1932

Abstract

Early embryogenesis is characterized by the segregation of cell lineages that fulfill critical roles in the establishment of pregnancy and development of the fetus. The formation of the blastocyst marks the emergence of extraembryonic precursors, needed for implantation, and of pluripotent cells, which differentiate toward the major lineages of the adult organism. The coordinated emergence of these cell types shows that these processes are broadly conserved in mammals. However, developmental heterochrony and changes in gene regulatory networks highlight unique evolutionary adaptations that may explain the diversity in placentation and in the mechanisms controlling pluripotency in mammals. The incorporation of new technologies, including single-cell omics, imaging, and gene editing, is instrumental for comparative embryology. Broadening the knowledge of mammalian embryology will provide new insights into the mechanisms driving evolution and development. This knowledge can be readily translated into biomedical and biotechnological applications in humans and livestock, respectively.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-021419-083841
2020-02-15
2024-06-16
Loading full text...

Full text loading...

/deliver/fulltext/animal/8/1/annurev-animal-021419-083841.html?itemId=/content/journals/10.1146/annurev-animal-021419-083841&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Wilson DE, Reeder DA. 2005. Mammal Species of the World: A Taxonomic and Geographic Reference Baltimore, MD: Johns Hopkins Univ. Press
    [Google Scholar]
  2. 2. 
    Benton JM. 2004. Vertebrate Palaeontology West Sussex, UK: Wiley
    [Google Scholar]
  3. 3. 
    Svoboda P. 2018. Mammalian zygotic genome activation. Semin. Cell Dev. Biol. 84:118–26
    [Google Scholar]
  4. 4. 
    Guo H, Zhu P, Wu X, Li X, Wen L, Tang F 2013. Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing. Genome Res 23:2126–35
    [Google Scholar]
  5. 5. 
    Zhu Q, Stoger R, Alberio R 2018. A lexicon of DNA modifications: their roles in embryo development and the germline. Front. Cell Dev. Biol. 6:24
    [Google Scholar]
  6. 6. 
    Fierro-González JC, White MD, Silva JC, Plachta N 2013. Cadherin-dependent filopodia control preimplantation embryo compaction. Nat. Cell Biol. 15:1424–33
    [Google Scholar]
  7. 7. 
    Korotkevich E, Niwayama R, Courtois A, Friese S, Berger N et al. 2017. The apical domain is required and sufficient for the first lineage segregation in the mouse embryo. Dev. Cell 40:235–47.e7
    [Google Scholar]
  8. 8. 
    Maitre JL, Turlier H, Illukkumbura R, Eismann B, Niwayama R et al. 2016. Asymmetric division of contractile domains couples cell positioning and fate specification. Nature 536:344–48
    [Google Scholar]
  9. 9. 
    De Vries WN, Evsikov AV, Haac BE, Fancher KS, Holbrook AE et al. 2004. Maternal β-catenin and E-cadherin in mouse development. Development 131:4435–45
    [Google Scholar]
  10. 10. 
    Reima I, Lehtonen E, Virtanen I, Flechon JE 1993. The cytoskeleton and associated proteins during cleavage, compaction and blastocyst differentiation in the pig. Differentiation 54:35–45
    [Google Scholar]
  11. 11. 
    Koyama H, Suzuki H, Yang X, Jiang S, Foote RH 1994. Analysis of polarity of bovine and rabbit embryos by scanning electron microscopy. Biol. Reprod. 50:163–70
    [Google Scholar]
  12. 12. 
    Nikas G, Ao A, Winston RML, Handyside AH 1996. Compaction and surface polarity in the human embryo in vitro. Biol. Reprod. 55:32–37
    [Google Scholar]
  13. 13. 
    Steptoe PC, Edwards RG, Purdy JM 1971. Human blastocysts grown in culture. Nature 229:132–33
    [Google Scholar]
  14. 14. 
    Iwata K, Yumoto K, Sugishima M, Mizoguchi C, Kai Y et al. 2014. Analysis of compaction initiation in human embryos by using time-lapse cinematography. J. Assist. Reprod. Genet. 31:421–26
    [Google Scholar]
  15. 15. 
    Van Soom A, Boerjan ML, Bols PE, Vanroose G, Lein A et al. 1997. Timing of compaction and inner cell allocation in bovine embryos produced in vivo after superovulation. Biol. Reprod. 57:1041–49
    [Google Scholar]
  16. 16. 
