1932

Abstract

Marsupial genomes, which are packaged into large chromosomes, provide a powerful resource for studying the mechanisms of genome evolution. The extensive and valuable body of work on marsupial cytogenetics, combined more recently with genome sequence data, has enabled prediction of the 2 = 14 karyotype ancestral to all marsupial families. The application of both chromosome biology and genome sequencing, or chromosomics, has been a necessary approach for various aspects of mammalian genome evolution, such as understanding sex chromosome evolution and the origin and evolution of transmissible tumors in Tasmanian devils. The next phase of marsupial genome evolution research will employ chromosomics approaches to begin addressing fundamental questions in marsupial genome evolution and chromosome evolution more generally. The answers to these complex questions will impact our understanding across a broad range of fields, including the genetics of speciation, genome adaptation to environmental stressors, and species management.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-021419-083555
2020-02-15
2024-06-19
Loading full text...

Full text loading...

/deliver/fulltext/animal/8/1/annurev-animal-021419-083555.html?itemId=/content/journals/10.1146/annurev-animal-021419-083555&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Block M. 1960. Wound healing in the new-born opossum (Didelphis virginianam). Nature 187:340–41
    [Google Scholar]
  2. 2. 
    Green B, Griffiths M, Leckie RMC 1983. Qualitative and quantitative changes in milk fat during lactation in the tammar wallaby (Macropus eugenii). Aust. J. Biol. Sci. 36:5–6455–61
    [Google Scholar]
  3. 3. 
    Tyndale-Biscoe CH. 2005. Life of Marsupials Collingwood, Aust.: CSIRO Publ.
    [Google Scholar]
  4. 4. 
    Duchene DA, Bragg JG, Duchene S, Neaves LE, Potter S et al. 2018. Analysis of phylogenomic tree space resolves relationships among marsupial families. Syst. Biol. 67:3400–12
    [Google Scholar]
  5. 5. 
    Sharman G. 1961. The mitotic chromosomes of marsupials and their bearing on taxonomy and phylogeny. Aust. J. Zool. 9:138–60
    [Google Scholar]
  6. 6. 
    Agar WE. 1923. The male meiotic phase in two genera of marsupials (Macropus and Petauroides). Q. J. Microsc. Sci. 67:183–202
    [Google Scholar]
  7. 7. 
    Painter TS. 1922. Studies in mammalian spermatogenesis. I. The spermatogenesis of the opossum. J. Exp. Zool. 35:13–45
    [Google Scholar]
  8. 8. 
    Jordan HE. 1911. The microscopic anatomy of the epiphysis of the opossum. Anat. Rec. 5:325–38
    [Google Scholar]
  9. 9. 
    Eldridge MDB, Metcalfe CJ. 2006. Marsupialia. Atlas of Mammalian Chromosomes SJ O'Brien, JC Menninger, WG Nash 9–62 Hoboken, NJ: John Wiley & Sons, Inc.
    [Google Scholar]
  10. 10. 
    Hayman DL, Martin PG. 1969. Cytogenetics of marsupials. Comparative Mammalian Cytogenetics K Benirschke 191–217 New York: Springer
    [Google Scholar]
  11. 11. 
    Hayman D. 1989. Marsupial cytogenetics. Aust. J. Zool. 37:3331–49
    [Google Scholar]
  12. 12. 
    Woinarski JCZ, Burbidge AA, Harrison PL 2015. Ongoing unraveling of a continental fauna: decline and extinction of Australian mammals since European settlement. PNAS 112:154531–40
    [Google Scholar]
  13. 13. 
    Travouillon KJ, Phillips MJ. 2018. Total evidence analysis of the phylogenetic relationships of bandicoots and bilbies (Marsupialia: Peramelemorphia): reassessment of two species and description of a new species. Zootaxa 4378:2224–56
    [Google Scholar]
  14. 14. 
