- Home
- A-Z Publications
- Annual Review of Animal Biosciences
- Previous Issues
- Volume 8, 2020
Annual Review of Animal Biosciences - Volume 8, 2020
Volume 8, 2020
-
-
A Beautiful Life: High Risk–High Payoff in Genetic Science
Vol. 8 (2020), pp. 1–24More LessThis narrative is a personal view of adventures in genetic science and society that have blessed my life and career across five decades. The advances I enjoyed and the lessons I learned derive from educational training, substantial collaboration, and growing up in the genomics age. I parse the stories into six research disciplines my students, fellows, and colleagues have entered and, in some cases, made an important difference. The first is comparative genetics, where evolutionary inference is applied to genome organization, from building gene maps in the 1970s to building whole genome sequences today. The second area tracks the progression of molecular evolutionary advances and applications to resolve the hierarchical relationship among living species in the silence of prehistory. The third endeavor outlines the birth and maturation of genetic studies and application to species conservation. The fourth theme discusses how emerging viruses studied in a genomic sense opened our eyes to host–pathogen interaction and interdependence. The fifth research emphasis outlines the population genetic–based search and discovery of human restriction genes that influence the epidemiological outcome of abrupt outbreaks, notably HIV–AIDS and several cancers. Finally, the last arena explored illustrates how genetic individualization in human and animals has improved forensic evidence in capital crimes. Each discipline has intuitive and technological overlaps, and each has benefitted from the contribution of genetic and genomic principles I learned so long ago from Drosophila. The journey continues.
-
-
-
Evolution of Marsupial Genomes
Vol. 8 (2020), pp. 25–45More LessMarsupial genomes, which are packaged into large chromosomes, provide a powerful resource for studying the mechanisms of genome evolution. The extensive and valuable body of work on marsupial cytogenetics, combined more recently with genome sequence data, has enabled prediction of the 2n = 14 karyotype ancestral to all marsupial families. The application of both chromosome biology and genome sequencing, or chromosomics, has been a necessary approach for various aspects of mammalian genome evolution, such as understanding sex chromosome evolution and the origin and evolution of transmissible tumors in Tasmanian devils. The next phase of marsupial genome evolution research will employ chromosomics approaches to begin addressing fundamental questions in marsupial genome evolution and chromosome evolution more generally. The answers to these complex questions will impact our understanding across a broad range of fields, including the genetics of speciation, genome adaptation to environmental stressors, and species management.
-
-
-
The Genetics and Epigenetics of Sex Change in Fish
Vol. 8 (2020), pp. 47–69More LessFish show extraordinary sexual plasticity, changing sex naturally as part of their life cycle or reversing sex because of environmental stressors. This plasticity shows that sexual fate is not an irreversible process but the result of an ongoing tug-of-war for supremacy between male and female signaling networks. The behavioral, gonadal, and morphological changes involved in this process are well described, yet the molecular events that underpin those changes remain poorly understood. Epigenetic modifications emerge as a critical link between environmental stimuli, the onset of sex change, and subsequent maintenance of sexual phenotype. Here we synthesize current knowledge of sex change, focusing on the genetic and epigenetic processes that are likely involved in the initiation and regulation of sex change. We anticipate that better understanding of sex change in fish will shed new light on sex determination and development in vertebrates and on how environmental perturbations affect sexual fate.
-
-
-
Cephalopod Biology: At the Intersection Between Genomic and Organismal Novelties
Vol. 8 (2020), pp. 71–90More LessCephalopods are resourceful marine predators that have fascinated generations of researchers as well as the public owing to their advanced behavior, complex nervous system, and significance in evolutionary studies. Recent advances in genomics have accelerated the pace of cephalopod research. Many traditional areas focusing on evolution, development, behavior, and neurobiology, primarily on the morphological level, are now transitioning to molecular approaches. This review addresses the recent progress and impact of genomic and other molecular resources on research in cephalopods. We outline several key directions in which significant progress in cephalopod research is expected and discuss its impact on our understanding of the genetic background behind cephalopod biology and beyond.