    Home P, Ray S, Dutta D, Bronshteyn I, Larson M, Paul S 2009. GATA3 is selectively expressed in the trophectoderm of peri-implantation embryo and directly regulates Cdx2 gene expression. J. Biol. Chem. 284:28729–37
    [Google Scholar]
  17. 17. 
    Ralston A, Cox BJ, Nishioka N, Sasaki H, Chea E et al. 2010. Gata3 regulates trophoblast development downstream of Tead4 and in parallel to Cdx2. Development 137:395–403
    [Google Scholar]
  18. 18. 
    Wicklow E, Blij S, Frum T, Hirate Y, Lang RA et al. 2014. HIPPO pathway members restrict SOX2 to the inner cell mass where it promotes ICM fates in the mouse blastocyst. PLOS Genet 10:e1004618
    [Google Scholar]
  19. 19. 
    Niwa H, Toyooka Y, Shimosato D, Strumpf D, Takahashi K et al. 2005. Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell 123:917–29
    [Google Scholar]
  20. 20. 
    Strumpf D, Mao CA, Yamanaka Y, Ralston A, Chawengsaksophak K et al. 2005. Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development 132:2093–102
    [Google Scholar]
  21. 21. 
    Posfai E, Petropoulos S, de Barros FRO, Schell JP, Jurisica I et al. 2017. Position- and Hippo signaling-dependent plasticity during lineage segregation in the early mouse embryo. eLife 6:e22906
    [Google Scholar]
  22. 22. 
    Suwińska A, Czołowska R, Ożdżeński W, Tarkowski AK 2008. Blastomeres of the mouse embryo lose totipotency after the fifth cleavage division: expression of Cdx2 and Oct4 and developmental potential of inner and outer blastomeres of 16- and 32-cell embryos. Dev. Biol. 322:133–44
    [Google Scholar]
  23. 23. 
    Szczepanska K, Stanczuk L, Maleszewski M 2011. Isolated mouse inner cell mass is unable to reconstruct trophectoderm. Differentiation 82:1–8
    [Google Scholar]
  24. 24. 
    Auman HJ, Nottoli T, Lakiza O, Winger Q, Donaldson S, Williams T 2002. Transcription factor AP-2γ is essential in the extra-embryonic lineages for early postimplantation development. Development 129:2733–47
    [Google Scholar]
  25. 25. 
    Russ AP, Wattler S, Colledge WH, Aparicio SA, Carlton MB et al. 2000. Eomesodermin is required for mouse trophoblast development and mesoderm formation. Nature 404:95–99
    [Google Scholar]
  26. 26. 
    Georgiades P, Rossant J. 2006. Ets2 is necessary in trophoblast for normal embryonic anteroposterior axis development. Development 133:1059–68
    [Google Scholar]
  27. 27. 
    Ng RK, Dean W, Dawson C, Lucifero D, Madeja Z et al. 2008. Epigenetic restriction of embryonic cell lineage fate by methylation of Elf5. Nat. Cell Biol 10:1280–90
    [Google Scholar]
  28. 28. 
    Pearton DJ, Smith CS, Redgate E, van Leeuwen J, Donnison M, Pfeffer PL 2014. Elf5 counteracts precocious trophoblast differentiation by maintaining Sox2 and 3 and inhibiting Hand1 expression. Dev. Biol. 392:344–57
    [Google Scholar]
  29. 29. 
    Peter IS, Davidson EH. 2017. Assessing regulatory information in developmental gene regulatory networks. PNAS 114:5862–69
    [Google Scholar]
  30. 30. 
    Sandra O, Charpigny G, Galio L, Hue I 2017. Preattachment embryos of domestic animals: insights into development and paracrine secretions. Annu. Rev. Anim. Biosci. 5:205–28
    [Google Scholar]
  31. 31. 
    Wilcox AJ, Baird DD, Weinberg CR 1999. Time of implantation of the conceptus and loss of pregnancy. N. Engl. J. Med. 340:1796–99
    [Google Scholar]
  32. 32. 
    Dantzer V. 1985. Electron microscopy of the initial stages of placentation in the pig. Anat. Embryol. 172:281–93
    [Google Scholar]
  33. 33. 
    Guillomot M. 1995. Cellular interactions during implantation in domestic ruminants. J. Reprod. Fertil. Suppl. 49:39–51
    [Google Scholar]
  34. 34. 
