EM, McDonald JF. 2003. LTR_STRUC: a novel search and identification program for LTR retrotransposons. Bioinformatics 19:3362–67 [Google Scholar]
  236. Xu Z, Wang H. 2007. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res 35:W265–68 [Google Scholar]
  237. Ellinghaus D, Kurtz S, Willhoeft U. 2008. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinform. 9:118 [Google Scholar]
  238. Jiang Z, Hubley R, Smit A, Eichler EE. 2008. DupMasker: a tool for annotating primate segmental duplications. Genome Res. 18:81362–68 [Google Scholar]
  239. Deleted in proof.
  240. Huang T-H, Fan B, Rothschild MF, Hu Z-L, Li K, Zhao S-H. 2007. MiRFinder: an improved approach and software implementation for genome-wide fast microRNA precursor scans. BMC Bioinform. 8:341
  241. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ. 2008. MiRBase: tools for microRNA genomics. Nucleic Acids Res. 36:D154–58 [Google Scholar]
  242. Lorenz R, Bernhart SH, Höner zu Siederdissen C, Tafer H, Flamm C et al. 2011. ViennaRNA package 2.0. Algorithms Mol. Biol. 6:26 [Google Scholar]
  243. Deleted in proof.
  244. Krueger F, Andrews SR. 2011. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 27:111571–72 [Google Scholar]
  245. Chen P, Cokus SJ, Pellegrini M. 2010. BS seeker: precise mapping for bisulfite sequencing software. BMC Bioinform. 11:203 [Google Scholar]
  246. Guo W, Fiziev P, Yan W, Cokus S, Sun X et al. 2013. BS-Seeker2: a versatile aligning pipeline for bisulfite sequencing data. BMC Genomics 14:1774 [Google Scholar]
  247. Souaiaia T, Zhang Z, Chen T. 2013. FadE: whole genome methylation analysis for multiple sequencing platforms. Nucleic Acids Res. 41:1e14 [Google Scholar]
  248. Deleted in proof.
  249. Deleted in proof.
  250. De Bie T, Cristianini N, Demuth JP, Hahn MW. 2006. CAFÉ: a computational tool for the study of gene family evolution. Bioinformatics 22:101269–71 [Google Scholar]
  251. Han MV, Thomas GWC, Lugo-Martinez J, Hahn MW. 2013. Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFÉ 3. Mol. Biol. Evol. 30:81987–97 [Google Scholar]
  252. Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M et al. 2005. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15:81034–50 [Google Scholar]
  253. Deleted in proof.
  254. Garber M, Guttman M, Clamp M, Zody MC, Friedman N, Xie X. 2009. Identifying novel constrained elements by exploiting biased substitution patterns. Bioinformatics 25:12i54–62 [Google Scholar]
  255. Yang Z. 2007. PAML 4: Phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24:81586–91 [Google Scholar]
  256. Antao T, Lopes A, Lopes RJ, Beja-Pereira A, Luikart G. 2008. LOSITAN: a workbench to detect molecular adaptation based on a Fst-outlier method. BMC Bioinform. 9:323 [Google Scholar]
  257. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR et al. 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81:3559–75 [Google Scholar]
  258. Gautier M, Vitalis R. 2012. rehh: an R package to detect footprints of selection in genome-wide SNP data from haplotype structure. Bioinformatics 28:81176–77 [Google Scholar]
  259. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA et al. 2011. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat. Biotechnol. 29:7644–52 [Google Scholar]
  260. Trapnell C, Pachter L, Salzberg SL. 2009. TopHat: discovering splice junctions with RNA-seq. Bioinformatics 25:91105–11 [Google Scholar]
  261. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C et al. 2013. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:115–21 [Google Scholar]
  262. Murphy WJ, Larkin DM, Everts-van der Wind A, Bourque G, Tesler G et al. 2005. Dynamics of mammalian chromosome evolution inferred from multispecies comparative maps. Science 309:5734613–17 [Google Scholar]
  263. Larkin DM, Pape G, Donthu R, Auvil L, Welge M, Lewin HA. 2009. Breakpoint regions and homologous synteny blocks in chromosomes have different evolutionary histories. Genome Res. 19:5770–77 [Google Scholar]
  264. Grabherr MG, Russell P, Meyer M, Mauceli E, Alföldi J et al. 2010. Genome-wide synteny through highly sensitive sequence alignment: Satsuma. Bioinformatics 26:91145–51 [Google Scholar]
  265. Soderlund C, Nelson W, Shoemaker A, Paterson A. 2006. SyMAP: a system for discovering and viewing syntenic regions of FPC maps. Genome Res. 16:91159–68 [Google Scholar]
  266. Harris RS. 2007. Improved pairwise alignment of genomic DNA. PhD Thesis, Pa. State Univ.
  267. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH et al. 2002. The human genome browser at UCSC. Genome Res. 12:6996–1006 [Google Scholar]
  268. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES et al. 2011. Integrative genomics viewer. Nat. Biotechnol. 29:124–26 [Google Scholar]
  269. Thorvaldsdóttir H, Robinson JT, Mesirov JP. 2013. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief. Bioinform. 14:2178–92 [Google Scholar]
  270. Zhao M, Wang Q, Wang Q, Jia P, Zhao Z. 2013. Computational tools for copy number variation (CNV) detection using next-generation sequencing data: features and perspectives. BMC Bioinform 14:Suppl. 11S1 [Google Scholar]
  271. Merkel A, Gemmell N. 2008. Detecting short tandem repeats from genome data: opening the software black box. Brief. Bioinform. 9:5355–66 [Google Scholar]
  272. Lim KG, Kwoh CK, Hsu LY, Wirawan A. 2013. Review of tandem repeat search tools: a systematic approach to evaluating algorithmic performance. Brief. Bioinform. 14:167–81 [Google Scholar]
  273. Oleksyk TK, Smith MW, O’Brien SJ. 2010. Genome-wide scans for footprints of natural selection. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365:1537185–205 [Google Scholar]
  274. Scheinfeldt LB, Tishkoff SA. 2013. Recent human adaptation: genomic approaches, interpretation and insights. Nat. Rev. Genet. 14:10692–702 [Google Scholar]
  275. Davidson WS, Koop BF, Jones SJM, Iturra P, Vidal R et al. 2010. Sequencing the genome of the Atlantic salmon (Salmo salar). Genome Biol. 11:9403 [Google Scholar]
  276. Hedges SB, Kumar S. 2009. The Timetree of Life New York: Oxford Univ. Press [Google Scholar]
  277. Dickinson EC, Remsen JV Jr. 2013. The Howard and Moore Complete Checklist of the Birds of the World Eastbourne, UK: Aves Press, 4th ed.. [Google Scholar]
  278. Mitchell KJ, Llamas B, Soubrier J, Rawlence NJ, Worthy TH et al. 2014. Ancient DNA reveals elephant birds and kiwi are sister taxa and clarifies ratite bird evolution. Science 344:898–900 [Google Scholar]
  279. Cox DR, Burmeister M, Price ER, Kim S, Myers RM. 1990. Radiation hybrid mapping: a somatic cell genetic method for constructing high-resolution maps of mammalian chromosomes. Science 250:4978245–50 [Google Scholar]
  280. Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM et al. 2010. A map of human genome variation from population-scale sequencing. Nature 467:73191061–73 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error