1932

Abstract

This narrative is a personal view of adventures in genetic science and society that have blessed my life and career across five decades. The advances I enjoyed and the lessons I learned derive from educational training, substantial collaboration, and growing up in the genomics age. I parse the stories into six research disciplines my students, fellows, and colleagues have entered and, in some cases, made an important difference. The first is comparative genetics, where evolutionary inference is applied to genome organization, from building gene maps in the 1970s to building whole genome sequences today. The second area tracks the progression of molecular evolutionary advances and applications to resolve the hierarchical relationship among living species in the silence of prehistory. The third endeavor outlines the birth and maturation of genetic studies and application to species conservation. The fourth theme discusses how emerging viruses studied in a genomic sense opened our eyes to host–pathogen interaction and interdependence. The fifth research emphasis outlines the population genetic–based search and discovery of human restriction genes that influence the epidemiological outcome of abrupt outbreaks, notably HIV–AIDS and several cancers. Finally, the last arena explored illustrates how genetic individualization in human and animals has improved forensic evidence in capital crimes. Each discipline has intuitive and technological overlaps, and each has benefitted from the contribution of genetic and genomic principles I learned so long ago from The journey continues.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-021419-083944
2020-02-15
2024-05-08
Loading full text...

Full text loading...

/deliver/fulltext/animal/8/1/annurev-animal-021419-083944.html?itemId=/content/journals/10.1146/annurev-animal-021419-083944&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Russert T. 2007. Wisdom of Our Fathers: Lessons and Letters from Daughters and Sons New York: Random House
  2. 2. 
    Peters TJ, Waterman RH Jr 1982. In Search of Excellence: Lessons from America's Best-Run Companies New York: Harper & Row. Presumed, 1st ed..
  3. 3. 
    O'Brien SJ, MacIntyre RJ. 1969. An analysis of gene enzyme variability in natural populations of Drosophila melanogaster and D. simulans. Am. Nat 103:97–113
    [Google Scholar]
  4. 4. 
    Lewontin RC, Hubby JL. 1966. A molecular approach to the study of genic heterozygosity in natural populations. 11. Amount of variation and degree of heterozygosity in natural populations of Drosophila pseudoobscura. Genetics 54:595–609
    [Google Scholar]
  5. 5. 
    O'Brien SJ, MacIntyre RJ. 1971. Empirical demonstration of a transient linkage disequilibrium in Drosophila. Nature 230:335–36
    [Google Scholar]
  6. 6. 
    O'Brien SJ, MacIntyre RJ. 1972. The α-glycerophosphate cycle in Drosophila melanogaster. I. Biochemical and developmental aspects. Biochem. Genet. 7:141–61
    [Google Scholar]
  7. 7. 
    O'Brien SJ, MacIntyre RJ. 1972. The α-glycerophosphate cycle in Drosophila melanogaster. II. Genetic aspects. Genetics 71:127–38
    [Google Scholar]
  8. 8. 
    O'Brien SJ, MacIntyre RJ. 1972. The α-glycerophosphate cycle in Drosophila melanogaster. III. The effect of “null” mutations at α Gphd 1 locus on viability. Am. Nat. 106:967–71
    [Google Scholar]
  9. 9. 
    O'Brien SJ, Shimada Y. 1974. The α-glycerophosphate cycle in Drosophila melanogaster. IV. Metabolic, ultrastructural, and adaptive consequences of α Gphd 1 “null” mutations. J. Cell Biol. 63:864–82
    [Google Scholar]
  10. 10. 
    O'Brien SJ, MacIntyre RJ. 1971. A biochemical genetic map of the Drosophila genome. Drosophila Inf. Serv. 46:89–93
    [Google Scholar]
  11. 11. 
    Huebner RJ, Todaro GJ. 1969. Oncogenes of RNA tumor viruses as determinants of cancer. PNAS 64:1087–94
    [Google Scholar]
  12. 12. 
    O'Brien SJ, Nash WG, Goodwin JL, Lowy DR, Chang EH 1983. Dispersion of the ras family of transforming genes to four different chromosomes in man. Nature 302:839–42
    [Google Scholar]
  13. 13. 
    Kinzler KW, Bigner SH, Bigner DD, Trent JM, Law ML et al. 1987. Identification of an amplified highly expressed gene in a human glioma. Science 236:70–73
    [Google Scholar]
  14. 14. 