-
-
-
Omics Technologies for Profiling Toxin Diversity and Evolution in Snake Venom: Impacts on the Discovery of Therapeutic and Diagnostic Agents
Vol. 8 (2020), pp. 91–116More LessSnake venoms are primarily composed of proteins and peptides, and these toxins have developed high selectivity to their biological targets. This makes venoms interesting for exploration into protein evolution and structure–function relationships. A single venom protein superfamily can exhibit a variety of pharmacological effects; these variations in activity originate from differences in functional sites, domains, posttranslational modifications, and the formations of toxin complexes. In this review, we discuss examples of how the major venom protein superfamilies have diversified, as well as how newer technologies in the omics fields, such as genomics, transcriptomics, and proteomics, can be used to characterize both known and unknown toxins.Because toxins are bioactive molecules with a rich diversity of activities, they can be useful as therapeutic and diagnostic agents, and successful examples of toxin applications in these areas are also reviewed. With the current rapid pace of technology, snake venom research and its applications will only continue to expand.
-
-
-
Conservation and Management of Salmon in the Age of Genomics
Vol. 8 (2020), pp. 117–143More LessSalmon were among the first nonmodel species for which systematic population genetic studies of natural populations were conducted, often to support management and conservation. The genomics revolution has improved our understanding of the evolutionary ecology of salmon in two major ways: (a) Large increases in the numbers of genetic markers (from dozens to 104–106) provide greater power for traditional analyses, such as the delineation of population structure, hybridization, and population assignment, and (b) qualitatively new insights that were not possible with traditional genetic methods can be achieved by leveraging detailed information about the structure and function of the genome. Studies of the first type have been more common to date, largely because it has taken time for the necessary tools to be developed to fully understand the complex salmon genome. We expect that the next decade will witness many new studies that take full advantage of salmonid genomic resources.
-
-
-
The Immunoglobulins: New Insights, Implications, and Applications
Vol. 8 (2020), pp. 145–169More LessImmunoglobulins (Igs), as one of the hallmarks of adaptive immunity, first arose approximately 500 million years ago with the emergence of jawed vertebrates. Two events stand out in the evolutionary history of Igs from cartilaginous fish to mammals: (a) the diversification of Ig heavy chain (IgH) genes, resulting in Ig isotypes or subclasses associated with novel functions, and (b) the diversification of genetic and structural strategies, leading to the creation of the antibody repertoire we know today. This review first gives an overview of the IgH isotypes identified in jawed vertebrates to date and then highlights the implications or applications of five new recent discoveries arising from comparative studies of Igs derived from different vertebrate species.
-
-
-
Importance of the Major Histocompatibility Complex (Swine Leukocyte Antigen) in Swine Health and Biomedical Research
Vol. 8 (2020), pp. 171–198More LessIn pigs, the major histocompatibility complex (MHC), or swine leukocyte antigen (SLA) complex, maps to Sus scrofa chromosome 7. It consists of three regions, the class I and class III regions mapping to 7p1.1 and the class II region mapping to 7q1.1. The swine MHC is divided by the centromere, which is unique among mammals studied to date. The SLA complexspans between 2.4 and 2.7 Mb, depending on haplotype, and encodes approximately 150 loci, with at least 120 genes predicted to be functional. Here we update the whole SLA complex based on the Sscrofa11.1 build and annotate the organization for all recognized SLA genes and their allelic sequences. We present SLA nomenclature and typing methods and discuss the expression of SLA proteins, as well as their role in antigen presentation and immune, disease, and vaccine responses. Finally, we explore the role of SLA genes in transplantation and xenotransplantation and their importance in swine biomedical models.
-
-
-
The Role of the Gut Microbiome in Cattle Production and Health: Driver or Passenger?
Vol. 8 (2020), pp. 199–220More LessRuminant production systems face significant challenges currently, driven by heightened awareness of their negative environmental impact and the rapidly rising global population. Recent findings have underscored how the composition and function of the rumen microbiome are associated with economically valuable traits, including feed efficiency and methane emission. Although omics-based technological advances in the last decade have revolutionized our understanding of host-associated microbial communities, there remains incongruence over the correct approach for analysis of large omic data sets. A global approach that examines host/microbiome interactions in both the rumen and the lower digestive tract is required to harness the full potential of the gastrointestinal microbiome for sustainable ruminant production. This review highlights how the ruminant animal production community may identify and exploit the causal relationships between the gut microbiome and host traits of interest for a practical application of omic data to animal health and production.
