1932

Abstract

Cephalopods are resourceful marine predators that have fascinated generations of researchers as well as the public owing to their advanced behavior, complex nervous system, and significance in evolutionary studies. Recent advances in genomics have accelerated the pace of cephalopod research. Many traditional areas focusing on evolution, development, behavior, and neurobiology, primarily on the morphological level, are now transitioning to molecular approaches. This review addresses the recent progress and impact of genomic and other molecular resources on research in cephalopods. We outline several key directions in which significant progress in cephalopod research is expected and discuss its impact on our understanding of the genetic background behind cephalopod biology and beyond.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-021419-083609
2020-02-15
2024-12-03
Loading full text...

Full text loading...

/deliver/fulltext/animal/8/1/annurev-animal-021419-083609.html?itemId=/content/journals/10.1146/annurev-animal-021419-083609&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Packard A. 1972. Cephalopods and fish: the limits of convergence. Biol. Rev. 47:241–307
    [Google Scholar]
  2. 2. 
    Young JZ. 1971. The Anatomy of the Nervous System of Octopus vulgaris Oxford, UK: Clarendon690
    [Google Scholar]
  3. 3. 
    Shigeno S, Andrews PLR, Ponte G, Fiorito G 2018. Cephalopod brains: an overview of current knowledge to facilitate comparison with vertebrates. Front. Physiol. 9:952
    [Google Scholar]
  4. 4. 
    Hanlon RT, Messenger JB. 1996. Cephalopod Behaviour Cambridge, UK: Cambridge Univ. Press232
    [Google Scholar]
  5. 5. 
    Boyle PR, Rodhouse P. 2005. Cephalopods: Ecology and Fisheries Ames, IA: Blackwell Sci452
    [Google Scholar]
  6. 6. 
    Mouritsen OG, Styrbæk K. 2018. Cephalopod gastronomy—a promise for the future. Front. Commun. 3:38
    [Google Scholar]
  7. 7. 
    Winkelmann I, Campos PF, Strugnell J, Cherel Y, Smith PJ et al. 2013. Mitochondrial genome diversity and population structure of the giant squid Architeuthis: Genetics sheds new light on one of the most enigmatic marine species. Proc. Biol. Sci. 280:20130273
    [Google Scholar]
  8. 8. 
    Cheng SH, Anderson FE, Bergman A, Mahardika GN, Muchlisin ZA et al. 2014. Molecular evidence for co-occurring cryptic lineages within the Sepioteuthis cf. lessoniana species complex in the Indian and Indo-West Pacific Oceans. Hydrobiologica 725:165–88
    [Google Scholar]
  9. 9. 
    Lee PN, McFall-Ngai MJ, Callaerts P, de Couet HG 2009. The Hawaiian bobtail squid (Euprymna scolopes): a model to study the molecular basis of eukaryote-prokaryote mutualism and the development and evolution of morphological novelties in cephalopods. Cold Spring Harb. Protoc. 2009:pdb emo135
    [Google Scholar]
  10. 10. 
    Pankey MS, Minin VN, Imholte GC, Suchard MA, Oakley TH 2014. Predictable transcriptome evolution in the convergent and complex bioluminescent organs of squid. PNAS 111:E4736–42
    [Google Scholar]
  11. 11. 
    Allcock AL, Lindgren A, Strugnell JM 2015. The contribution of molecular data to our understanding of cephalopod evolution and systematics: a review. J. Nat. Hist. 49:1373–421
    [Google Scholar]
  12. 12. 
    Sanchez G, Setiamarga DHE, Tuanapaya S, Tongtherm K, Winkelmann IE et al. 2018. Genus-level phylogeny of cephalopods using molecular markers: current status and problematic areas. PeerJ 6:e4331
    [Google Scholar]
  13. 13. 
    Lindgren AR, Anderson FE. 2018. Assessing the utility of transcriptome data for inferring phylogenetic relationships among coleoid cephalopods. Mol. Phylogenet. Evol. 118:330–42
    [Google Scholar]
  14. 14. 