    Watson DK, McWilliams-Smith MJ, Kozak C, Reeves R, Gearhart J et al. 1986. Conserved chromosomal positions of dual domains of the ets protooncogene in cats, mice, and humans. PNAS 83:1792–96
    [Google Scholar]
  15. 15. 
    Park M, Dean M, Cooper CS, Schmidt M, O'Brien SJ, Blair DG 1986. Mechanism of met oncogene activation. Cell 45:895–904
    [Google Scholar]
  16. 16. 
    Nienhuis AW, Bunn HF, Turner PH, Gopal TV, Nash WG et al. 1985. Expression of the human c-fms proto oncogene in hematopoietic cells and its deletion in the 5q syndrome. Cell 42:421–28
    [Google Scholar]
  17. 17. 
    Bonner T, O'Brien SJ, Nash WG, Rapp UR, Morton CC, Leder P 1984. The human homologs of the raf (mil) oncogene are located on human chromosomes 3 and 4. Science 223:71–74
    [Google Scholar]
  18. 18. 
    O'Brien SJ, Nash WG. 1982. Genetic mapping in mammals: chromosome map of the domestic cat. Science 216:257–65
    [Google Scholar]
  19. 19. 
    Li G, Hillier LW, Grahn RA, Zimin AV, David VA et al. 2016. A high-resolution SNP array-based linkage map anchors a new domestic cat draft genome assembly and provides detailed patterns of recombination. G3 6:1607–16
    [Google Scholar]
  20. 20. 
    O'Brien SJ, Johnson W. 2005. Big cat genomics. Annu. Rev. Genom. Hum. Genet. 6:407–29
    [Google Scholar]
  21. 21. 
    O'Brien SJ, Menotti-Raymond M, Murphy WJ, Yuhki N 2002. The Feline Genome Project. Annu. Rev. Genet. 36:657–86
    [Google Scholar]
  22. 22. 
    O'Brien SJ, Wienberg J, Lyons LA 1997. Comparative genomics: lessons from cats. Trends Genet 13:393–99
    [Google Scholar]
  23. 23. 
    O'Brien SJ, Menotti-Raymond M, Murphy WJ, Nash WG, Wienberg J et al. 1999. The promise of comparative genomics in mammals. Science 286:458–81
    [Google Scholar]
  24. 24. 
    O'Brien SJ, Womack JE, Lyons LA, Moore KJ, Jenkins NA, Copeland NG 1993. Anchored reference loci for comparative genome mapping in mammals. Nat. Genet. 3:103–12
    [Google Scholar]
  25. 25. 
    Lyons LA, Laughlin TF, Copeland NG, Jenkins NA, Womack JE, O'Brien SJ 1997. Comparative anchor tagged sequences (CATS) for integrative mapping of mammal genomes. Nat. Genet. 15:47–56
    [Google Scholar]
  26. 26. 
    O'Brien SJ 1980–1993. Genetic Maps: Locus Maps of Complex Genomes New York: Cold Spring Harbor Lab. Press. 6 vols.
  27. 27. 
    Lindblad-Toh K, Garber M, Zuk O, Lin MF, Parker BJ et al. 2011. A high-resolution map of human evolutionary constraint using 29 mammals. Nature 478:7370476–82
    [Google Scholar]
  28. 28. 
    Pontius JU, Mullikin JC, Smith D, Lindblad-Toh K, Gnerre S et al. 2007. Initial sequence and comparative analysis of the cat genome. Genome Res 11:1675–89
    [Google Scholar]
  29. 29. 
    Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB et al. 2005. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438:7069803–19
    [Google Scholar]
  30. 30. 
    Genome 10K Community Sci 2009. Genome 10K: a proposal to obtain whole-genome sequence for 10,000 vertebrate species. J. Hered. 100:6659–74
    [Google Scholar]
  31. 31. 
    Pennisi E. 2009. No genome left behind. Science 326:794–95
    [Google Scholar]
  32. 32. 
    Koepfli K-P, Paten B, Genome 10K Community Sci., O'Brien SJ 2015. The Genome 10K Project: a way forward. Annu. Rev. Anim. Biosci. 3:57–211
    [Google Scholar]
  33. 33. 