    Geisert RD, Zavy MT, Moffatt RJ, Blair RM, Yellin T 1990. Embryonic steroids and the establishment of pregnancy in pigs. J. Reprod. Fertil. Suppl. 40:293–305
    [Google Scholar]
  35. 35. 
    Roberts RM, Chen Y, Ezashi T, Walker AM 2008. Interferons and the maternal-conceptus dialog in mammals. Semin. Cell Dev. Biol. 19:170–77
    [Google Scholar]
  36. 36. 
    Bazer FW, Spencer TE, Johnson GA, Burghardt RC, Wu G 2009. Comparative aspects of implantation. Reproduction 138:195–209
    [Google Scholar]
  37. 37. 
    Flint AP, Guesdon FM, Stewart HJ 1994. Regulation of trophoblast interferon gene expression. Mol. Cell. Endocrinol. 100:93–95
    [Google Scholar]
  38. 38. 
    Berg DK, Smith CS, Pearton DJ, Wells DN, Broadhurst R et al. 2011. Trophectoderm lineage determination in cattle. Dev. Cell 20:244–55
    [Google Scholar]
  39. 39. 
    De Paepe C, Cauffman G, Verloes A, Sterckx J, Devroey P et al. 2013. Human trophectoderm cells are not yet committed. Hum. Reprod. 28:740–49
    [Google Scholar]
  40. 40. 
    Blakeley P, Fogarty NM, del Valle I, Wamaitha SE, Hu TX et al. 2015. Defining the three cell lineages of the human blastocyst by single-cell RNA-seq. Development 142:3151–65
    [Google Scholar]
  41. 41. 
    Petropoulos S, Edsgard D, Reinius B, Deng Q, Panula SP et al. 2016. Single-cell RNA-seq reveals lineage and X chromosome dynamics in human preimplantation embryos. Cell 165:1012–26
    [Google Scholar]
  42. 42. 
    Ramos-Ibeas P, Sang F, Zhu Q, Tang WWC, Withey S et al. 2019. Pluripotency and X chromosome dynamics revealed in pig pre-gastrulating embryos by single cell analysis. Nat. Commun. 10:500
    [Google Scholar]
  43. 43. 
    Niakan KK, Eggan K. 2013. Analysis of human embryos from zygote to blastocyst reveals distinct gene expression patterns relative to the mouse. Dev. Biol. 375:54–64
    [Google Scholar]
  44. 44. 
    Wei Q, Li R, Zhong L, Mu H, Zhang S et al. 2018. Lineage specification revealed by single-cell gene expression analysis in pig preimplantation embryos. Biol. Reprod. 99:283–92
    [Google Scholar]
  45. 45. 
    Wei Q, Zhong L, Zhang S, Mu H, Xiang J et al. 2017. Bovine lineage specification revealed by single-cell gene expression analysis from zygote to blastocyst. Biol. Reprod. 97:5–17
    [Google Scholar]
  46. 46. 
    Bou G, Liu S, Sun M, Zhu J, Xue B et al. 2017. CDX2 is essential for cell proliferation and polarity in pig blastocysts. Development 144:1296–306
    [Google Scholar]
  47. 47. 
    Kuijk EW, Du Puy L, Van Tol HT, Oei CH, Haagsman HP et al. 2008. Differences in early lineage segregation between mammals. Dev. Dyn. 237:918–27
    [Google Scholar]
  48. 48. 
    Goissis MD, Cibelli JB. 2014. Functional characterization of CDX2 during bovine preimplantation development in vitro. Mol. Reprod. Dev. 81:962–70
    [Google Scholar]
  49. 49. 
    Valdez Magaña G, Rodríguez A, Zhang H, Webb R, Alberio R 2014. Paracrine effects of embryo-derived FGF4 and BMP4 during pig trophoblast elongation. Dev. Biol. 387:15–27
    [Google Scholar]
  50. 50. 
    Pearton DJ, Broadhurst R, Donnison M, Pfeffer PL 2011. Elf5 regulation in the trophectoderm. Dev. Biol. 360:343–50
    [Google Scholar]
  51. 51. 
    Huang D, Guo G, Yuan P, Ralston A, Sun L et al. 2017. The role of Cdx2 as a lineage specific transcriptional repressor for pluripotent network during the first developmental cell lineage segregation. Sci. Rep. 7:17156
    [Google Scholar]
  52. 52. 