    Int. Union Conserv. Nat 2019. The IUCN Red List of Threatened Species Version 2019-1 Cambridge, UK: Int. Union Conserv. Nat http://www.iucnredlist.org
    [Google Scholar]
  15. 15. 
    Koepfli K-P, Paten B, Genome 10K Community Sci., O'Brien SJ 2015. The Genome 10K Project: a way forward. Annu. Rev. Anim. Biosci. 3:57–111
    [Google Scholar]
  16. 16. 
    Lewin HA, Robinson GE, Kress WJ, Baker WJ, Coddington J et al. 2018. Earth BioGenome Project: sequencing life for the future of life. PNAS 115:174325–33
    [Google Scholar]
  17. 17. 
    King M. 1993. Species Evolution: The Role of Chromosome Change New York: Cambridge Univ. Press336
    [Google Scholar]
  18. 18. 
    White MJD. 1978. Modes of Speciation New York: W.H. Freeman & Co.
    [Google Scholar]
  19. 19. 
    Faria R, Navarro A. 2010. Chromosomal speciation revisited: rearranging theory with pieces of evidence. Trends Ecol. Evol. 25:11660–69
    [Google Scholar]
  20. 20. 
    Farré M, Robinson TJ, Ruiz-Herrera A 2015. An Integrative Breakage Model of genome architecture, reshuffling and evolution: the Integrative Breakage Model of genome evolution, a novel multidisciplinary hypothesis for the study of genome plasticity. BioEssays 37:5479–88
    [Google Scholar]
  21. 21. 
    Capilla L, Sánchez-Guillén RA, Farré M, Paytuví-Gallart A, Malinverni R et al. 2016. Mammalian comparative genomics reveals genetic and epigenetic features associated with genome reshuffling in Rodentia. Genome Biol. Evol. 8:123703–17
    [Google Scholar]
  22. 22. 
    Sharman GB. 1973. Chromosomes of non-Eutherian mammals. Cytotaxonomy and Vertebrate Evolution AN Chiarelli, E Capanna 485–530 New York: Academic
    [Google Scholar]
  23. 23. 
    Hayman DL, Martin PG. 1974. Mammalia I: Monotremata and Marsupialia. Animal Cytogenetics, Vol. 4: Chordata B John Berlin/Stuttgart, Ger: Gebruder Borntraeger
    [Google Scholar]
  24. 24. 
    Reig OA, Gardner AL, BianchiI NO, Patton JL 1977. The chromosomes of the Didelphidae (Marsupialia) and their evolutionary significance. Biol. J. Linn. Soc. 9:2191–216
    [Google Scholar]
  25. 25. 
    Rofe R, Hayman D. 1985. G-banding evidence for a conserved complement in Marsupialia. Cytogenet. Cell Genet. 39:40–50
    [Google Scholar]
  26. 26. 
    Svartman M, Vianna-Morgante AM. 1998. Karyotype evolution of marsupials: from higher to lower diploid numbers. Cytogenet. Cell Genet. 82:3–4263–66
    [Google Scholar]
  27. 27. 
    Rens W, O'Brien PCM, Fairclough H, Harman L, Graves JA, Ferguson-Smith MA 2003. Reversal and convergence in marsupial chromosome evolution. Cytogenet. Genome Res. 102:1–4282–90
    [Google Scholar]
  28. 28. 
    De Leo AA, Guedelha N, Toder R, Voullaire L, Ferguson-Smith MA et al. 1999. Comparative chromosome painting between marsupial orders: relationships with a 2n = 14 ancestral marsupial karyotype. Chromosom. Res. 7:7509–17
    [Google Scholar]
  29. 29. 
    Rens W, O'Brien PCM, Yang F, Graves JAM, Ferguson-Smith MA 1999. Karyotype relationships between four distantly related marsupials revealed by reciprocal chromosome painting. Chromosom. Res. 7:6461–74
    [Google Scholar]
  30. 30. 
