1932

Abstract

Fish show extraordinary sexual plasticity, changing sex naturally as part of their life cycle or reversing sex because of environmental stressors. This plasticity shows that sexual fate is not an irreversible process but the result of an ongoing tug-of-war for supremacy between male and female signaling networks. The behavioral, gonadal, and morphological changes involved in this process are well described, yet the molecular events that underpin those changes remain poorly understood. Epigenetic modifications emerge as a critical link between environmental stimuli, the onset of sex change, and subsequent maintenance of sexual phenotype. Here we synthesize current knowledge of sex change, focusing on the genetic and epigenetic processes that are likely involved in the initiation and regulation of sex change. We anticipate that better understanding of sex change in fish will shed new light on sex determination and development in vertebrates and on how environmental perturbations affect sexual fate.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-021419-083634
2020-02-15
2024-05-18
Loading full text...

Full text loading...

/deliver/fulltext/animal/8/1/annurev-animal-021419-083634.html?itemId=/content/journals/10.1146/annurev-animal-021419-083634&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Price TD, Qvarnström A, Irwin DE 2003. The role of phenotypic plasticity in driving genetic evolution. Proc. R. Soc. Lond. B Biol. Sci. 270:15231433–40
    [Google Scholar]
  2. 2. 
    West-Eberhard MJ. 2008. Phenotypic plasticity. Encyclopedia of Ecology E Jørgensen, B Fath 2701–7 Amsterdam: Elsevier Sci.
    [Google Scholar]
  3. 3. 
    Liu H, Todd EV, Lokman PM, Lamm MS, Godwin JR, Gemmell NJ 2017. Sexual plasticity: a fishy tale. Mol. Reprod. Dev. 84:2171–94
    [Google Scholar]
  4. 4. 
    Devlin RH, Nagahama Y. 2002. Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture 208:3–4191–364
    [Google Scholar]
  5. 5. 
    Mank JE, Avise JC. 2009. Evolutionary diversity and turn-over of sex determination in teleost fishes. Sex. Dev. 3:2–360–67
    [Google Scholar]
  6. 6. 
    Godwin J. 2009. Social determination of sex in reef fishes. Semin. Cell Dev. Biol. 20:3264–70
    [Google Scholar]
  7. 7. 
    Avise JC, Mank JE. 2009. Evolutionary perspectives on hermaphroditism in fishes. Sex. Dev. 3:2–3152–63
    [Google Scholar]
  8. 8. 
    Todd EV, Liu H, Muncaster S, Gemmell NJ 2016. Bending genders: the biology of natural sex change in fish. Sex. Dev. 10:5–6223–41
    [Google Scholar]
  9. 9. 
    Sarre SD, Ezaz T, Georges A 2011. Transitions between sex-determining systems in reptiles and amphibians. Annu. Rev. Genom. Hum. Genet. 12:391–406
    [Google Scholar]
  10. 10. 
    Goikoetxea A, Todd EV, Gemmell NJ 2017. Stress and sex: Does cortisol mediate sex change in fish. Reproduction 154:6R149–60
    [Google Scholar]
  11. 11. 
    Varriale A. 2014. DNA methylation, epigenetics, and evolution in vertebrates: facts and challenges. Int. J. Evol. Biol. 2014:475981
    [Google Scholar]
  12. 12. 
    Duncan EJ, Gluckman PD, Dearden PK 2014. Epigenetics, plasticity, and evolution: How do we link epigenetic change to phenotype?. J. Exp. Zool. B Mol. Dev. Evol. 322:4208–20
    [Google Scholar]
  13. 13. 
    Piferrer F. 2018. Epigenetics of sex determination and differentiation in fish. Sex Control in Aquaculture65–83 Chichester, UK: John Wiley & Sons
    [Google Scholar]
  14. 14. 
    Wu G-C, Li H-W, Huang C-H, Lin H-J, Lin C-J, Chang C-F 2016. The testis is a primary factor that contributes to epigenetic modifications in the ovaries of the protandrous black porgy, Acanthopagrus schlegelii. Biol. Reprod. 94:6132
    [Google Scholar]
  15. 15. 
    Ellison A, Rodríguez López CM, Moran P, Breen J, Swain M et al. 2015. Epigenetic regulation of sex ratios may explain natural variation in self-fertilization rates. Proc. R. Soc. B Biol. Sci. 282:181920151900
    [Google Scholar]
  16. 16. 