    Cauffman G, Van de Velde H, Liebaers I, Van Steirteghem A 2005. Oct-4 mRNA and protein expression during human preimplantation development. Mol. Hum. Reprod. 11:173–81
    [Google Scholar]
  53. 53. 
    Kirchhof N, Carnwath JW, Lemme E, Anastassiadis K, Schöler H, Niemann H 2000. Expression pattern of Oct-4 in preimplantation embryos of different species. Biol. Reprod. 63:1698–705
    [Google Scholar]
  54. 54. 
    Emura N, Sakurai N, Takahashi K, Hashizume T, Sawai K 2016. OCT-4 expression is essential for the segregation of trophectoderm lineages in porcine preimplantation embryos. J. Reprod. Dev. 62:401–8
    [Google Scholar]
  55. 55. 
    Fogarty NME, McCarthy A, Snijders KE, Powell BE, Kubikova N et al. 2017. Genome editing reveals a role for OCT4 in human embryogenesis. Nature 550:67–73
    [Google Scholar]
  56. 56. 
    Simmet K, Zakhartchenko V, Philippou-Massier J, Blum H, Klymiuk N, Wolf E 2018. OCT4/POU5F1 is required for NANOG expression in bovine blastocysts. PNAS 115:2770–75
    [Google Scholar]
  57. 57. 
    Deng Q, Ramskold D, Reinius B, Sandberg R 2014. Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science 343:193–96
    [Google Scholar]
  58. 58. 
    Negrón-Pérez VM, Zhang Y, Hansen PJ 2017. Single-cell gene expression of the bovine blastocyst. Reproduction 154:627–44
    [Google Scholar]
  59. 59. 
    Stirparo GG, Boroviak T, Guo G, Nichols J, Smith A, Bertone P 2018. Integrated analysis of single-cell embryo data yields a unified transcriptome signature for the human pre-implantation epiblast. Development 145:1–18
    [Google Scholar]
  60. 60. 
    Meistermann D, Loubersac S, Reignier A, Firmin J, Francois-Campion V et al. 2019. Spatio‐temporal analysis of human preimplantation development reveals dynamics of epiblast and trophectoderm. bioRxiv 604751. https://doi.org/10.1101/604751
    [Crossref]
  61. 61. 
    Guzman-Ayala M, Ben-Haim N, Beck S, Constam DB 2004. Nodal protein processing and fibroblast growth factor 4 synergize to maintain a trophoblast stem cell microenvironment. PNAS 101:15656–60
    [Google Scholar]
  62. 62. 
    Rivron NC, Frias-Aldeguer J, Vrij EJ, Boisset JC, Korving J et al. 2018. Blastocyst-like structures generated solely from stem cells. Nature 557:106–11
    [Google Scholar]
  63. 63. 
    Rodríguez A, Allegrucci C, Alberio R 2012. Modulation of pluripotency in the porcine embryo and iPS cells. PLOS ONE 7:e49079
    [Google Scholar]
  64. 64. 
    Fujii T, Sakurai N, Osaki T, Iwagami G, Hirayama H et al. 2013. Changes in the expression patterns of the genes involved in the segregation and function of inner cell mass and trophectoderm lineages during porcine preimplantation development. J. Reprod. Dev. 59:151–58
    [Google Scholar]
  65. 65. 
    Anderson LL. 1978. Growth, protein content and distribution of early pig embryos. Anat. Rec. 190:143–53
    [Google Scholar]
  66. 66. 
    Geisert RD, Lucy MC, Whyte JJ, Ross JW, Mathew DJ 2014. Cytokines from the pig conceptus: roles in conceptus development in pigs. J. Anim. Sci. Biotechnol. 5:51
    [Google Scholar]
  67. 67. 
    Guo G, Huss M, Tong GQ, Wang C, Li Sun L et al. 2010. Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. Dev. Cell 18:675–85
    [Google Scholar]
  68. 68. 
    Ohnishi Y, Huber W, Tsumura A, Kang M, Xenopoulos P et al. 2014. Cell-to-cell expression variability followed by signal reinforcement progressively segregates early mouse lineages. Nat. Cell Biol. 16:27–37
    [Google Scholar]
  69. 69. 
    Boroviak T, Loos R, Bertone P, Smith A, Nichols J 2014. The ability of inner-cell-mass cells to self-renew as embryonic stem cells is acquired following epiblast specification. Nat. Cell Biol. 16:516–28
    [Google Scholar]
  70. 70. 