-
-
-
African Swine Fever Epidemiology and Control
Vol. 8 (2020), pp. 221–246More LessAfrican swine fever is a devastating disease that can result in death in almost all infected pigs. The continuing spread of African swine fever from Africa to Europe and recently to the high–pig production countries of China and others in Southeast Asia threatens global pork production and food security. The African swine fever virus is an unusual complex DNA virus and is not related to other viruses. This has presented challenges for vaccine development, and currently none is available. The virus is extremely well adapted to replicate in its hosts in the sylvatic cycle in East and South Africa. Its spread to other regions, with different wildlife hosts, climatic conditions, and pig production systems, has revealed unexpected epidemiological scenarios and different challenges for control. Here we review the epidemiology of African swine fever in these different scenarios and methods used for control. We also discuss progress toward vaccine development and research priorities to better understand this complex disease and improve control.
-
-
-
Influenza A Virus Subpopulations and Their Implication in Pathogenesis and Vaccine Development
Vol. 8 (2020), pp. 247–267More LessThe concept of influenza A virus (IAV) subpopulations emerged approximately 75 years ago, when Preben von Magnus described “incomplete” virus particles that interfere with the replication of infectious virus. It is now widely accepted that infectious particles constitute only a minor portion of biologically active IAV subpopulations. The IAV quasispecies is an extremely diverse swarm of biologically and genetically heterogeneous particle subpopulations that collectively influence the evolutionary fitness of the virus. This review summarizes the current knowledge of IAV subpopulations, focusing on their biologic and genomic diversity. It also discusses the potential roles IAV subpopulations play in virus pathogenesis and live attenuated influenza vaccine development.
-
-
-
Defining Pollinator Health: A Holistic Approach Based on Ecological, Genetic, and Physiological Factors
Vol. 8 (2020), pp. 269–294More LessEvidence for global bee population declines has catalyzed a rapidly evolving area of research that aims to identify the causal factors and to effectively assess the status of pollinator populations. The term pollinator health emerged through efforts to understand causes of bee decline and colony losses, but it lacks a formal definition. In this review, we propose a definition for pollinator health and synthesize the available literature on the application of standardized biomarkers to assess health at the individual, colony, and population levels. We focus on biomarkers in honey bees, a model species, but extrapolate the potential application of these approaches to monitor the health status of wild bee populations. Biomarker-guided health measures can inform beekeeper management decisions, wild bee conservation efforts, and environmental policies. We conclude by addressing challenges to pollinator health from a One Health perspective that emphasizes the interplay between environmental quality and human, animal, and bee health.
-
-
-
The Gut–Liver Axis in the Control of Energy Metabolism and Food Intake in Animals
Vol. 8 (2020), pp. 295–319More LessRecent research has convincingly demonstrated a bidirectional communication axis between the gut and liver that enables the gut microbiota to strongly affect animals’ feeding behavior and energy metabolism. As such, the gut–liver axis enables the host to control and shape the gut microbiota and to protect the intestinal barrier. Gut microbiota–host communication is based on several gut-derived compounds, such as short-chain fatty acids, bile acids, methylamines, amino acid–derived metabolites, and microbial-associated molecular patterns, which act as communication signals, and multiple host receptors, which sense the signals, thereby stimulating signaling and metabolic pathways in all key tissues of energy metabolism and food intake regulation. Disturbance in the microbial ecosystem balance, or microbial dysbiosis, causes profound derangements in the regulation of appetite and satiety in the hypothalamic centers of the brain and in key metabolic pathways in peripheral tissues owing to intestinal barrier disruption and subsequent induction of hepatic and hypothalamic inflammation.