    Domingos JA, Budd AM, Banh QQ, Goldsbury JA, Zenger KR, Jerry DR 2018. Sex-specific dmrt1 and cyp19a1 methylation and alternative splicing in gonads of the protandrous hermaphrodite barramundi. PLOS ONE 13:9e0204182
    [Google Scholar]
  17. 17. 
    Zhang Y, Zhang S, Liu Z, Zhang L, Zhang W 2013. Epigenetic modifications during sex change repress gonadotropin stimulation of Cyp19a1a in a teleost ricefield eel (Monopterus albus). Endocrinology 154:82881–90
    [Google Scholar]
  18. 18. 
    Todd EV, Ortega-Recalde O, Liu H, Lamm MS, Rutherford K et al. 2018. Stress, novel sex genes and epigenetic reprogramming orchestrate socially controlled sex change. Sci. Adv. 5:eaaw7006
    [Google Scholar]
  19. 19. 
    Shao C, Li Q, Chen S, Zhang P, Lian J et al. 2014. Epigenetic modification and inheritance in sexual reversal of fish. Genome Res 24:4604–15
    [Google Scholar]
  20. 20. 
    Navarro-Martín L, Viñas J, Ribas L, Díaz N, Gutiérrez A et al. 2011. DNA methylation of the gonadal aromatase (cyp19a) promoter is involved in temperature-dependent sex ratio shifts in the European sea bass. PLOS Genet 7:12e1002447
    [Google Scholar]
  21. 21. 
    Wen AY, You F, Sun P, Li J, Xu DD et al. 2014. CpG methylation of dmrt1 and cyp19a promoters in relation to their sexual dimorphic expression in the Japanese flounder Paralichthys olivaceus. J. Fish Biol 84:1193–205
    [Google Scholar]
  22. 22. 
    Wang YY, Sun LX, Zhu JJ, Zhao Y, Wang H et al. 2017. Epigenetic control of cyp19a1a expression is critical for high temperature induced Nile tilapia masculinization. J. Therm. Biol. 69:76–84
    [Google Scholar]
  23. 23. 
    Chen X, Wang Z, Tang S, Zhao Y, Zhao J 2017. Genome-wide mapping of DNA methylation in Nile tilapia. Hydrobiologia 791:1247–57
    [Google Scholar]
  24. 24. 
    Godwin J. 2010. Neuroendocrinology of sexual plasticity in teleost fishes. Front. Neuroendocrinol. 31:2203–16
    [Google Scholar]
  25. 25. 
    Gemmell NJ, Todd EV, Goikoetxea A, Ortega-Recalde O, Hore TA 2019. Natural sex change in fish. Curr. Top. Dev. Biol. 134:71–117
    [Google Scholar]
  26. 26. 
    Larson ET, Norris DO, Grau EG, Summers CH 2003. Monoamines stimulate sex reversal in the saddleback wrasse. Gen. Comp. Endocrinol. 130:3289–98
    [Google Scholar]
  27. 27. 
    Larson ET, Norris DO, Summers CH 2003. Monoaminergic changes associated with socially induced sex reversal in the saddleback wrasse. Neuroscience 119:1251–63
    [Google Scholar]
  28. 28. 
    Semsar K, Godwin J. 2003. Social influences on the arginine vasotocin system are independent of gonads in a sex-changing fish. J. Neurosci. 23:104386–93
    [Google Scholar]
  29. 29. 
    Liu H, Lamm MS, Rutherford K, Black MA, Godwin JR, Gemmell NJ 2015. Large-scale transcriptome sequencing reveals novel expression patterns for key sex-related genes in a sex-changing fish. Biol. Sex Differ. 6:26
    [Google Scholar]
  30. 30. 
    Wong RY, McLeod MM, Godwin J 2014. Limited sex-biased neural gene expression patterns across strains in zebrafish (Danio rerio). BMC Genom 15:905
    [Google Scholar]
  31. 31. 
    Todd EV, Liu H, Lamm MS, Thomas JT, Rutherford K et al. 2018. Female mimicry by sneaker males has a transcriptomic signature in both the brain and the gonad in a sex-changing fish. Mol. Biol. Evol. 35:1225–41
    [Google Scholar]
  32. 32. 