    Tanner AR, Fuchs D, Winkelmann IE, Gilbert MT, Pankey MS et al. 2017. Molecular clocks indicate turnover and diversification of modern coleoid cephalopods during the Mesozoic Marine Revolution. Proc. Biol. Sci. 284:20162818
    [Google Scholar]
  15. 15. 
    Kroger B, Vinther J, Fuchs D 2011. Cephalopod origin and evolution. BioEssays 33:602–13
    [Google Scholar]
  16. 16. 
    Albertin CB, Simakov O, Mitros T, Wang ZY, Pungor JR et al. 2015. The octopus genome and the evolution of cephalopod neural and morphological novelties. Nature 524:220–24
    [Google Scholar]
  17. 17. 
    Kim BM, Kang S, Ahn DH, Jung SH, Rhee H et al. 2018. The genome of common long-arm octopus Octopus minor. Gigascience 7:giy119
    [Google Scholar]
  18. 18. 
    Zarrella I, Herten K, Maes GE, Tai S, Yang M et al. 2019. The survey and reference assisted assembly of the Octopus vulgaris genome. Sci. Data 6:13
    [Google Scholar]
  19. 19. 
    Belcaid M, Casaburi G, McAnulty SJ, Schmidbaur H, Suria AM et al. 2019. Symbiotic organs shaped by distinct modes of genome evolution in cephalopods. PNAS 116:3030–35
    [Google Scholar]
  20. 20. 
    Albertin CB, Bonnaud L, Brown CT, Crookes-Goodson WJ, da Fonseca RR et al. 2012. Cephalopod genomics: a plan of strategies and organization. Stand. Genom. Sci. 7:175–88
    [Google Scholar]
  21. 21. 
    Crook RJ, Lewis T, Hanlon RT, Walters ET 2011. Peripheral injury induces long-term sensitization of defensive responses to visual and tactile stimuli in the squid Loligo pealeii, Lesueur 1821. J. Exp. Biol. 214:3173–85
    [Google Scholar]
  22. 22. 
    Saidel WM, Shashar N, Schmolesky MT, Hanlon RT 2005. Discriminative responses of squid (Loligo pealeii) photoreceptors to polarized light. Comp. Biochem. Physiol. A 142:340–46
    [Google Scholar]
  23. 23. 
    Hodgkin AL, Huxley AF. 1952. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol 116:449–72
    [Google Scholar]
  24. 24. 
    Wollesen T, Loesel R, Wanninger A 2009. Pygmy squids and giant brains: mapping the complex cephalopod CNS by phalloidin staining of vibratome sections and whole-mount preparations. J. Neurosci. Methods 179:63–67
    [Google Scholar]
  25. 25. 
    Koenig KM, Sun P, Meyer E, Gross JM 2016. Eye development and photoreceptor differentiation in the cephalopod Doryteuthis pealeii. Development 143:3168–81
    [Google Scholar]
  26. 26. 
    Wadeson PH, Crawford K. 2003. Formation of the blastoderm and yolk syncytial layer in early squid development. Biol. Bull. 205:179–80
    [Google Scholar]
  27. 27. 
    Buresi A, Canali E, Bonnaud L, Baratte S 2013. Delayed and asynchronous ganglionic maturation during cephalopod neurogenesis as evidenced by Sof-elav1 expression in embryos of Sepia officinalis (Mollusca, Cephalopoda). J. Comp. Neurol. 521:1482–96
    [Google Scholar]
  28. 28. 
    Bassaglia Y, Bekel T, Da Silva C, Poulain J, Andouche A et al. 2012. ESTs library from embryonic stages reveals tubulin and reflectin diversity in Sepia officinalis (Mollusca—Cephalopoda). Gene 498:203–11
    [Google Scholar]
  29. 29. 