    Voolstra A, Christian R, GIGA Community Sci. (COS), Wörheide G, Lopez JV 2017. Advancing genomics through the Global Invertebrate Genomics Alliance (GIGA). Invertebr. Syst 31:1–7
    [Google Scholar]
  34. 34. 
    Robinson GE, Hackett KJ, Purcell-Miramontes M, Brown SJ, Evans JD, Goldsmith MR 2011. Creating a buzz about insect genomes. Science 331:60231386
    [Google Scholar]
  35. 35. 
    Lewin HA, Robinson GE, Kress WJ, Baker WJ, Coddington J et al. 2018. Earth BioGenome Project: sequencing life for the future of life. PNAS 115:4325–33
    [Google Scholar]
  36. 36. 
    Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P et al. 2014. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346:62151320–31
    [Google Scholar]
  37. 37. 
    Zhang G, Li C, Li Q, Li B, Larkin DM et al. 2014. Comparative genomics reveals insights into avian genome evolution and adaptation. Science 346:62151311–20
    [Google Scholar]
  38. 38. 
    Dobrynin P, Liu S, Tamazian G, Xiong Z, Yurchenko AA et al. 2015. Genomic legacy of the African cheetah, Acinonyx jubatus. Genome Biol 16:277 https://doi.org/10.1186/s13059-015-0837-4
    [Crossref] [Google Scholar]
  39. 39. 
    Cho YS, Li H, Haolong H, Hang L, Jiaohui X et al. 2013. The tiger genome and comparative analysis with other feline genomes. Nat. Commun. 4:2433
    [Google Scholar]
  40. 40. 
    Yim HS, Cho YS, Guang X, Kang SG, Jeong JY et al. 2014. Minke whale genome and aquatic adaptation in cetaceans. Nat. Genet. 46:88–92 https://doi.org/10.1038/ng.2835
    [Crossref] [Google Scholar]
  41. 41. 
    Kim S, Cho YS, Kim HM, Chung O, Kim H et al. 2016. Comparison of three dietary groups in mammals: carnivore, omnivore, and herbivore genome analyses with a new leopard assembly. Genome Biol 17:1211
    [Google Scholar]
  42. 42. 
    Koepfli K-P, Tamazian G, Wildt D, Dobrynin P, Kim C et al. 2019. Whole genome sequencing and re-sequencing of the sable antelope (Hippotragus niger): a resource for monitoring diversity in ex situ and in situ populations. G3 9:61785–93 https://doi.org/10.1534/g3.119.400084
    [Crossref] [Google Scholar]
  43. 43. 
    Marra NJ, Stanhope MJ, Jue NK, Wang M, Sun Q et al. 2019. White shark genome reveals ancient elasmobranch adaptations associated with wound healing and the maintenance of genome stability. PNAS 116:104446–55 https://doi.org/10.1073/pnas.1819778116
    [Crossref] [Google Scholar]
  44. 44. 
    Choo SW, Rayko M, Tan TK, Hari R, Komissarov A et al. 2016. Pangolin genomes and the evolution of mammalian scales and immunity. Genome Res 26:101312–22
    [Google Scholar]
  45. 45. 
    Grigorev K, Kliver S, Dobrynin P, Komissarov A, Wolfsberger W et al. 2018. Innovative assembly strategy contributes to understanding the evolution and conservation genetics of the endangered Solenodon paradoxus from the island of Hispaniola. Gigascience 7:6giy025 https://doi.org/10.1093/gigascience/giy025
    [Crossref] [Google Scholar]
  46. 46. 
    O'Brien SJ. 2012. Genome empowerment for the Puerto Rican parrot – Amazona vittata. GigaScience 1:13–16
    [Google Scholar]
  47. 47. 
    Tamazian G, Simonov S, Dobrynin P, Makunin A, Logachev A et al. 2014. Annotated features of domestic cat – Felis catus genome. GigaScience 3:13
    [Google Scholar]
  48. 48. 
    Farré M, Kim J, Proskuryakova AA, Zhang Y, Kulemzina AI et al. 2019. Evolution of gene regulation in ruminants differs between evolutionary breakpoint regions and homologous synteny blocks. Genome Res 29:576–89 https://doi.org/10.1101/gr.239863.118
    [Crossref] [Google Scholar]
  49. 49. 