    Nichols J, Smith A. 2009. Naive and primed pluripotent states. Cell Stem. Cell 4:487–92
    [Google Scholar]
  71. 71. 
    Brons IG, Smithers LE, Trotter MW, Rugg-Gunn P, Sun B et al. 2007. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448:191–95
    [Google Scholar]
  72. 72. 
    Tesar PJ, Chenoweth JG, Brook FA, Davies TJ, Evans EP et al. 2007. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448:196–99
    [Google Scholar]
  73. 73. 
    Ezashi T, Yuan Y, Roberts RM 2016. Pluripotent stem cells from domesticated mammals. Annu. Rev. Anim. Biosci. 4:223–53
    [Google Scholar]
  74. 74. 
    Roberts RM, Yuan Y, Ezashi T 2016. Exploring early differentiation and pluripotency in domestic animals. Reprod. Fertil. Dev. 29:101–7
    [Google Scholar]
  75. 75. 
    Goncalves NN, Ambrosio CE, Piedrahita JA 2014. Stem cells and regenerative medicine in domestic and companion animals: a multispecies perspective. Reprod. Domest. Anim. 49:Suppl. 42–10
    [Google Scholar]
  76. 76. 
    Blomberg LA, Telugu BP. 2012. Twenty years of embryonic stem cell research in farm animals. Reprod. Domest. Anim. 47:Suppl. 480–85
    [Google Scholar]
  77. 77. 
    Kim HS, Son HY, Kim S, Lee GS, Park CH et al. 2007. Isolation and initial culture of porcine inner cell masses derived from in vitro-produced blastocysts. Zygote 15:55–63
    [Google Scholar]
  78. 78. 
    Ezashi T, Matsuyama H, Telugu BP, Roberts RM 2011. Generation of colonies of induced trophoblast cells during standard reprogramming of porcine fibroblasts to induced pluripotent stem cells. Biol. Reprod. 85:779–87
    [Google Scholar]
  79. 79. 
    Hou DR, Jin Y, Nie XW, Zhang ML, Ta N et al. 2016. Derivation of porcine embryonic stem-like cells from in vitro-produced blastocyst-stage embryos. Sci. Rep. 6:25838
    [Google Scholar]
  80. 80. 
    Tan G, Ren L, Huang Y, Tang X, Zhou Y et al. 2012. Isolation and culture of embryonic stem-like cells from pig nuclear transfer blastocysts of different days. Zygote 20:347–52
    [Google Scholar]
  81. 81. 
    Park JK, Kim HS, Uh KJ, Choi KH, Kim HM et al. 2013. Primed pluripotent cell lines derived from various embryonic origins and somatic cells in pig. PLOS ONE 8:e52481
    [Google Scholar]
  82. 82. 
    Hall VJ, Hyttel P. 2014. Breaking down pluripotency in the porcine embryo reveals both a premature and reticent stem cell state in the inner cell mass and unique expression profiles of the naive and primed stem cell states. Stem. Cells Dev. 23:2030–45
    [Google Scholar]
  83. 83. 
    Brevini TA, Pennarossa G, Attanasio L, Vanelli A, Gasparrini B, Gandolfi F 2010. Culture conditions and signalling networks promoting the establishment of cell lines from parthenogenetic and biparental pig embryos. Stem. Cell Rev. 6:484–95
    [Google Scholar]
  84. 84. 
    Xue B, Li Y, He Y, Wei R, Sun R et al. 2016. Porcine pluripotent stem cells derived from IVF embryos contribute to chimeric development in vivo. PLOS ONE 11:e0151737
    [Google Scholar]
  85. 85. 
    Blomberg L, Hashizume K, Viebahn C 2008. Blastocyst elongation, trophoblastic differentiation, and embryonic pattern formation. Reproduction 135:181–95
    [Google Scholar]
  86. 86. 
    Thomson AJ, Pierart H, Meek S, Bogerman A, Sutherland L et al. 2012. Reprogramming pig fetal fibroblasts reveals a functional LIF signaling pathway. Cell. Reprogramming 14:112–22
    [Google Scholar]
  87. 87. 
    Haraguchi S, Kikuchi K, Nakai M, Tokunaga T 2012. Establishment of self-renewing pig embryonic stem cell-like cells by signal inhibition. J. Reprod. Dev. 58:707–16
    [Google Scholar]
  88. 88. 
    Cong S, Cao G, Liu D 2014. Effects of different feeder layers on culture of bovine embryonic stem cell-like cells in vitro. Cytotechnology 66:995–1005
    [Google Scholar]
  89. 89. 