    Buresi A, Baratte S, Da Silva C, Bonnaud L 2012. orthodenticle/otx ortholog expression in the anterior brain and eyes of Sepia officinalis (Mollusca, Cephalopoda). Gene Expr. Patterns 12:109–16
    [Google Scholar]
  30. 30. 
    Navet S, Andouche A, Baratte S, Bonnaud L 2009. Shh and Pax6 have unconventional expression patterns in embryonic morphogenesis in Sepia officinalis (Cephalopoda). Gene Expr. Patterns 9:461–67
    [Google Scholar]
  31. 31. 
    Zarrella I, Ponte G, Baldascino E, Fiorito G 2015. Learning and memory in Octopus vulgaris: a case of biological plasticity. Curr. Opin. Neurobiol. 35:74–79
    [Google Scholar]
  32. 32. 
    Hochner B. 2012. An embodied view of octopus neurobiology. Curr. Biol. 22:R887–92
    [Google Scholar]
  33. 33. 
    Shomrat T, Graindorge N, Bellanger C, Fiorito G, Loewenstein Y, Hochner B 2011. Alternative sites of synaptic plasticity in two homologous “fan-out fan-in” learning and memory networks. Curr. Biol. 21:1773–82
    [Google Scholar]
  34. 34. 
    Shigeno S, Ragsdale CW. 2015. The gyri of the octopus vertical lobe have distinct neurochemical identities. J. Comp. Neurol. 523:1297–317
    [Google Scholar]
  35. 35. 
    Shomrat T, Zarrella I, Fiorito G, Hochner B 2008. The octopus vertical lobe modulates short-term learning rate and uses LTP to acquire long-term memory. Curr. Biol. 18:337–42
    [Google Scholar]
  36. 36. 
    Shigeno S, Parnaik R, Albertin CB, Ragsdale CW 2015. Evidence for a cordal, not ganglionic, pattern of cephalopod brain neurogenesis. Zool. Lett. 1:26
    [Google Scholar]
  37. 37. 
    Imperadore P, Shah SB, Makarenkova HP, Fiorito G 2017. Nerve degeneration and regeneration in the cephalopod mollusc Octopus vulgaris: the case of the pallial nerve. Sci. Rep. 7:46564
    [Google Scholar]
  38. 38. 
    McFall-Ngai MJ. 2014. The importance of microbes in animal development: lessons from the squid-vibrio symbiosis. Annu. Rev. Microbiol. 68:177–94
    [Google Scholar]
  39. 39. 
    Collins AJ, LaBarre BA, Won BS, Shah MV, Heng S et al. 2012. Diversity and partitioning of bacterial populations within the accessory nidamental gland of the squid Euprymna scolopes. Appl. Environ. Microbiol 78:4200–8
    [Google Scholar]
  40. 40. 
    Vidal EA, Villanueva R, Andrade JP, Gleadall IG, Iglesias J et al. 2014. Cephalopod culture: current status of main biological models and research priorities. Adv. Mar. Biol. 67:1–98
    [Google Scholar]
  41. 41. 
    Hanlon RT, Claes MF, Ashcraft SE, Dunlap PV 1997. Laboratory culture of the sepiolid squid Euprymna scolopes: a model system for bacteria-animal symbiosis. Biol. Bull. 192:364–74
    [Google Scholar]
  42. 42. 
    Lee PN, Callaerts P, de Couet HG 2009. Culture of Hawaiian bobtail squid (Euprymna scolopes) embryos and observation of normal development. Cold Spring Harb. Protoc. 2009:pdb prot5323
    [Google Scholar]
  43. 43. 
    Hanlon RT, Forsythe JW. 1985. Advances in the laboratory culture of octopuses for biomedical research. Lab. Anim. Sci. 35:33–40
    [Google Scholar]
  44. 44. 
    Naef A. 1928. Die Cephalopoden (Embryologie) Fauna Flora Golfo Napoli Washington, DC: Smithson. Inst.
    [Google Scholar]
  45. 45. 