    Godwin J, Crews D, Warner R 1996. Behavioural sex change in the absence of gonads in a coral reef fish. Proc. R. Soc. B Biol. Sci. 263:13771683–88
    [Google Scholar]
  33. 33. 
    Lamm MS, Liu H, Gemmell NJ, Godwin JR 2015. The need for speed: neuroendocrine regulation of socially-controlled sex change. Integr. Comp. Biol. 55:2307–22
    [Google Scholar]
  34. 34. 
    Diotel N, Le Page Y, Mouriec K, Tong S-K, Pellegrini E et al. 2010. Aromatase in the brain of teleost fish: expression, regulation and putative functions. Front. Neuroendocrinol. 31:2172–92
    [Google Scholar]
  35. 35. 
    Iwata E, Mikami K, Manbo J, Moriya-Ito K, Sasaki H 2012. Social interaction influences blood cortisol values and brain aromatase genes in the protandrous false clown anemonefish, Amphiprion ocellaris. Zool. Sci. 29:12849–55
    [Google Scholar]
  36. 36. 
    Shi Y, Zhang Y, Li S, Liu Q, Lu D et al. 2010. Molecular identification of the Kiss2/Kiss1ra system and its potential function during 17Alpha-methyltestosterone-induced sex reversal in the orange-spotted grouper, Epinephelus coioides. Biol. Reprod. 83:163–74
    [Google Scholar]
  37. 37. 
    Windley SP, Wilhelm D. 2015. Signaling pathways involved in mammalian sex determination and gonad development. Sex. Dev. 9:6297–315
    [Google Scholar]
  38. 38. 
    Herpin A, Schartl M. 2011. Sex determination: switch and suppress. Curr. Biol. 21:17R656–59
    [Google Scholar]
  39. 39. 
    Capel B. 2017. Vertebrate sex determination: evolutionary plasticity of a fundamental switch. Nat. Rev. Genet. 18:11675–89
    [Google Scholar]
  40. 40. 
    Munger SC, Capel B. 2012. Sex and the circuitry: progress toward a systems-level understanding of vertebrate sex determination. Wiley Interdiscip. Rev. Syst. Biol. Med. 4:4401–12
    [Google Scholar]
  41. 41. 
    Li G-L, Liu X-C, Lin H-R 2006. Effects of aromatizable and nonaromatizable androgens on the sex inversion of red-spotted grouper (Epinephelus akaara). Fish Physiol. Biochem. 32:125–33
    [Google Scholar]
  42. 42. 
    Xia W, Zhou L, Yao B, Li C-J, Gui J-F 2007. Differential and spermatogenic cell-specific expression of DMRT1 during sex reversal in protogynous hermaphroditic groupers. Mol. Cell. Endocrinol. 263:1–2156–72
    [Google Scholar]
  43. 43. 
    Alam MA, Kobayashi Y, Horiguchi R, Hirai T, Nakamura M 2008. Molecular cloning and quantitative expression of sexually dimorphic markers Dmrt1 and Foxl2 during female-to-male sex change in Epinephelus merra. Gen. Comp. Endocrinol 157:175–85
    [Google Scholar]
  44. 44. 
    Kobayashi Y, Horiguchi R, Nozu R, Nakamura M 2010. Expression and localization of forkhead transcriptional factor 2 (Foxl2) in the gonads of protogynous wrasse, Halichoeres trimaculatus. Biol. Sex Differ. 1:3
    [Google Scholar]
  45. 45. 
    Wu G-C, Tomy S, Lee M-F, Lee Y-H, Yueh W-S et al. 2010. Sex differentiation and sex change in the protandrous black porgy, Acanthopagrus schlegeli. Gen. Comp. Endocrinol. 167:3417–21
    [Google Scholar]
  46. 46. 
    Horiguchi R, Nozu R, Hirai T, Kobayashi Y, Nagahama Y, Nakamura M 2013. Characterization of gonadal soma-derived factor expression during sex change in the protogynous wrasse, Halichoeres trimaculatus. Dev. Dyn. 242:4388–99
    [Google Scholar]
  47. 47. 
    Wu G-C, Li H-W, Luo J-W, Chen C, Chang C-F 2015. The potential role of Amh to prevent ectopic female development in testicular tissue of the protandrous black porgy, Acanthopagrus schlegelii. Biol. Reprod. 92:6158
    [Google Scholar]
  48. 48. 