    Dobzhansky T. 1973. Nothing in biology makes sense except in the light of evolution. Am. Biol. Teach. 35:3125–29
    [Google Scholar]
  50. 50. 
    Morgan GJ. 1998. Emile Zuckerkandl, Linus Pauling, and the molecular evolutionary clock, 1959–1965. J. Hist. Biol. 31:2155–78
    [Google Scholar]
  51. 51. 
    Hedges SB, Kumar S. 2009. The Timetree of Life Oxford, UK: Oxford Univ. Press
  52. 52. 
    O'Brien SJ, Eisenberg JF, Miyamoto M, Hedges SB, Kumar S et al. 1999. Genome maps 10. Comparative genomics. Mammalian radiations. Wall chart. Science 286:463–78
    [Google Scholar]
  53. 53. 
    Murphy WJ, Eizirik E, Johnson WE, Zhang YP, Ryder OA, O'Brien SJ 2001. Molecular phylogenetics and the origins of placental mammals. Nature 409:614–18
    [Google Scholar]
  54. 54. 
    Madsen O, Scally M, Douady CJ, Kao DJ, DeBry RW et al. 2001. Parallel adaptive radiations in two major clades of placental mammals. Nature 409:6820610–14
    [Google Scholar]
  55. 55. 
    Murphy WJ, Eizirik E, O'Brien SJ, Madsen O, Scally M et al. 2001. Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294:2348–51
    [Google Scholar]
  56. 56. 
    Johnson WE, Eizirik E, Murphy WJ, Pecon-Slattery J, Antunes A et al. 2006. The late Miocene radiation of modern Felidae: a genetic assessment. Science 311:73–77
    [Google Scholar]
  57. 57. 
    O'Brien SJ, Johnson WE. 2007. The evolution of cats. Genomic paw prints in the DNA of the world's wild cats have clarified the cat family tree and uncovered several remarkable migrations in their past. Sci. Am. 297:68–75
    [Google Scholar]
  58. 58. 
    O'Brien SJ, Nash WG, Wildt DE, Bush ME, Benveniste RE 1985. A molecular solution to the riddle of the giant panda's phylogeny. Nature 317:140–44
    [Google Scholar]
  59. 59. 
    O'Brien SJ. 1987. The ancestry of the giant panda. Sci. Am. 257:102–7
    [Google Scholar]
  60. 60. 
    O'Brien SJ. 2003. Tears of the Cheetah and Other Tales from the Genetic Frontier New York: St. Martin's
  61. 61. 
    Teeling E, Springer MS, Madsen O, Bates P, O'Brien SJ, Murphy WJ 2005. A molecular phylogeny for bats illuminates biogeography and the fossil record. Science 307:580–84
    [Google Scholar]
  62. 62. 
    Perelman P, Johnson WE, Roos C, Seuánez HN, Horvath JE et al. 2011. A molecular phylogeny of living primates. PLOS Genet 7:3e1001342
    [Google Scholar]
  63. 63. 
    Wayne RK, Benveniste RE, Janczewski DN, O'Brien SJ 1989. Molecular and biochemical evolution of the Carnivora. Carnivore Behavior, Ecology, and Evolution JL Gittleman 465–94 New York: Comstock Pub. Assoc., Cornell Univ. Press
    [Google Scholar]
  64. 64. 
    Eizirik E, Murphy WJ, Koepfli K-P, Johnson WE, Dragoo JW et al. 2010. Pattern and timing of diversification of the mammalian order Carnivora inferred from multiple nuclear gene sequences. Mol. Phylogenet. Evol. 56:149–63
    [Google Scholar]
  65. 65. 
    Gaubert P, Antunes A, Mengd H, Lind M, Peignée S 2017. The complete phylogeny of pangolins: scaling up resources for the molecular tracing of the world's most trafficked mammals. J. Hered. 109:4347–35
    [Google Scholar]
  66. 66. 
    Buckley-Beason VA, Johnson WE, Nash WG, Stanyon R, Menninger JC et al. 2006. Molecular evidence for species-level distinctions in clouded leopards. Curr. Biol. 16:2371–76
    [Google Scholar]
  67. 67. 
    Trigo TC, Freitas TRO, Kunzler G, Cardoso L, Silva JCR et al. 2008. Inter-species hybridization among Neotropical cats of the genus Leopardus, and evidence for an introgressive hybrid zone between L. geoffroyi and L. tigrinus in southern Brazil. Mol. Ecol. 17:194317–33
    [Google Scholar]
  68. 68. 