    O'Neill RJ, Eldridge MDB, Toder R, Ferguson-Smith MA, O'Brien PC, Graves JAM 1999. Chromosome evolution in kangaroos (Marsupialia: Macropodidae): cross species chromosome painting between the tammar wallaby and rock wallaby spp. with the 2n = 22 ancestral macropodid karyotype. Genome 42:3525–30
    [Google Scholar]
  31. 31. 
    Westerman M, Meredith RW, Springer MS 2010. Cytogenetics meets phylogenetics: a review of karyotype evolution in diprotodontian marsupials. J. Hered. 101:6690–702
    [Google Scholar]
  32. 32. 
    Pevzner P, Tesler G. 2003. Genome rearrangements in mammalian evolution: lessons from human and mouse genomes. Genome Res 13:137–45
    [Google Scholar]
  33. 33. 
    Peng Q, Pevzner PA, Tesler G 2006. The fragile breakage versus random breakage models of chromosome evolution. PLOS Comput. Biol. 2:2100–11
    [Google Scholar]
  34. 34. 
    O'Neill RJ, Eldridge MDB, Metcalfe CJ 2004. Centromere dynamics and chromosome evolution in marsupials. J. Hered. 95:5375–81
    [Google Scholar]
  35. 35. 
    Williamson TE, Brusatte SL, Wilson GP 2014. The origin and early evolution of metatherian mammals: the Cretaceous record. Zookeys 465:1–76
    [Google Scholar]
  36. 36. 
    dos Reis M, Inoue J, Hasegawa M, Asher RJ, Donoghue PCJ, Yang Z 2012. Phylogenomic datasets provide both precision and accuracy in estimating the timescale of placental mammal phylogeny. Proc. R. Soc. B Biol. Sci. 279:3491–500
    [Google Scholar]
  37. 37. 
    Glas R, Graves JAM, Toder R, Ferguson-Smith M, O'Brien PC 1999. Cross-species chromosome painting between human and marsupial directly demonstrates the ancient region of the mammalian X. Mamm. Genome 10:111115–16
    [Google Scholar]
  38. 38. 
    Deakin JE, Kruger-Andrzejewska M. 2016. Marsupials as models for understanding the role of chromosome rearrangements in evolution and disease. Chromosoma 125:4633–44
    [Google Scholar]
  39. 39. 
    Young GJ, Graves JAM, Barbieri I, Woolley PA, Cooper DW, Westerman M 1982. The chromosomes of dasyurids (Marsupialia). Carnivorous Marsupials M Archer Mosman, Aust: R. Zool. Soc.
    [Google Scholar]
  40. 40. 
    Baverstock PR, Adams M, Archer M, Mckenzie NL, How RA 1983. An electrophoretic and chromosomal study of the dasyurid marsupial genus Ningaui Archer. Aust. J. Zool. 31:3381–92
    [Google Scholar]
  41. 41. 
    Westerman M, Woolley PA. 1990. Cytogenetics of some New Guinean dasyurids and genome evolution in the Dasyuridae (Marsupialia). Aust. J. Zool. 37:5521–31
    [Google Scholar]
  42. 42. 
    Westerman M, Woolley PA. 1993. Chromosomes and the evolution of dasyurid marsupials: an overview. Sci. N. Guin. 19:2123–30
    [Google Scholar]
  43. 43. 
    Bender HS, Murchison EP, Pickett HA, Deakin JE, Strong MA et al. 2012. Extreme telomere length dimorphism in the Tasmanian devil and related marsupials suggests parental control of telomere length. PLOS ONE 7:9e46195
    [Google Scholar]
  44. 44. 
    Ingles ED, Deakin JE. 2018. The methylation and telomere landscape in two families of marsupials with different rates of chromosome evolution. Chromosom. Res. 26:4317–32
    [Google Scholar]
  45. 45. 