    Galis F, Sinervo B. 2003. Conserved early embryonic stages. Keywords and Concepts in Evolutionary Developmental Biology BK Hall, WM Olson 43–51 Cambridge, MA: Harvard Univ. Press
    [Google Scholar]
  46. 46. 
    Buresi A, Andouche A, Navet S, Bassaglia Y, Bonnaud-Ponticelli L, Baratte S 2016. Nervous system development in cephalopods: how egg yolk-richness modifies the topology of the mediolateral patterning system. Dev. Biol. 415:143–56
    [Google Scholar]
  47. 47. 
    Wollesen T, Scherholz M, Rodríguez Monje SV, Redl E, Todt C, Wanninger A 2017. Brain regionalization genes are co-opted into shell field patterning in Mollusca. Sci. Rep. 7:5486
    [Google Scholar]
  48. 48. 
    Wollesen T, Rodríguez Monje SV, Todt C, Degnan BM, Wanninger A 2015. Ancestral role of Pax2/5/8 in molluscan brain and multimodal sensory system development. BMC Evol. Biol. 15:231
    [Google Scholar]
  49. 49. 
    Bonnaud L, Ozouf-Costaz C, Boucher-Rodoni R 2004. A molecular and karyological approach to the taxonomy of Nautilus. C. R. Biol 327:133–38
    [Google Scholar]
  50. 50. 
    Hallinan NM, Lindberg DR. 2011. Comparative analysis of chromosome counts infers three paleopolyploidies in the Mollusca. Genome Biol. Evol. 3:1150–63
    [Google Scholar]
  51. 51. 
    Holland PW, Garcia-Fernàndez J, Williams NA, Sidow A 1994. Gene duplications and the origins of vertebrate development. Dev. Suppl. 1994:125–33
    [Google Scholar]
  52. 52. 
    Adamska M, Matus DQ, Adamski M, Green K, Rokhsar DS et al. 2007. The evolutionary origin of hedgehog proteins. Curr. Biol. 17:R836–37
    [Google Scholar]
  53. 53. 
    Cho SJ, Valles Y, Giani VC Jr., Seaver EC, Weisblat DA 2010. Evolutionary dynamics of the wnt gene family: a lophotrochozoan perspective. Mol. Biol. Evol 27:1645–58
    [Google Scholar]
  54. 54. 
    Lee PN, Callaerts P, de Couet HG, Martindale MQ 2003. Cephalopod Hox genes and the origin of morphological novelties. Nature 424:1061–65
    [Google Scholar]
  55. 55. 
    Hulpiau P, van Roy F 2009. Molecular evolution of the cadherin superfamily. Int. J. Biochem. Cell Biol. 41:349–69
    [Google Scholar]
  56. 56. 
    Morishita H, Yagi T. 2007. Protocadherin family: diversity, structure, and function. Curr. Opin. Cell Biol. 19:584–92
    [Google Scholar]
  57. 57. 
    Tada MN, Senzaki K, Tai Y, Morishita H, Tanaka YZ et al. 2004. Genomic organization and transcripts of the zebrafish Protocadherin genes. Gene 340:197–211
    [Google Scholar]
  58. 58. 
    Wang X, Su H, Bradley A 2002. Molecular mechanisms governing Pcdh-γ gene expression: evidence for a multiple promoter and cis-alternative splicing model. Genes Dev 16:1890–905
    [Google Scholar]
  59. 59. 
    Schreiner D, Weiner JA. 2010. Combinatorial homophilic interaction between γ-protocadherin multimers greatly expands the molecular diversity of cell adhesion. PNAS 107:14893–98
    [Google Scholar]
  60. 60. 
    Chen WV, Maniatis T. 2013. Clustered protocadherins. Development 140:3297–302
    [Google Scholar]
  61. 61. 
    Hulpiau P, van Roy F 2011. New insights into the evolution of metazoan cadherins. Mol. Biol. Evol. 28:647–57
    [Google Scholar]
  62. 62. 