    Jin M, Wu A, Dorzhin S, Yue Q, Ma Y, Liu D 2012. Culture conditions for bovine embryonic stem cell-like cells isolated from blastocysts after external fertilization. Cytotechnology 64:379–89
    [Google Scholar]
  90. 90. 
    Furusawa T, Ohkoshi K, Kimura K, Matsuyama S, Akagi S et al. 2013. Characteristics of bovine inner cell mass-derived cell lines and their fate in chimeric conceptuses. Biol. Reprod. 89:1–12
    [Google Scholar]
  91. 91. 
    Zhao Y, Lin J, Wang L, Chen B, Zhou C et al. 2011. Derivation and characterization of ovine embryonic stem-like cell lines in semi-defined medium without feeder cells. J. Exp. Zool. A Ecol. Genet. Physiol. 315:639–48
    [Google Scholar]
  92. 92. 
    Behboodi E, Bondareva A, Begin I, Rao K, Neveu N et al. 2011. Establishment of goat embryonic stem cells from in vivo produced blastocyst-stage embryos. Mol. Reprod. Dev. 78:202–11
    [Google Scholar]
  93. 93. 
    Vaags AK, Rosic-Kablar S, Gartley CJ, Zheng YZ, Chesney A et al. 2009. Derivation and characterization of canine embryonic stem cell lines with in vitro and in vivo differentiation potential. Stem. Cells 27:329–40
    [Google Scholar]
  94. 94. 
    Guo G, von Meyenn F, Santos F, Chen Y, Reik W et al. 2016. Naive pluripotent stem cells derived directly from isolated cells of the human inner cell mass. Stem. Cell Rep. 6:437–46
    [Google Scholar]
  95. 95. 
    Alberio R, Croxall N, Allegrucci C 2010. Pig epiblast stem cells depend on activin/nodal signaling for pluripotency and self-renewal. Stem Cells Dev 19:1627–36
    [Google Scholar]
  96. 96. 
    Honda A, Hirose M, Ogura A 2009. Basic FGF and Activin/Nodal but not LIF signaling sustain undifferentiated status of rabbit embryonic stem cells. Exp. Cell Res. 315:2033–42
    [Google Scholar]
  97. 97. 
    Intawicha P, Ou YW, Lo NW, Zhang SC, Chen YZ et al. 2009. Characterization of embryonic stem cell lines derived from New Zealand white rabbit embryos. Cloning Stem. Cells 11:27–38
    [Google Scholar]
  98. 98. 
    Schmaltz-Panneau B, Jouneau L, Osteil P, Tapponnier Y, Afanassieff M et al. 2014. Contrasting transcriptome landscapes of rabbit pluripotent stem cells in vitro and in vivo. Anim. Reprod. Sci 149:67–79
    [Google Scholar]
  99. 99. 
    Osteil P, Moulin A, Santamaria C, Joly T, Jouneau L et al. 2016. A panel of embryonic stem cell lines reveals the variety and dynamic of pluripotent states in rabbits. Stem Cell Rep 7:383–98
    [Google Scholar]
  100. 100. 
    Bogliotti YS, Wu J, Vilarino M, Okamura D, Soto DA et al. 2018. Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts. PNAS 115:2090–95
    [Google Scholar]
  101. 101. 
    Guest DJ, Allen WR. 2007. Expression of cell-surface antigens and embryonic stem cell pluripotency genes in equine blastocysts. Stem Cells Dev 16:789–96
    [Google Scholar]
  102. 102. 
    Li X, Zhou SG, Imreh MP, Ahrlund-Richter L, Allen WR 2006. Horse embryonic stem cell lines from the proliferation of inner cell mass cells. Stem Cells Dev 15:523–31
    [Google Scholar]
  103. 103. 
    Kobayashi T, Zhang H, Tang WWC, Irie N, Withey S et al. 2017. Principles of early human development and germ cell program from conserved model systems. Nature 546:416–20
    [Google Scholar]
  104. 104. 
    Yang J, Ryan DJ, Wang W, Tsang JC, Lan G et al. 2017. Establishment of mouse expanded potential stem cells. Nature 550:393–97
    [Google Scholar]
  105. 105. 
    Gao X, Nowak-Imialek M, Chen X, Chen D, Herrmann D et al. 2019. Establishment of porcine and human expanded potential stem cells. Nat. Cell Biol. 21:687–99
    [Google Scholar]
  106. 106. 