    Rofe R. 1978. G-banded chromosomes and the evolution of Macropodidae. Aust. Mammal. 2:53–63
    [Google Scholar]
  46. 46. 
    Eldridge MDB, Close RL. 1993. Radiation of chromosome shuffles. Curr. Opin. Genet. Dev. 3:6915–22
    [Google Scholar]
  47. 47. 
    Eldridge MDB, Johnston PG. 1993. Chromosomal rearrangements in rock wallabies, Petrogale (Marsupialia: Macropodidae): VIII. An investigation of the nonrandom nature of karyotypic change. Genome 36:3524–34
    [Google Scholar]
  48. 48. 
    Bulazel KV, Ferreri GC, Eldridge MDB, O'Neill RJ 2007. Species-specific shifts in centromere sequence composition are coincident with breakpoint reuse in karyotypically divergent lineages. Genome Biol 8:8R170
    [Google Scholar]
  49. 49. 
    Klein SJ, O'Neill RJ. 2018. Transposable elements: genome innovation, chromosome diversity, and centromere conflict. Chromosom. Res. 26:1–25–23
    [Google Scholar]
  50. 50. 
    Brown JD, O'Neill RJ. 2010. Chromosomes, conflict, and epigenetics: chromosomal speciation revisited. Annu. Rev. Genom. Hum. Genet. 11:291–316
    [Google Scholar]
  51. 51. 
    McKinley KL, Cheeseman IM. 2016. The molecular basis for centromere identity and function. Nat. Rev. Mol. Cell Biol. 17:116–29
    [Google Scholar]
  52. 52. 
    Henikoff S, Ahmad K, Malik HS 2001. The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293:1098–102
    [Google Scholar]
  53. 53. 
    Ferreri GC, Liscinsky DM, Mack JA, Eldridge MDB, O'Neill RJ 2005. Retention of latent centromeres in the mammalian genome. J. Hered. 96:3217–24
    [Google Scholar]
  54. 54. 
    Ferreri GC, Marzelli M, Rens W, O'Neill RJ 2004. A centromere-specific retroviral element associated with breaks of synteny in macropodine marsupials. Cytogenet. Genome Res. 107:1–2115–18
    [Google Scholar]
  55. 55. 
    Montefalcone G, Tempesta S, Rocchi M, Archidiacono N 1999. Centromere repositioning. Genome Res 9:1184–88
    [Google Scholar]
  56. 56. 
    Ventura M, Archidiacono N, Rocchi M 2001. Centromere emergence in evolution. Genome Res 11:595–99
    [Google Scholar]
  57. 57. 
    Deakin JE. 2012. Marsupial genome sequences: providing insight into evolution and disease. Scientifica 2012:543176
    [Google Scholar]
  58. 58. 
    Mikkelsen TS, Wakefield MJ, Aken B, Amemiya CT, Chang JL et al. 2007. Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences. Nature 447:7141167–77
    [Google Scholar]
  59. 59. 
    Renfree MB, Papenfuss AT, Deakin JE, Lindsay J, Heider T et al. 2011. Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development. Genome Biol 12:8R81
    [Google Scholar]
  60. 60. 
    Miller W, Hayes VM, Ratan A, Petersen DC, Wittekindt NE et al. 2011. Genetic diversity and population structure of the endangered marsupial Sarcophilus harrisii (Tasmanian devil). PNAS 108:12348–53
    [Google Scholar]
  61. 61. 
    Murchison EP, Schulz-Trieglaff OB, Ning Z, Alexandrov LB, Bauer MJ et al. 2012. Genome sequencing and analysis of the Tasmanian devil and its transmissible cancer. Cell 148:4780–91
    [Google Scholar]
  62. 62. 
    Feigin CY, Newton AH, Doronina L, Schmitz J, Hipsley CA et al. 2018. Genome of the Tasmanian tiger provides insights into the evolution and demography of an extinct marsupial carnivore. Nat. Ecol. Evol. 2:1182–92
    [Google Scholar]
  63. 63. 