    Wang ZY, Ragsdale CW. 2017. Cadherin genes and evolutionary novelties in the octopus. Semin. Cell Dev. Biol. 69:151–57
    [Google Scholar]
  63. 63. 
    Styfhals R, Seuntjens E, Simakov O, Sanges R, Fiorito G 2018. In silico identification and expression of protocadherin gene family in Octopus vulgaris. Front. Physiol 9:1905
    [Google Scholar]
  64. 64. 
    Noonan JP, Grimwood J, Schmutz J, Dickson M, Myers RM 2004. Gene conversion and the evolution of protocadherin gene cluster diversity. Genome Res 14:354–66
    [Google Scholar]
  65. 65. 
    Yu WP, Rajasegaran V, Yew K, Loh WL, Tay BH et al. 2008. Elephant shark sequence reveals unique insights into the evolutionary history of vertebrate genes: a comparative analysis of the protocadherin cluster. PNAS 105:3819–24
    [Google Scholar]
  66. 66. 
    Nowick K, Hamilton AT, Zhang H, Stubbs L 2010. Rapid sequence and expression divergence suggest selection for novel function in primate-specific KRAB-ZNF genes. Mol. Biol. Evol. 27:2606–17
    [Google Scholar]
  67. 67. 
    Niimura Y, Nei M. 2007. Extensive gains and losses of olfactory receptor genes in mammalian evolution. PLOS ONE 2:e708
    [Google Scholar]
  68. 68. 
    Thomas JH, Robertson HM. 2008. The Caenorhabditis chemoreceptor gene families. BMC Biol 6:42
    [Google Scholar]
  69. 69. 
    Ritschard EA, Whitelaw B, Albertin CB, Cooke IR, Strugnell JM, Simakov O 2019. Coupled genomic evolutionary histories as signatures of organismal innovations in cephalopods. BioEssays 41:121900073
    [Google Scholar]
  70. 70. 
    Schaeffer SW. 2018. Muller “elements” in Drosophila: how the search for the genetic basis for speciation led to the birth of comparative genomics. Genetics 210:3–13
    [Google Scholar]
  71. 71. 
    Muller HJ. 1940. Bearing of the Drosophila work on systematics. New Systematics JS Huxley 185–268 Oxford, UK: Clarendon
    [Google Scholar]
  72. 72. 
    Putnam NH, Butts T, Ferrier DE, Furlong RF, Hellsten U et al. 2008. The amphioxus genome and the evolution of the chordate karyotype. Nature 453:1064–71
    [Google Scholar]
  73. 73. 
    Denoeud F, Henriet S, Mungpakdee S, Aury J-M, Da Silva C et al. 2010. Plasticity of animal genome architecture unmasked by rapid evolution of a pelagic tunicate. Science 330:1381
    [Google Scholar]
  74. 74. 
    Katoh M. 2002. WNT and FGF gene clusters (review). Int. J. Oncol. 21:1269–73
    [Google Scholar]
  75. 75. 
    Simakov O, Marletaz F, Cho SJ, Edsinger-Gonzales E, Havlak P et al. 2013. Insights into bilaterian evolution from three spiralian genomes. Nature 493:526–31
    [Google Scholar]
  76. 76. 
    Zimmerman B, Robert NSM, Technau U, Simakov O 2019. Ancient animal genome architecture reflects cell type identities. Nat. Ecol. Evol. 3:1289–93
    [Google Scholar]
  77. 77. 
    Sacerdot C, Louis A, Bon C, Berthelot C, Roest Crollius H 2018. Chromosome evolution at the origin of the ancestral vertebrate genome. Genome Biol 19:166
    [Google Scholar]
  78. 78. 
    Feschotte C, Pritham EJ. 2007. DNA transposons and the evolution of eukaryotic genomes. Annu. Rev. Genet. 41:331–68
    [Google Scholar]
  79. 79. 
    Deininger PL, Batzer MA. 2002. Mammalian retroelements. Genome Res 12:1455–65
    [Google Scholar]
  80. 80. 