    Dunn SJ, Martello G, Yordanov B, Emmott S, Smith AG 2014. Defining an essential transcription factor program for naive pluripotency. Science 344:1156–60
    [Google Scholar]
  107. 107. 
    Boroviak T, Loos R, Lombard P, Okahara J, Behr R et al. 2015. Lineage-specific profiling delineates the emergence and progression of naive pluripotency in mammalian embryogenesis. Dev. Cell 35:366–82
    [Google Scholar]
  108. 108. 
    Nakamura T, Okamoto I, Sasaki K, Yabuta Y, Iwatani C et al. 2016. A developmental coordinate of pluripotency among mice, monkeys and humans. Nature 537:57–62
    [Google Scholar]
  109. 109. 
    Mohammed H, Hernando-Herraez I, Savino A, Scialdone A, Macaulay I et al. 2017. Single-cell landscape of transcriptional heterogeneity and cell fate decisions during mouse early gastrulation. Cell Rep 20:1215–28
    [Google Scholar]
  110. 110. 
    Vallier L, Alexander M, Pedersen RA 2005. Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. J. Cell Sci. 118:4495–509
    [Google Scholar]
  111. 111. 
    Snow MH. 1981. Growth and its control in early mammalian development. Br. Med. Bull. 37:221–26
    [Google Scholar]
  112. 112. 
    Kojima Y, Tam OH, Tam PP 2014. Timing of developmental events in the early mouse embryo. Semin. Cell Dev. Biol. 34:65–75
    [Google Scholar]
  113. 113. 
    Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B et al. 2008. The ground state of embryonic stem cell self-renewal. Nature 453:519–23
    [Google Scholar]
  114. 114. 
    Granier C, Gurchenkov V, Perea-Gomez A, Camus A, Ott S et al. 2011. Nodal cis-regulatory elements reveal epiblast and primitive endoderm heterogeneity in the peri-implantation mouse embryo. Dev. Biol. 349:350–62
    [Google Scholar]
  115. 115. 
    Rawlings JS, Rosler KM, Harrison DA 2004. The JAK/STAT signaling pathway. J. Cell Sci. 117:1281–83
    [Google Scholar]
  116. 116. 
    Van der Jeught M, Heindryckx B, O'Leary T, Duggal G, Ghimire S et al. 2014. Treatment of human embryos with the TGFβ inhibitor SB431542 increases epiblast proliferation and permits successful human embryonic stem cell derivation. Hum. Reprod. 29:41–48
    [Google Scholar]
  117. 117. 
    Chazaud C, Yamanaka Y. 2016. Lineage specification in the mouse preimplantation embryo. Development 143:1063–74
    [Google Scholar]
  118. 118. 
    Chazaud C, Yamanaka Y, Pawson T, Rossant J 2006. Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway. Dev. Cell 10:615–24
    [Google Scholar]
  119. 119. 
    Plusa B, Piliszek A, Frankenberg S, Artus J, Hadjantonakis AK 2008. Distinct sequential cell behaviours direct primitive endoderm formation in the mouse blastocyst. Development 135:3081–91
    [Google Scholar]
  120. 120. 
    Le Bin GC, Muñoz-Descalzo S, Kurowski A, Leitch H, Lou X et al. 2014. Oct4 is required for lineage priming in the developing inner cell mass of the mouse blastocyst. Development 141:1001–10
    [Google Scholar]
  121. 121. 
    Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D et al. 1998. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95:379–91
    [Google Scholar]
  122. 122. 
    Feldman B, Poueymirou W, Papaioannou VE, DeChiara TM, Goldfarb M 1995. Requirement of FGF-4 for postimplantation mouse development. Science 267:246–49
    [Google Scholar]
  123. 123. 
    Kang M, Garg V, Hadjantonakis AK 2017. Lineage establishment and progression within the inner cell mass of the mouse blastocyst requires FGFR1 and FGFR2. Dev. Cell 41:496–510.e5
    [Google Scholar]
  124. 124. 
    Yamanaka Y, Lanner F, Rossant J 2010. FGF signal-dependent segregation of primitive endoderm and epiblast in the mouse blastocyst. Development 137:715–24
    [Google Scholar]
  125. 125. 
    Nichols J, Silva J, Roode M, Smith A 2009. Suppression of Erk signalling promotes ground state pluripotency in the mouse embryo. Development 136:3215–22
    [Google Scholar]
  126. 126. 