    Johnson RN, O'Meally D, Chen Z, Etherington GJ, Ho SYW et al. 2018. Adaptation and conservation insights from the koala genome. Nat. Genet. 50:81102–11
    [Google Scholar]
  64. 64. 
    Lewin HA, Larkin DM, Pontius J, O'Brien SJ 2009. Every genome sequence needs a good map. Genome Res 19:111925–28
    [Google Scholar]
  65. 65. 
    Kim J, Farre M, Auvil L, Capitanu B, Larkin DM et al. 2017. Reconstruction and evolutionary history of eutherian chromosomes. PNAS 114:27E5379–88
    [Google Scholar]
  66. 66. 
    Duke SE, Samollow PB, Mauceli E, Lindblad-Toh K, Breen M 2007. Integrated cytogenetic BAC map of the genome of the gray, short-tailed opossum. Monodelphis domestica. Chromosom. Res. 15:3361–70
    [Google Scholar]
  67. 67. 
    Deakin JE, Delbridge ML, Koina E, Harley N, Alsop AE et al. 2013. Reconstruction of the ancestral marsupial karyotype from comparative gene maps. BMC Evol. Biol. 13:258
    [Google Scholar]
  68. 68. 
    Deakin JE, Bender HS, Pearse A-M, Rens W, O'Brien PCM et al. 2012. Genomic restructuring in the Tasmanian devil facial tumour: chromosome painting and gene mapping provide clues to evolution of a transmissible tumour. PLOS Genet 8:2e1002483
    [Google Scholar]
  69. 69. 
    Taylor RL, Zhang Y, Schöning JP, Deakin JE 2017. Identification of candidate genes for devil facial tumour disease tumourigenesis. Sci. Rep. 7:18761
    [Google Scholar]
  70. 70. 
    Wang C, Webley L, Wei K, Wakefield MJ, Patel HR et al. 2011. A second-generation anchored genetic linkage map of the tammar wallaby (Macropus eugenii). BMC Genet 12:172
    [Google Scholar]
  71. 71. 
    Wang C, Deakin JE, Rens W, Zenger KR, Belov K et al. 2011. A first-generation integrated tammar wallaby map and its use in creating a tammar wallaby first-generation virtual genome map. BMC Genom 12:1422
    [Google Scholar]
  72. 72. 
    Deakin JE. 2010. Physical and comparative gene maps in marsupials. Marsupial Genetics and Genomics JE Deakin, PD Waters, JAM Graves 101–15 Dordrecht, Neth: Springer
    [Google Scholar]
  73. 73. 
    Deakin JE, Potter S. 2019. Marsupial chromosomics: bridging the gap between genomes and chromosomes. Reprod. Fertil. Dev. 31:1189–202
    [Google Scholar]
  74. 74. 
    Claussen U. 2005. Chromosomics. Cytogenet. Genome Res. 111:2101–6
    [Google Scholar]
  75. 75. 
    Lieberman-Aiden E, Van Berkum NL, Williams L, Imakaev M, Ragoczy T et al. 2009. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:5950289–93
    [Google Scholar]
  76. 76. 
    Fullwood MJ, Liu MH, Pan YF, Liu J, Xu H et al. 2009. An oestrogen-receptor-α-bound human chromatin interactome. Nature 462:58–64
    [Google Scholar]
  77. 77. 
    Siddle HV, Deakin JE, Coggill P, Whilming L, Harrow J et al. 2011. The tammar wallaby major histocompatibility complex shows evidence of past genomic instability. BMC Genom 12:421
    [Google Scholar]
  78. 78. 
    Siddle HV, Deakin JE, Coggill P, Hart E, Cheng Y et al. 2009. MHC-linked and un-linked class I genes in the wallaby. BMC Genom 10:310
    [Google Scholar]
  79. 79. 