    Wu G-C, Chang C-F. 2009. wnt4 is associated with the development of ovarian tissue in the protandrous black porgy, Acanthopagrus schlegeli. Biol. Reprod. 81:61073–82
    [Google Scholar]
  49. 49. 
    Li G-L, Liu X-C, Zhang Y, Lin H-R 2006. Gonadal development, aromatase activity and P450 aromatase gene expression during sex inversion of protogynous red-spotted grouper Epinephelus akaara (Temminck and Schlegel) after implantation of the aromatase inhibitor, fadrozole. Aquac. Res. 37:5484–91
    [Google Scholar]
  50. 50. 
    Zhang X, Li MM, Ma H, Liu X, Shi H et al. 2017. Mutation of foxl2 or cyp19a1a results in female to male sex reversal in XX Nile tilapia. Endocrinology 158:82634–47
    [Google Scholar]
  51. 51. 
    Kitano T, Takamune K, Kobayashi T, Nagahama Y, Abe S 1999. Suppression of P450 aromatase gene expression in sex-reversed males produced by rearing genetically female larvae at a high water temperature during a period of sex differentiation in the Japanese flounder (Paralichthys olivaceus). J. Mol. Endocrinol. 23:167–76
    [Google Scholar]
  52. 52. 
    Shinoda T, Miranda LA, Okuma K, Hattori RS, Fernandino JI et al. 2010. Molecular cloning and expression analysis of Fshr and Lhr in relation to Fshb and Lhb subunits during the period of temperature-dependent sex determination in pejerrey Odontesthes bonariensis. Mol. Reprod. Dev 77:6521–32
    [Google Scholar]
  53. 53. 
    Kitano T, Hayashi Y, Shiraishi E, Kamei Y 2012. Estrogen rescues masculinization of genetically female medaka by exposure to cortisol or high temperature. Mol. Reprod. Dev. 79:10719–26
    [Google Scholar]
  54. 54. 
    Yamaguchi T, Yoshinaga N, Yazawa T, Gen K, Kitano T 2010. Cortisol is involved in temperature-dependent sex determination in the Japanese flounder. Endocrinology 151:83900–8
    [Google Scholar]
  55. 55. 
    Yamaguchi T, Kitano T. 2012. High temperature induces cyp26b1 mRNA expression and delays meiotic initiation of germ cells by increasing cortisol levels during gonadal sex differentiation in Japanese flounder. Biochem. Biophys. Res. Commun. 419:2287–92
    [Google Scholar]
  56. 56. 
    Hattori RS, Fernandino JI, Kishii A, Kimura H, Kinno T et al. 2009. Cortisol-induced masculinization: Does thermal stress affect gonadal fate in pejerrey, a teleost fish with temperature-dependent sex determination?. PLOS ONE 4:8e6548
    [Google Scholar]
  57. 57. 
    Deveson IW, Holleley CE, Blackburn J, Marshall Graves JA, Mattick JS et al. 2017. Differential intron retention in Jumonji chromatin modifier genes is implicated in reptile temperature-dependent sex determination. Sci. Adv. 3:6e1700731
    [Google Scholar]
  58. 58. 
    Wang D-S, Kobayashi T, Zhou L-Y, Paul-Prasanth B, Ijiri S et al. 2007. Foxl2 up-regulates aromatase gene transcription in a female-specific manner by binding to the promoter as well as interacting with ad4 binding protein/steroidogenic factor 1. Mol. Endocrinol. 21:3712–25
    [Google Scholar]
  59. 59. 
    Uhlenhaut NH, Jakob S, Anlag K, Eisenberger T, Sekido R et al. 2009. Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell 139:61130–42
    [Google Scholar]
  60. 60. 
    Kobayashi Y, Sunobe T, Kobayashi T, Nakamura M, Suzuki N, Nagahama Y 2005. Molecular cloning and expression of Ad4BP/SF-1 in the serial sex changing gobiid fish, Trimma okinawae. Biochem. Biophys. Res. Commun. 332:41073–80
    [Google Scholar]
  61. 61. 
    Herpin A, Schartl M. 2011. Dmrt1 genes at the crossroads: a widespread and central class of sexual development factors in fish. FEBS J 278:71010–19
    [Google Scholar]
  62. 62. 