    Putnam NH, O'Connell BL, Stites JC, Rice BJ, Blanchette M et al. 2016. Chromosome-scale shotgun assembly using an in vitro method for long-range linkage. Genome Res 26:342–50
    [Google Scholar]
  81. 81. 
    Adachi K, Ohnishi K, Kuramochi T, Yoshinaga T, Okumura S-I 2014. Molecular cytogenetic study in Octopus (Amphioctopus) areolatus from Japan. Fish. Sci. 80:445–50
    [Google Scholar]
  82. 82. 
    van Berkum NL, Lieberman-Aiden E, Williams L, Imakaev M, Gnirke A et al. 2010. Hi-C: a method to study the three-dimensional architecture of genomes. J. Vis. Exp. 39:e1869
    [Google Scholar]
  83. 83. 
    Pope BD, Ryba T, Dileep V, Yue F, Wu W et al. 2014. Topologically associating domains are stable units of replication-timing regulation. Nature 515:402–5
    [Google Scholar]
  84. 84. 
    Acemel RD, Tena JJ, Irastorza-Azcarate I, Marlétaz F, Gómez-Marín C et al. 2016. A single three-dimensional chromatin compartment in amphioxus indicates a stepwise evolution of vertebrate Hox bimodal regulation. Nat. Genet. 48:336–41
    [Google Scholar]
  85. 85. 
    Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ 2013. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10:1213–18
    [Google Scholar]
  86. 86. 
    Wang IX, So E, Devlin JL, Zhao Y, Wu M, Cheung VG 2013. ADAR regulates RNA editing, transcript stability, and gene expression. Cell Rep 5:849–60
    [Google Scholar]
  87. 87. 
    Savva YA, Jepson JE, Chang YJ, Whitaker R, Jones BC et al. 2013. RNA editing regulates transposon-mediated heterochromatic gene silencing. Nat. Commun. 4:2745
    [Google Scholar]
  88. 88. 
    Alon S, Garrett SC, Levanon EY, Olson S, Graveley BR et al. 2015. The majority of transcripts in the squid nervous system are extensively recoded by A-to-I RNA editing. eLife 4:e05198
    [Google Scholar]
  89. 89. 
    Liscovitch-Brauer N, Alon S, Porath HT, Elstein B, Unger R et al. 2017. Trade-off between transcriptome plasticity and genome evolution in cephalopods. Cell 169:191–202.e11
    [Google Scholar]
  90. 90. 
    Crookes WJ, Ding LL, Huang QL, Kimbell JR, Horwitz J, McFall-Ngai MJ 2004. Reflectins: the unusual proteins of squid reflective tissues. Science 303:235–38
    [Google Scholar]
  91. 91. 
    Hiew SH, Sanchez-Ferrer A, Amini S, Zhou F, Adamcik J et al. 2017. Squid suckerin biomimetic peptides form amyloid-like crystals with robust mechanical properties. Biomacromolecules 18:4240–48
    [Google Scholar]
  92. 92. 
    Guerette PA, Hoon S, Ding D, Amini S, Masic A et al. 2014. Nanoconfined β-sheets mechanically reinforce the supra-biomolecular network of robust squid Sucker Ring Teeth. ACS Nano 8:7170–79
    [Google Scholar]
  93. 93. 
    Ding D, Guerette PA, Hoon S, Kong KW, Cornvik T et al. 2014. Biomimetic production of silk-like recombinant squid sucker ring teeth proteins. Biomacromolecules 15:3278–89
    [Google Scholar]
  94. 94. 
    Buck CC, Dennis PB, Gupta MK, Grant MT, Crosby MG et al. 2019. Anion-mediated effects on the size and mechanical properties of enzymatically crosslinked suckerin hydrogels. Macromol. Biosci. 19:e1800238
    [Google Scholar]
  95. 95. 