    Roca AL, Georgiadis N, Pecon-Slattery J, O'Brien SJ 2001. Genetic evidence for two species of elephant in Africa. Science 293:1473–77
    [Google Scholar]
  69. 69. 
    Lu Z, Karish WB, Janczewski DN, Frazier-Taylor H, Sajuthi D et al. 1996. Genomic differentiation among natural populations of orangutan (Pongo pygmaeus). Curr. Biol. 6:1326–36
    [Google Scholar]
  70. 70. 
    O'Brien SJ, Wildt DE, Goldman D, Merril CR, Bush M 1983. The cheetah is depauperate in genetic variation. Science 221:459–62
    [Google Scholar]
  71. 71. 
    O'Brien SJ, Roelke ME, Marker L, Newman A, Winkler CA et al. 1985. Genetic basis for species vulnerability in the cheetah. Science 227:1428–34
    [Google Scholar]
  72. 72. 
    O'Brien SJ, Wildt DE, Bush M 1986. The cheetah in genetic peril. Sci. Am. 254:84–92
    [Google Scholar]
  73. 73. 
    Roelke ME, Martenson JS, O'Brien SJ 1993. The consequences of demographic reduction and genetic depletion in the endangered Florida panther. Curr. Biol. 3:340–50
    [Google Scholar]
  74. 74. 
    Johnson WE, Onorato DP, Roelke ME, Land ED, Cunningham M et al. 2010. Genetic restoration of the Florida panther. Science 329:1641–45
    [Google Scholar]
  75. 75. 
    Wildt DE, Bush M, Goodrowe KL, Packer C, Pusey AE et al. 1987. Reproductive and genetic consequences of founding isolated lion populations. Nature 329:328–31
    [Google Scholar]
  76. 76. 
    Gilbert DA, Lehman N, O'Brien SJ, Wayne RK 1990. Genetic fingerprinting reflects population differentiation in the California Channel Island fox. Nature 344:764–67
    [Google Scholar]
  77. 77. 
    Uphyrkina O, O'Brien SJ. 2003. Applying molecular genetic tools to the conservation and action plan for the critically endangered Far Eastern leopard (Panthera pardus orientalis). C. R. Biol. 326:93–97
    [Google Scholar]
  78. 78. 
    Liu YC, Sun X, Driscoll C, Miquelle DG, Xu X et al. 2018. Genome-wide evolutionary analysis of natural history and adaptation in the world's tigers. Curr. Biol. 28:233840–49 https://doi.org/10.1016/j.cub.2018.09.019
    [Crossref] [Google Scholar]
  79. 79. 
    Luo S-J, Kim J-H, Johnson WE, van der Walt J, Martenson J et al. 2004. Phylogeography and genetic ancestory of tigers (Panthera tigris). PLOS Biol 2:2277–93
    [Google Scholar]
  80. 80. 
    Culver M, Johnson WE, Pecon-Slattery J, O'Brien SJ 2000. Genomic ancestry of the American puma (Puma concolor). J. Hered. 91:186–97
    [Google Scholar]
  81. 81. 
    Antunes A, Troyer JL, Roelke ME, Pecon-Slattery J, Packer C et al. 2008. The evolutionary dynamics of the lion Panthera leo revealed by host and viral population genomics. PLOS Genet 4:11e1000251
    [Google Scholar]
  82. 82. 
    Hamilton WD. 1964. The genetical evolution of social behaviour. J. Theor. Biol. 7:17–52
    [Google Scholar]
  83. 83. 
    Gilbert DA, Packer C, Pusey AE, Stephens JC, O'Brien SJ 1991. Analytical DNA fingerprinting in lions: parentage, genetic diversity, and kinship. J. Hered. 82:378–86
    [Google Scholar]
  84. 84. 
    Packer C, Gilbert DA, Pusey AE, O'Brien SJ 1991. Kinship, cooperation and inbreeding in African lions: a molecular genetic analysis. Nature 351:562–65
    [Google Scholar]
  85. 85. 