    Wu G-C, Chiu P-C, Lin C-J, Lyu Y-S, Lan D-S, Chang C-F 2012. Testicular dmrt1 is involved in the sexual fate of the ovotestis in the protandrous black porgy. Biol. Reprod. 86:241
    [Google Scholar]
  63. 63. 
    Liarte S, Chaves-Pozo E, García-Alcazar A, Mulero V, Meseguer J, García-Ayala A 2007. Testicular involution prior to sex change in gilthead seabream is characterized by a decrease in DMRT1 gene expression and by massive leukocyte infiltration. Reprod. Biol. Endocrinol. 5:20
    [Google Scholar]
  64. 64. 
    Casas L, Saborido-Rey F, Ryu T, Michell C, Ravasi T, Irigoien X 2016. Sex change in clownfish: molecular insights from transcriptome analysis. Sci. Rep. 6:35461
    [Google Scholar]
  65. 65. 
    Hu Q, Guo W, Gao Y, Tang R, Li D 2015. Molecular cloning and characterization of amh and dax1 genes and their expression during sex inversion in rice-field eel Monopterus albus. Sci. Rep 5:16667
    [Google Scholar]
  66. 66. 
    Gardner L, Anderson T, Place AR, Dixon B, Elizur A 2005. Sex change strategy and the aromatase genes. J. Steroid Biochem. Mol. Biol. 94:5395–404
    [Google Scholar]
  67. 67. 
    Salmon NA, Handyside AH, Joyce IM 2005. Expression of Sox8, Sf1, Gata4, Wt1, Dax1, and Fog2 in the mouse ovarian follicle: implications for the regulation of Amh expression. Mol. Reprod. Dev 70:3271–77
    [Google Scholar]
  68. 68. 
    Manousaki T, Tsakogiannis A, Lagnel J, Sarropoulou E, Xiang JZ et al. 2014. The sex-specific transcriptome of the hermaphrodite sparid sharpsnout seabream (Diplodus puntazzo). BMC Genom 15:1655
    [Google Scholar]
  69. 69. 
    Ravi P, Jiang J, Liew W, Orbán L 2014. Small-scale transcriptomics reveals differences among gonadal stages in Asian seabass (Lates calcarifer). Reprod. Biol. Endocrinol. 12:15
    [Google Scholar]
  70. 70. 
    Rodríguez-Marí A, Cañestro C, Bremiller RA, Nguyen-Johnson A, Asakawa K et al. 2010. Sex reversal in zebrafish fancl mutants is caused by Tp53-mediated germ cell apoptosis. PLOS Genet 6:7e1001034
    [Google Scholar]
  71. 71. 
    Bowles J. 2006. Retinoid signaling determines germ cell fate in mice. Science 312:5773596–600
    [Google Scholar]
  72. 72. 
    Feng R, Fang L, Cheng Y, He X, Jiang W et al. 2015. Retinoic acid homeostasis through aldh1a2 and cyp26a1 mediates meiotic entry in Nile tilapia (Oreochromis niloticus). Sci. Rep. 5:10131
    [Google Scholar]
  73. 73. 
    Kashimada K, Svingen T, Feng C-W, Pelosi E, Bagheri-Fam S et al. 2011. Antagonistic regulation of Cyp26b1 by transcription factors SOX9/SF1 and FOXL2 during gonadal development in mice. FASEB J 25:103561–69
    [Google Scholar]
  74. 74. 
    Myosho T, Otake H, Masuyama H, Matsuda M, Kuroki Y et al. 2012. Tracing the emergence of a novel sex-determining gene in medaka, Oryzias luzonensis. Genetics 191:1163–70
    [Google Scholar]
  75. 75. 
    Rondeau EB, Messmer AM, Sanderson DS, Jantzen SG, von Schalburg KR et al. 2013. Genomics of sablefish (Anoplopoma fimbria): expressed genes, mitochondrial phylogeny, linkage map and identification of a putative sex gene. BMC Genom 14:452
    [Google Scholar]
  76. 76. 
    Yan Y-L, Desvignes T, Bremiller R, Wilson C, Dillon D et al. 2017. Gonadal soma controls ovarian follicle proliferation through Gsdf in zebrafish. Dev. Dyn. 246:11925–45
    [Google Scholar]
  77. 77. 
    Waddington CH. 1942. The epigenotype. Endeavour 1:18–20
    [Google Scholar]
  78. 78. 
    Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A 2009. An operational definition of epigenetics. Genes Dev 23:7781–83
    [Google Scholar]
  79. 79. 
    Henikoff S, Greally JM. 2016. Epigenetics, cellular memory and gene regulation. Curr. Biol. 26:14R644–48
    [Google Scholar]
  80. 80. 
    Lee DY, Hayes JJ, Pruss D, Wolffe AP 1993. A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell 72:173–84
    [Google Scholar]
  81. 81. 
    Watt F, Molloy PL. 1988. Cytosine methylation prevents binding to DNA of a HeLa cell transcription factor required for optimal expression of the adenovirus major late promoter. Genes Dev 2:91136–43
    [Google Scholar]
  82. 82. 
    Bartke T, Vermeulen M, Xhemalce B, Robson SC, Mann M, Kouzarides T 2010. Nucleosome-interacting proteins regulated by DNA and histone methylation. Cell 143:3470–84
    [Google Scholar]
  83. 83. 
    Lee HJ, Hore TA, Reik W 2014. Reprogramming the methylome: erasing memory and creating diversity. Cell Stem Cell 14:6710–19
    [Google Scholar]
  84. 84. 
    Bezault E, Clota F, Derivaz M, Chevassus B, Baroiller J-F 2007. Sex determination and temperature-induced sex differentiation in three natural populations of Nile tilapia (Oreochromis niloticus) adapted to extreme temperature conditions. Aquaculture 272:S3–16
    [Google Scholar]
  85. 85. 
    Ribas L, Vanezis K, Imués MA, Piferrer F 2017. Treatment with a DNA methyltransferase inhibitor feminizes zebrafish and induces long-term expression changes in the gonads. Epigenet. Chromatin 10:59
    [Google Scholar]
  86. 86. 
    Flatt T. 2005. The evolutionary genetics of canalization. Q. Rev. Biol. 80:3287–316
    [Google Scholar]
  87. 87. 
    Stricker SH, Köferle A, Beck S 2017. From profiles to function in epigenomics. Nat. Rev. Genet. 18:151–66
    [Google Scholar]
  88. 88. 
    Feng S, Cokus SJ, Zhang X, Chen P-Y, Bostick M et al. 2010. Conservation and divergence of methyl-ation patterning in plants and animals. PNAS 107:198689–94
    [Google Scholar]
  89. 89. 
    Law JA, Jacobsen SE. 2010. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 11:3204–20
    [Google Scholar]
  90. 90. 
    Chen S, Zhang G, Shao C, Huang Q, Liu G et al. 2014. Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle. Nat. Genet. 46:3253–60
    [Google Scholar]
  91. 91. 
    Bannister AJ, Kouzarides T. 2011. Regulation of chromatin by histone modifications. Cell Res 21:3381–95
    [Google Scholar]
  92. 92. 
    Turner BM. 2009. Epigenetic responses to environmental change and their evolutionary implications. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364:15343403–18
    [Google Scholar]
  93. 93. 
    Ge C, Ye J, Weber C, Sun W, Zhang H et al. 2018. The histone demethylase KDM6B regulates temperature-dependent sex determination in a turtle species. Science 360:6389645–48
    [Google Scholar]
  94. 94. 
    Kuroki S, Matoba S, Akiyoshi M, Matsumura Y, Miyachi H et al. 2013. Epigenetic regulation of mouse sex determination by the histone demethylase Jmjd1a. Science 341:61501106–9
    [Google Scholar]
  95. 95. 
    Katoh-Fukui Y, Miyabayashi K, Komatsu T, Owaki A, Baba T et al. 2012. Cbx2, a polycomb group gene, is required for Sry gene expression in mice. Endocrinology 153:2913–24
    [Google Scholar]
  96. 96. 
    Díaz N, Piferrer F. 2015. Lasting effects of early exposure to temperature on the gonadal transcriptome at the time of sex differentiation in the European sea bass, a fish with mixed genetic and environmental sex determination. BMC Genom 16:679
    [Google Scholar]
  97. 97. 
    Tsakogiannis A, Manousaki T, Lagnel J, Papanikolaou N, Papandroulakis N et al. 2018. The gene toolkit implicated in functional sex in Sparidae hermaphrodites: inferences from comparative transcriptomics. Front. Genet. 9:749
    [Google Scholar]
  98. 98. 