    Lindgren AR, Pankey MS, Hochberg FG, Oakley TH 2012. A multi-gene phylogeny of Cephalopoda supports convergent morphological evolution in association with multiple habitat shifts in the marine environment. BMC Evol. Biol. 12:129
    [Google Scholar]
  96. 96. 
    Peyer SM, Pankey MS, Oakley TH, McFall-Ngai MJ 2014. Eye-specification genes in the bacterial light organ of the bobtail squid Euprymna scolopes, and their expression in response to symbiont cues. Mech. Dev. 131:111–26
    [Google Scholar]
  97. 97. 
    Reardon S. 2019. CRISPR gene-editing creates wave of exotic model organisms. Nature 568:441–42
    [Google Scholar]
  98. 98. 
    Chen TW, Wardill TJ, Sun Y, Pulver SR, Renninger SL et al. 2013. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499:295–300
    [Google Scholar]
  99. 99. 
    Richter JN, Hochner B, Kuba MJ 2016. Pull or push? Octopuses solve a puzzle problem. PLOS ONE 11:e0152048
    [Google Scholar]
  100. 100. 
    Reiter S, Hulsdunk P, Woo T, Lauterbach MA, Eberle JS et al. 2018. Elucidating the control and development of skin patterning in cuttlefish. Nature 562:361–66
    [Google Scholar]
  101. 101. 
    Sinn DL, Moltschaniwskyj NA. 2005. Personality traits in dumpling squid (Euprymna tasmanica): context-specific traits and their correlation with biological characteristics. J. Comp. Psychol. 119:99–110
    [Google Scholar]
  102. 102. 
    Seehafer K, Brophy S, Tom SR, Crook RJ 2018. Ontogenetic and experience-dependent changes in defensive behavior in captive-bred Hawaiian bobtail squid, Euprymna scolopes. Front. Physiol. 9:299
    [Google Scholar]
  103. 103. 
    Morin SA, Shepherd RF, Kwok SW, Stokes AA, Nemiroski A, Whitesides GM 2012. Camouflage and display for soft machines. Science 337:828–32
    [Google Scholar]
  104. 104. 
    Pikul JH, Li S, Bai H, Hanlon RT, Cohen I, Shepherd RF 2017. Stretchable surfaces with programmable 3D texture morphing for synthetic camouflaging skins. Science 358:210–14
    [Google Scholar]
  105. 105. 
    Wehner M, Truby RL, Fitzgerald DJ, Mosadegh B, Whitesides GM et al. 2016. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536:451–55
    [Google Scholar]
  106. 106. 
    Nakajima R, Shigeno S, Zullo L, De Sio F, Schmidt MR 2018. Cephalopods between science, art, and engineering: a contemporary synthesis. Front. Commun. 3: https://doi.org/10.3389/fcomm.2018.00020
    [Crossref] [Google Scholar]
  107. 107. 
    Staaf D. 2017. Squid Empire: The Rise and Fall of the Cephalopods Lebanon, NH: ForeEdge237
    [Google Scholar]
  108. 108. 
    Hanlon RT, Vecchione M, Allcock L 2018. Octopus, Squid & Cuttlefish: A Visual, Scientific Guide to the Oceans' Most Advanced Invertebrates Chicago: Univ. Chicago Press224
    [Google Scholar]
  109. 109. 
    Montgomery S. 2015. The Soul of an Octopus: A Surprising Exploration into the Wonder of Consciousness New York: Atria Books261
    [Google Scholar]
  110. 110. 
    Godfrey-Smith P. 2016. Other Minds: The Octopus, the Sea, and the Deep Origins of Consciousness New York: Farrar, Straus and Giroux255
    [Google Scholar]
  111. 111. 
    Yoshida MA, Ishikura Y, Moritaki T, Shoguchi E, Shimizu KK et al. 2011. Genome structure analysis of molluscs revealed whole genome duplication and lineage specific repeat variation. Gene 483:63–71
    [Google Scholar]
/content/journals/10.1146/annurev-animal-021419-083609
Loading
/content/journals/10.1146/annurev-animal-021419-083609
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error