    Morris SA, Graham SJ, Jedrusik A, Zernicka-Goetz M 2013. The differential response to Fgf signalling in cells internalized at different times influences lineage segregation in preimplantation mouse embryos. Open. Biol. 3:130104
    [Google Scholar]
  127. 127. 
    Molotkov A, Mazot P, Brewer JR, Cinalli RM, Soriano P 2017. Distinct requirements for FGFR1 and FGFR2 in primitive endoderm development and exit from pluripotency. Dev. Cell 41:511–26.e4
    [Google Scholar]
  128. 128. 
    Kuijk EW, van Tol LT, Van de Velde H, Wubbolts R, Welling M et al. 2012. The roles of FGF and MAP kinase signaling in the segregation of the epiblast and hypoblast cell lineages in cattle and human embryos. Development 139:871–82
    [Google Scholar]
  129. 129. 
    Roode M, Blair K, Snell P, Elder K, Marchant S et al. 2012. Human hypoblast formation is not dependent on FGF signalling. Dev. Biol. 361:358–63
    [Google Scholar]
  130. 130. 
    Canizo JR, Ynsaurralde Rivolta AE, Vazquez Echegaray C, Suvá M, Alberio V et al. 2019. A dose-dependent response to MEK inhibition determines hypoblast fate in bovine embryos. BMC Dev. Biol. 19:13
    [Google Scholar]
  131. 131. 
    McLean Z, Meng F, Henderson H, Turner P, Oback B 2014. Increased MAP kinase inhibition enhances epiblast-specific gene expression in cattle blastocysts. Biol. Reprod. 91:49
    [Google Scholar]
  132. 132. 
    Biechele S, Cox BJ, Rossant J 2011. Porcupine homolog is required for canonical Wnt signaling and gastrulation in mouse embryos. Dev. Biol. 355:275–85
    [Google Scholar]
  133. 133. 
    Denicol AC, Block J, Kelley DE, Pohler KG, Dobbs KB et al. 2014. The WNT signaling antagonist Dickkopf-1 directs lineage commitment and promotes survival of the preimplantation embryo. FASEB J 28:3975–86
    [Google Scholar]
  134. 134. 
    Stern CD, Downs KM. 2012. The hypoblast (visceral endoderm): an evo-devo perspective. Development 139:1059–69
    [Google Scholar]
  135. 135. 
    Rossant J, Tam PP. 2009. Blastocyst lineage formation, early embryonic asymmetries and axis patterning in the mouse. Development 136:701–13
    [Google Scholar]
  136. 136. 
    Roberts RM, Green JA, Schulz LC 2016. The evolution of the placenta. Reproduction 152:R179–89
    [Google Scholar]
  137. 137. 
    Knox K, Baker JC. 2008. Genomic evolution of the placenta using co-option and duplication and divergence. Genome Res 18:695–705
    [Google Scholar]
  138. 138. 
    Leopardo NP, Vitullo AD. 2017. Early embryonic development and spatiotemporal localization of mammalian primordial germ cell-associated proteins in the basal rodent Lagostomus maximus. Sci. Rep 7:594
    [Google Scholar]
  139. 139. 
    Johnson AD, Alberio R. 2015. Primordial germ cells: The first cell lineage or the last cells standing. Development 142:2730–39
    [Google Scholar]
  140. 140. 
    Ohinata Y, Payer B, O'Carroll D, Ancelin K, Ono Y et al. 2005. Blimp1 is a critical determinant of the germ cell lineage in mice. Nature 436:207–13
    [Google Scholar]
  141. 141. 
    Magnusdottir E, Surani MA. 2014. How to make a primordial germ cell. Development 141:245–52
    [Google Scholar]
  142. 142. 
    Sasaki K, Nakamura T, Okamoto I, Yabuta Y, Iwatani C et al. 2016. The germ cell fate of cynomolgus monkeys is specified in the nascent amnion. Dev. Cell 39:169–85
    [Google Scholar]
  143. 143. 
    Johnson AD, Drum M, Bachvarova RF, Masi T, White ME, Crother BI 2003. Evolution of predetermined germ cells in vertebrate embryos: implications for macroevolution. Evol. Dev. 5:414–31
    [Google Scholar]
/content/journals/10.1146/annurev-animal-021419-083841
Loading
/content/journals/10.1146/annurev-animal-021419-083841
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error