    Conant GC, Wolfe KH. 2008. Turning a hobby into a job: how duplicated genes find new functions. Nat. Rev. Genet. 9:12938–50
    [Google Scholar]
  99. 99. 
    Ohno S. 1970. Evolution by Gene Duplication Berlin/Heidelberg, Ger: Springer
  100. 100. 
    Robinson-Rechavi M, Marchand O, Escriva H, Bardet PL, Zelus D et al. 2001. Euteleost fish genomes are characterized by expansion of gene families. Genome Res 11:5781–88
    [Google Scholar]
  101. 101. 
    Glasauer SMK, Neuhauss SCF. 2014. Whole-genome duplication in teleost fishes and its evolutionary consequences. Mol. Genet. Genom. 289:61045–60
    [Google Scholar]
  102. 102. 
    Heule C, Salzburger W, Böhne A 2014. Genetics of sexual development: an evolutionary playground for fish. Genetics 196:3579–91
    [Google Scholar]
  103. 103. 
    Schartl M. 2004. Sex chromosome evolution in non-mammalian vertebrates. Curr. Opin. Genet. Dev. 14:6634–41
    [Google Scholar]
  104. 104. 
    Matsuda M, Nagahama Y, Shinomiya A, Sato T, Matsuda C et al. 2002. DMY is a Y-specific DM-domain gene required for male development in the medaka fish. Nature 417:6888559–63
    [Google Scholar]
  105. 105. 
    Nanda I, Kondo M, Hornung U, Asakawa S, Winkler C et al. 2002. A duplicated copy of DMRT1 in the sex-determining region of the Y chromosome of the medaka, Oryzias latipes. PNAS 99:1811778–83
    [Google Scholar]
  106. 106. 
    Hattori RS, Murai Y, Oura M, Masuda S, Majhi SK et al. 2012. A Y-linked anti-Müllerian hormone duplication takes over a critical role in sex determination. PNAS 109:82955–59
    [Google Scholar]
  107. 107. 
    Li M, Sun Y, Zhao J, Shi H, Zeng S et al. 2015. A tandem duplicate of anti-Müllerian hormone with a missense SNP on the Y chromosome is essential for male sex determination in Nile tilapia, Oreochromis niloticus. PLOS Genet. 11:11e1005678
    [Google Scholar]
  108. 108. 
    Yano A, Guyomard R, Nicol B, Jouanno E, Quillet E et al. 2012. An immune-related gene evolved into the master sex-determining gene in rainbow trout, Oncorhynchus mykiss. Curr. Biol. 22:151423–28
    [Google Scholar]
  109. 109. 
    Chiang EF, Yan YL, Guiguen Y, Postlethwait J, Chung B-c 2001. Two Cyp19 (P450 aromatase) genes on duplicated zebrafish chromosomes are expressed in ovary or brain. Mol. Biol. Evol 18:4542–50
    [Google Scholar]
  110. 110. 
    Zhang Y, Zhang S, Lu H, Zhang L, Zhang W 2014. Genes encoding aromatases in teleosts: evolution and expression regulation. Gen. Comp. Endocrinol. 205:151–58
    [Google Scholar]
  111. 111. 
    Böhne A, Heule C, Boileau N, Salzburger W 2013. Expression and sequence evolution of aromatase cyp19a1 and other sexual development genes in East African cichlid fishes. Mol. Biol. Evol. 30:102268–85
    [Google Scholar]
  112. 112. 
    Douard V, Brunet F, Boussau B, Ahrens-Fath I, Vlaeminck-Guillem V et al. 2008. The fate of the duplicated androgen receptor in fishes: A late neofunctionalization event?. BMC Evol. Biol. 8:336
    [Google Scholar]
  113. 113. 
    Ogino Y, Kuraku S, Ishibashi H, Miyakawa H, Sumiya E et al. 2016. Neofunctionalization of androgen receptor by gain-of-function mutations in teleost fish lineage. Mol. Biol. Evol. 33:1228–44
    [Google Scholar]
  114. 114. 
    Best C, Ikert H, Kostyniuk DJ, Craig PM, Navarro-Martin L et al. 2018. Epigenetics in teleost fish: from molecular mechanisms to physiological phenotypes. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 224:210–44
    [Google Scholar]
  115. 115. 
    Campos C, Valente LMP, Fernandes JMO 2012. Molecular evolution of zebrafish dnmt3 genes and thermal plasticity of their expression during embryonic development. Gene 500:193–100
    [Google Scholar]
  116. 116. 