    Kukekova AV, Johnson JL, Xiang X, Feng S, Liu S et al. 2018. Red fox genome assembly identifies genomic regions associated with tame and aggressive behaviours. Nat. Ecol. Evol. 2:1479–91
    [Google Scholar]
  86. 86. 
    Spellberg B, Taylor-Blake B. 2013. On the exoneration of Dr. William H. Stewart: debunking an urban legend. Infect. Dis. Poverty 2:3
    [Google Scholar]
  87. 87. 
    Hardy WD, Essex M, McClelland AJ 1980. Feline Leukemia Virus New York: Elsevier/North Holland
  88. 88. 
    Brown M, Cunningham MW, Roca AL, Troyer JL, Johnson WE, O'Brien SJ 2008. Genetic characterization of emerging feline leukemia virus in the free-ranging Florida panther population. Emerg. Infect. Dis. 14:252–59
    [Google Scholar]
  89. 89. 
    Pedersen NC, Ho EW, Brown ML, Yamamoto JK 1987. Isolation of a T-lymphotropic virus from domestic cats with an immunodeficiency-like syndrome. Science 235:4790790–93
    [Google Scholar]
  90. 90. 
    Olmsted RA, Langley R, Roelke ME, Goeken RM, Adger-Johnson D et al. 1992. Worldwide prevalence of lentivirus infection in wild feline species: epidemiologic and phylogenetic aspects. J. Virol. 66:6008–18
    [Google Scholar]
  91. 91. 
    Troyer JL, Pecon-Slattery J, Roelke ME, Johnson W, VandeWoude S, Vazquez-Salat N 2005. Seroprevalence and genomic diversity of circulating strains of feline immunodeficiency virus among Felidae and Hyaenidae species. J. Virol. 79:8282–94
    [Google Scholar]
  92. 92. 
    Pecon-Slattery J, Troyer JL, Johnson WE, O'Brien SJ 2008. Evolution of feline immunodeficiency virus in Felidae: implications for human health and wildlife ecology. Vet. Immunol. Immunopathol. 123:32–44
    [Google Scholar]
  93. 93. 
    Roelke-Parker ME, Munson L, Packer C, Kock R, Cleaveland S et al. 1996. A canine distemper virus epidemic in Serengeti lions (Panthera leo). Nature 379:441–45
    [Google Scholar]
  94. 94. 
    Carpenter MA, Appel MJG, Roelke-Parker ME, Munson L, Hofer H et al. 1998. Genetic characterization of canine distemper virus in Serengeti carnivores. Vet. Immunol. Immunopathol. 65:259–66
    [Google Scholar]
  95. 95. 
    Cent. Dis. Control Prev 2004. Revised U.S. surveillance case definition for severe acute respiratory syndrome (SARS) and update on SARS cases—United States and worldwide, December 2003. JAMA 291:2173–74
    [Google Scholar]
  96. 96. 
    Drazen JM. 2003. SARS—looking back over the first 100 days. N. Engl. J. Med. 349:319–20
    [Google Scholar]
  97. 97. 
    Holmes KV. 2003. SARS-associated coronavirus. N. Engl. J. Med. 348:1948–51
    [Google Scholar]
  98. 98. 
    Pearks-Wilkerson AJ, Teeling EC, Troyer JL, Bar-Gal GK, Roelke ME et al. 2004. Coronavirus outbreak in cheetahs: lessons for SARS. Curr. Biol. 14:227–28
    [Google Scholar]
  99. 99. 
    Dean M, Carrington M, Winkler C, Huttley GA, Smith MW et al. 1996. Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Science 273:1856–62
    [Google Scholar]
  100. 100. 
    O'Brien SJ, Dean M. 1997. In search of AIDS-resistance genes. Sci. Am. 277:44–51
    [Google Scholar]
  101. 101. 
    O'Brien SJ, Nelson GW, Winkler CA, Smith MW 2000. Polygenic and multifactorial disease gene association in man: lessons from AIDS. Annu. Rev. Genet. 34:563–91
    [Google Scholar]
  102. 102. 
    Choe H, Farzan M, Sun Y, Sullivan N, Rollins B et al. 1996. The β-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell 85:71135–48
    [Google Scholar]
  103. 103. 
    Doranz BJ, Rucker J, Yi Y, Smyth RJ, Samson M et al. 1996. A dual-tropic primary HIV-1 isolate that uses fusin and the β-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell 85:71149–58
    [Google Scholar]
  104. 104. 