-
-
-
Translational Advances in Pediatric Nutrition and Gastroenterology: New Insights from Pig Models
Vol. 8 (2020), pp. 321–354More LessPigs are increasingly important animals for modeling human pediatric nutrition and gastroenterology and complementing mechanistic studies in rodents. The comparative advantages in size and physiology of the neonatal pig have led to new translational and clinically relevant models of important diseases of the gastrointestinal tract and liver in premature infants. Studies in pigs have established the essential roles of prematurity, microbial colonization, and enteral nutrition in the pathogenesis of necrotizing enterocolitis. Studies in neonatal pigs have demonstrated the intestinal trophic effects of akey gut hormone, glucagon-like peptide 2 (GLP-2), and its role in the intestinal adaptation process and efficacy in the treatment of short bowel syndrome. Further, pigs have been instrumental in elucidating the physiology of parenteral nutrition–associated liver disease and the means by which phytosterols, fibroblast growth factor 19, and a new generation of lipid emulsions may modify disease. The premature pig will continue to be a valuable model in the development of optimal infant diets (donor human milk, colostrum), specific milk bioactives (arginine, growth factors), gut microbiota modifiers (pre-, pro-, and antibiotics), pharmaceutical drugs (GLP-2 analogs, FXR agonists), and novel diagnostic tools (near-infrared spectroscopy) to prevent and treat these pediatric diseases.
-
-
-
Use of Mechanistic Nutrition Models to Identify Sustainable Food Animal Production
Vol. 8 (2020), pp. 355–376More LessTo feed people in the coming decades, an increase in sustainable animal food production is required. The efficiency of the global food production system is dependent on the knowledge and improvement of its submodels, such as food animal production. Scientists use statistical models to interpret their data, but models are also used to understand systems and to integrate their components. However, empirical models cannot explain systems. Mechanistic models yield insight into the mechanism and provide guidance regarding the exploration of the system. This review offers an overview of models, from simple empirical to more mechanistic models. We demonstrate their applications to amino acid transport, mass balance, whole-tissue metabolism, digestion and absorption, growth curves, lactation, and nutrient excretion. These mechanistic models need to be integrated into a full model using big data from sensors, which represents a new challenge. Soon, training in quantitative and computer science skills will be required to develop, test, and maintain advanced food system models.
-
-
-
Regulation of Cell Fate Decisions in Early Mammalian Embryos
Vol. 8 (2020), pp. 377–393More LessEarly embryogenesis is characterized by the segregation of cell lineages that fulfill critical roles in the establishment of pregnancy and development of the fetus. The formation of the blastocyst marks the emergence of extraembryonic precursors, needed for implantation, and of pluripotent cells, which differentiate toward the major lineages of the adult organism. The coordinated emergence of these cell types shows that these processes are broadly conserved in mammals. However, developmental heterochrony and changes in gene regulatory networks highlight unique evolutionary adaptations that may explain the diversity in placentation and in the mechanisms controlling pluripotency in mammals. The incorporation of new technologies, including single-cell omics, imaging, and gene editing, is instrumental for comparative embryology. Broadening the knowledge of mammalian embryology will provide new insights into the mechanisms driving evolution and development. This knowledge can be readily translated into biomedical and biotechnological applications in humans and livestock, respectively.
-
-
-
Implications of Assisted Reproductive Technologies for Pregnancy Outcomes in Mammals
Vol. 8 (2020), pp. 395–413More LessDevelopment of assisted reproductive technologies has been driven by the goals of reducing the incidence of infertility, increasing the number of offspring from genetically elite animals, facilitating genetic manipulation, aiding preservation and long-distance movement of germplasm, and generating research material. Superovulation is associated with reduced fertilization rate and alterations in endometrial function. In vitro production of embryos can have a variety of consequences. Most embryos produced in vitro are capable of establishing pregnancy and developing into healthy neonatal animals. However, in vitro production is associated with reduced ability to develop to the blastocyst stage, increased incidence of failure to establish pregnancy, placental dysfunction, and altered fetal development. Changes in the developmental program mean that some consequences of being produced in vitro can extend into adult life. Reduced competence of the embryo produced in vitro to develop to the blastocyst stage is caused largely by disruption of events during oocyte maturation and fertilization. Conditions during embryo culture can affect embryo freezability and competence to establish pregnancy after transfer. Culture conditions, including actions of embryokines, can also affect the postnatal phenotype of the resultant progeny.
-