    Deakin JE, Siddle HV, Cross JGR, Belov K, Graves JAM 2007. Class I genes have split from the MHC in the tammar wallaby. Cytogenet. Genome Res. 116:3205–11
    [Google Scholar]
  80. 80. 
    Potter S, Deakin JE. 2018. Cytogenetics: an important inclusion in the conservation genetics toolbox. Pac. Conserv. Biol. 24:3280–88
    [Google Scholar]
  81. 81. 
    Miga KH. 2015. Completing the human genome: the progress and challenge of satellite DNA assembly. Chromosom. Res. 23:3421–26
    [Google Scholar]
  82. 82. 
    Altemose N, Miga KH, Maggioni M, Willard HF 2014. Genomic characterization of large heterochromatic gaps in the human genome assembly. PLOS Comput. Biol. 10:e1003628
    [Google Scholar]
  83. 83. 
    Jain M, Olsen HE, Turner DJ, Stoddart D, Bulazel KV et al. 2018. Linear assembly of a human Y centromere using nanopore long reads. Nat. Biotechnol. 36:321–23
    [Google Scholar]
  84. 84. 
    Hartley G, O'Neill R. 2019. Centromere repeats: hidden gems of the genome. Genes 10:3E223
    [Google Scholar]
  85. 85. 
    Carone DM, Longo MS, Ferreri GC, Hall L, Harris M et al. 2009. A new class of retroviral and satellite encoded small RNAs emanates from mammalian centromeres. Chromosoma 118:113–25
    [Google Scholar]
  86. 86. 
    Foster JW, Brennan FE, Hampikian GK, Goodfellow PN, Sinclair AH et al. 1992. Evolution of sex determination and the Y chromosome: SRY-related sequences in marsupials. Nature 359:6395531–33
    [Google Scholar]
  87. 87. 
    Sharman GB, Hughes RL, Cooper DW 1990. The chromosomal basis of sex differentiation in marsupials. Aust. J. Zool. 371970:451–66
    [Google Scholar]
  88. 88. 
    Graves JAM. 1996. Mammals that break the rules: genetics of marsupials and monotremes. Annu. Rev. Genet. 30:233–60
    [Google Scholar]
  89. 89. 
    Graves JAM, Wakefield MJ, Toder R 1998. The origin and evolution of the pseudoautosomal regions of human sex chromosomes. Hum. Mol. Genet. 7:131991–96
    [Google Scholar]
  90. 90. 
    Sharp P. 1982. Sex chromosome pairing during male meiosis in marsupials. Chromosoma 86:127–47
    [Google Scholar]
  91. 91. 
    Page J, Berríos S, Rufas JS, Parra MT, Suja JA et al. 2003. The pairing of X and Y chromosomes during meiotic prophase in the marsupial species Thylamys elegans is maintained by a dense plate developed from their axial elements. J. Cell Sci. 116:551–60
    [Google Scholar]
  92. 92. 
    Richardson BJ, Czuppon AB, Sharman GB 1971. Inheritance of glucose-6-phosphate dehydrogenase variation in kangaroos. Nat. New Biol. 230:13154–55
    [Google Scholar]
  93. 93. 
    Sharman GB. 1971. Late DNA replication in the paternally derived X chromosome of female kangaroos. Nature 230:5291231–32
    [Google Scholar]
  94. 94. 
    Ohno S. 1967. Sex Chromosomes and Sex-Linked Genes Berlin: Springer-Verlag
    [Google Scholar]
  95. 95. 
    Deakin JE, Koina E, Waters PD, Doherty R, Patel VS et al. 2008. Physical map of two tammar wallaby chromosomes: a strategy for mapping in non-model mammals. Chromosom. Res. 16:81159–75
    [Google Scholar]
  96. 96. 
    Rodríguez Delgado CL, Waters PD, Gilbert C, Robinson TJ, Graves JAM 2009. Physical mapping of the elephant X chromosome: conservation of gene order over 105 million years. Chromosom. Res. 17:7917–26
    [Google Scholar]
  97. 97. 