    Frisch A. 2004. Sex-change and gonadal steroids in sequentially-hermaphroditic teleost fish. Rev. Fish Biol. Fish. 14:4481–99
    [Google Scholar]
  117. 117. 
    Budd A, Banh Q, Domingos J, Jerry D 2015. Sex control in fish: approaches, challenges and opportunities for aquaculture. J. Mar. Sci. Eng. 3:2329–55
    [Google Scholar]
  118. 118. 
    Cotton S, Wedekind C. 2007. Introduction of Trojan sex chromosomes to boost population growth. J. Theor. Biol. 249:1153–61
    [Google Scholar]
  119. 119. 
    Cotton S, Wedekind C. 2007. Control of introduced species using Trojan sex chromosomes. Trends Ecol. Evol. 22:9441–43
    [Google Scholar]
  120. 120. 
    Janzen FJ. 1994. Climate change and temperature-dependent sex determination in reptiles. PNAS 91:167487–90
    [Google Scholar]
  121. 121. 
    Honeycutt JL, Deck CA, Miller SC, Severance ME, Atkins EB et al. 2019. Warmer waters masculinize wild populations of a fish with temperature-dependent sex determination. Sci. Rep. 9:16527
    [Google Scholar]
  122. 122. 
    Hawkes LA, Broderick AC, Godfrey MH, Godley BJ 2007. Investigating the potential impacts of climate change on a marine turtle population. Glob. Change Biol. 13:5923–32
    [Google Scholar]
  123. 123. 
    Ospina-Alvarez N, Piferrer F. 2008. Temperature-dependent sex determination in fish revisited: prevalence, a single sex ratio response pattern, and possible effects of climate change. PLOS ONE 3:7e2837
    [Google Scholar]
  124. 124. 
    Nishimura T, Tanaka M. 2014. Gonadal development in fish. Sex. Dev. 8:5252–61
    [Google Scholar]
  125. 125. 
    Stévant I, Nef S. 2018. Single cell transcriptome sequencing: a new approach for the study of mammalian sex determination. Mol. Cell. Endocrinol. 468:11–18
    [Google Scholar]
  126. 126. 
    Ozaki Y, Higuchi M, Miura C, Yamaguchi S, Tozawa Y, Miura T 2006. Roles of 11β-hydroxysteroid dehydrogenase in fish spermatogenesis. Endocrinology 147:115139–46
    [Google Scholar]
  127. 127. 
    Todo T, Sato M, Ashida M, Yamaguchi N, Kobayashi Y et al. 2008. In vitro induction of gonadal sex change in a protogynous fish, three-spotted wrasse (Halichoeres trimaculatus). Cybium Int. J. Ichthyol. 32(2 Suppl.):106
    [Google Scholar]
  128. 128. 
    Zhu B, Ge W. 2018. Genome editing in fishes and their applications. Gen. Comp. Endocrinol. 257:3–12
    [Google Scholar]
  129. 129. 
    Castañeda Cortés DC, Arias Padilla LF, Langlois VS, Somoza GM, Fernandino JI 2019. The central nervous system acts as a transducer of stress-induced masculinization through corticotropin-releasing hormone B. Development 146:dev172866
    [Google Scholar]
  130. 130. 
    Jurkowski TP, Ravichandran M, Stepper P 2015. Synthetic epigenetics—towards intelligent control of epigenetic states and cell identity. Clin. Epigenet. 7:18
    [Google Scholar]
  131. 131. 
    Macaulay IC, Ponting CP, Voet T 2017. Single-cell multiomics: multiple measurements from single cells. Trends Genet 33:2155–68
    [Google Scholar]
  132. 132. 
    Satija R, Farrell JA, Gennert D, Schier AF, Regev A 2015. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33:5495–502
    [Google Scholar]
  133. 133. 
    Choi H, Pavelka N. 2011. When one and one gives more than two: challenges and opportunities of integrative omics. Front. Genet. 2:105
    [Google Scholar]
  134. 134. 
    Kumar S, Stecher G, Suleski M, Hedges SB 2017. TimeTree: a resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 34:71812–19
    [Google Scholar]
/content/journals/10.1146/annurev-animal-021419-083634
Loading
/content/journals/10.1146/annurev-animal-021419-083634
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error