    Deng H, Liu R, Ellmeier W, Choe S, Unutmaz D et al. 1996. Identification of a major co-receptor for primary isolates of HIV-1. Nature 381:661–66
    [Google Scholar]
  105. 105. 
    Alkhatib G, Combadiere C, Broder CC, Feng Y, Kennedy PE et al. 1996. CC CKR5: a RANTES, MIP-lα, MIP-lβ receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 272:1955–58
    [Google Scholar]
  106. 106. 
    Liu R, Paxton WA, Choe S, Ceradini D, Martin SR et al. 1996. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86:3367–77
    [Google Scholar]
  107. 107. 
    Samson M, Libert F, Doranz BJ, Rucker J, Liesnard C et al. 1996. Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382:6593722–25
    [Google Scholar]
  108. 108. 
    Dean M, Carrington M, O'Brien SJ 2002. Balanced polymorphism selected by genetic versus infectious human disease. Annu. Rev. Genom. Hum. Genet. 3:263–92
    [Google Scholar]
  109. 109. 
    Carrington M, O'Brien SJ. 2003. The influence of HLA genotype on AIDS. Annu. Rev. Med. 54:535–51
    [Google Scholar]
  110. 110. 
    O'Brien SJ, Hendrickson S. 2013. Host genomic influences on HIV/AIDS. Genome Biol 14:201–14
    [Google Scholar]
  111. 111. 
    Hutter G, Nowak D, Mossner M, Ganepola S, Mussig A et al. 2009. Long-term control of HIV by CCR5 delta32/delta32 stem-cell transplantation. N. Engl. J. Med. 360:692–98
    [Google Scholar]
  112. 112. 
    Allers K, Hütter G, Hofmann J, Loddenkemper C, Rieger K et al. 2011. Evidence for the cure of HIV infection by CCR5Δ32/Δ32 stem cell transplantation. Blood 117:2791–99
    [Google Scholar]
  113. 113. 
    Gupta RK, Abdul-Jawad S, McCoy LE, Mok HP, Peppa D et al. 2019. HIV-1 remission following CCR5Δ32/Δ32 haematopoietic stem-cell transplantation. Nature 568:244–48
    [Google Scholar]
  114. 114. 
    Reshef R, Luger SM, Hexner EO, Loren AW, Frey NV et al. 2012. Blockade of lymphocyte chemotaxis in visceral graft-versus-host disease. N. Engl. J. Med. 367:2135–45 https://doi.org/10.1056/NEJMoa1201248
    [Crossref] [Google Scholar]
  115. 115. 
    Reshef R, Mangan JK, Luger SM, Loren AW, Hexner EO et al. 2014. Extended CCR5 blockade in graft-versus-host disease prophylaxis—a phase II study. Blood 124:212491
    [Google Scholar]
  116. 116. 
    Joy MT, Ben Assayag E, Shabashov-Stone D, Liraz-Zaltsman S, Mazzitelli J et al. 2019. CCR5 is a therapeutic target for recovery after stroke and traumatic brain injury. Cell 176:1143–57
    [Google Scholar]
  117. 117. 
    Glass WG, McDermott DH, Lim JK, Lekhong S, Yu SF et al. 2006. CCR5 deficiency increases risk of symptomatic West Nile virus infection. J. Exp. Med. 203:35–40
    [Google Scholar]
  118. 118. 
    Cohen J. 2019. Inside the circle of trust. Science 365:430–37
    [Google Scholar]
  119. 119. 
    Cyranoski D. 2019. The CRISPR-baby scandal: what's next for human gene-editing. Nature 566:440–42 https://www.nature.com/articles/d41586-019-00673-1
    [Google Scholar]
  120. 120. 
    Xie W, Agniel D, Shevchenko A, Malov S, Svitin A et al. 2017. Genome-wide analyses reveal gene influence on HIV disease progression and HIV-1C acquisition in Southern Africa. AIDS Res. Hum. Retrovir. 33:597–609
    [Google Scholar]
  121. 121. 
    Zeng Z, Guan L, An P, Sun S, O'Brien SJ, Winkler CA 2008. A population-based study to investigate the host genetic factors associated with hepatitis B infection and pathogenesis in the Chinese population. BMC Infect. Dis. 8:1
    [Google Scholar]
  122. 122. 
    Khakoo SI, Thio CL, Martin MP, Brooks CR, Gao X et al. 2004. HLA and NK cell inhibitory receptor genes in resolving hepatitis C virus infection. Science 305:872–74
    [Google Scholar]
  123. 123. 
    Tang M, Lautenberger JA, Gao X, Sezgin E, Hendrickson SL et al. 2012. The principal genetic determinants for nasopharyngeal carcinoma in China involve the HLA class I antigen recognition groove. PLOS Genet 11:e1003103
    [Google Scholar]
  124. 124. 
    Skloot R. 2011. The Immortal Life of Henrietta Lacks New York: Broadway Books
  125. 125. 
    Lucey BP, Nelson-Rees WA, Hutchins GM 2009. Henrietta Lacks, HeLa cells, and cell culture contamination. Arch. Pathol. Lab. Med. 133:1463–67
    [Google Scholar]
  126. 126. 
    Nelson-Rees W, Flandermeyer RP. 1976. Inter- and intraspecies contamination of human breast tumor cell lines HBC and BrCa5 and other cell cultures. Science 191:96–97:1951343–44
    [Google Scholar]
  127. 127. 
    Harris NL, Gang DL, Quay SC, Poppema S, Nelson Rees WA, O'Brien SJ 1981. Contamination of Hodgkin's disease cell cultures. Nature 289:228–30
    [Google Scholar]
  128. 128. 
    O'Brien SJ, Shannon JE, Gail MH 1980. A molecular approach to the identification and individualization of human and animal cells in culture: isozyme and allozyme genetic signatures. In Vitro 16:119–35
    [Google Scholar]
  129. 129. 
    O'Brien SJ, Kleiner G, Olson R, Shannon J 1977. Enzyme polymorphisms as genetic signatures in human cell cultures. Science 195:1345–48
    [Google Scholar]
  130. 130. 
    Menotti-Raymond MA, David VA, O'Brien SJ 1997. Pet cat hair implicates murder suspect. Nature 386:774
    [Google Scholar]
  131. 131. 
    Menotti-Raymond MA, David VA, Wachter LA, Butler JM, O'Brien SJ 2005. An STR forensic typing system for genetic individualization of domestic cat (Felis catus) samples. J. Forensic Sci. 50:1061–70
    [Google Scholar]
  132. 132. 
    Dowling P, exec. prod. 2002. Purr-fect match. Forensic Files Season 7, Episode 7, aired Feb. 12. https://www.youtube.com/watch?v=e8ip3HoiG8k
    [Google Scholar]
  133. 133. 
    Player I. 2013. The White Rhino Saga Johannesburg: Jonathan Ball
  134. 134. 
    Milliken T, Shaw J. 2012. The South AfricaViet Nam Rhino Horn Trade Nexus: a deadly combination of institutional lapses, corrupt wildlife industry professionals and Asian crime syndicates Rep., TRAFFIC Johannesburg, S. Afr:.
    [Google Scholar]
  135. 135. 
    Harper CK, Vermeulen GJ, Clarke AB, De Wet JI, Guthrie AJ 2013. Extraction of nuclear DNA from rhinoceros horn and characterization of DNA profiling systems for white (Ceratotherium simum) and black (Diceros bicornis) rhinoceros. Forensic Sci. Int. Genet. 7:428–33
    [Google Scholar]
  136. 136. 
    Harper C, Ludwig A, Clarke A, Makgopela K, Yurchenko A et al. 2018. Robust forensic matching of confiscated horns to individual poached African rhinoceros. Curr. Biol. 28:113–14
    [Google Scholar]
  137. 137. 
    Driscoll CA, Clutton-Brock J, Kitchener AC, O'Brien SJ 2009. The taming of the cat. Sci. Am. 300:668–75
    [Google Scholar]
  138. 138. 
    O'Brien SJ, Menninger JC, Nash WG 2006. Atlas of Mammalian Chromosomes New York: John Wiley & Sons
  139. 139. 
    O'Brien SJ, Graphodatsky A, Perelman P 2020. Atlas of Mammalian Chromosomes New York: John Wiley & Sons. In press, 2nd ed..
/content/journals/10.1146/annurev-animal-021419-083944
Loading
/content/journals/10.1146/annurev-animal-021419-083944
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error