    Proskuryakova AA, Kulemzina AI, Perelman PL, Makunin AI, Larkin DM et al. 2017. X chromosome evolution in Cetartiodactyla. Genes 8:9216
    [Google Scholar]
  98. 98. 
    Eldridge MDB, Close RL. 1997. Chromosomes and evolution in rock-wallabies, Petrogale (Marsupialia: Macropodidae). Aust. Mammal. 19:123–36
    [Google Scholar]
  99. 99. 
    Tomaszkiewicz M, Medvedev P, Makova KD 2017. Y and W chromosome assemblies: approaches and discoveries. Trends Genet 33:4266–82
    [Google Scholar]
  100. 100. 
    Toder R, Wakefield MJ, Graves JA 2000. The minimal mammalian Y chromosome—the marsupial Y as a model system. Cytogenet. Cell Genet. 91:1–4285–92
    [Google Scholar]
  101. 101. 
    Hughes JF, Skaletsky H, Pyntikova T, Graves TA, van Daalen SKM et al. 2010. Chimpanzee and human Y chromosomes are remarkably divergent in structure and gene content. Nature 463:53639
    [Google Scholar]
  102. 102. 
    Murtagh VJ, O'Meally D, Sankovic N, Delbridge ML, Kuroki Y et al. 2012. Evolutionary history of novel genes on the tammar wallaby Y chromosome: implications for sex chromosome evolution. Genome Res 22:3498–507
    [Google Scholar]
  103. 103. 
    Sankovic N, Delbridge ML, Grützner F, Ferguson-Smith MA, O'Brien PCM, Graves JAM 2006. Construction of a highly enriched marsupial Y chromosome-specific BAC sub-library using isolated Y chromosomes. Chromosom. Res. 14:6657–64
    [Google Scholar]
  104. 104. 
    Bellott DW, Hughes JF, Skaletsky H, Brown LG, Pyntikova T et al. 2014. Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators. Nature 508:7497494–99
    [Google Scholar]
  105. 105. 
    Tomaszkiewicz M, Rangavittal S, Cechova M, Sanchez C, Fescemyer HW et al. 2016. A time- and cost-effective strategy to sequence mammalian Y chromosomes: an application to the de novo assembly of gorilla Y. Genome Res 26:530–40
    [Google Scholar]
  106. 106. 
    Ma L, Li W, Song Q 2017. Chromosome-range whole-genome high-throughput experimental haplotyping by single-chromosome microdissection. Methods Mol. Biol. 1551:161–69
    [Google Scholar]
  107. 107. 
    Pearse A-M, Swift K. 2006. Allograft theory: transmission of devil facial-tumour disease. Nature 439:549
    [Google Scholar]
  108. 108. 
    Pye RJ, Pemberton D, Tovar C, Tubio JMC, Dun KA et al. 2016. A second transmissible cancer in Tasmanian devils. PNAS 113:2374–79
    [Google Scholar]
  109. 109. 
    Stammnitz MR, Coorens THH, Gori KC, Hayes D, Fu B et al. 2018. The origins and vulnerabilities of two transmissible cancers in Tasmanian devils. Cancer Cell 33:4607–19.e15
    [Google Scholar]
  110. 110. 
    Ingles ED, Deakin JE. 2015. Global DNA methylation patterns on marsupial and devil facial tumour chromosomes. Mol. Cytogenet. 8:174
    [Google Scholar]
  111. 111. 
    Ouborg NJ, Pertoldi C, Loeschcke V, Bijlsma RK, Hedrick PW 2010. Conservation genetics in transition to conservation genomics. Trends Genet 26:4177–87
    [Google Scholar]
  112. 112. 
    He X, Johansson ML, Heath DD 2016. Role of genomics and transcriptomics in selection of reintroduction source populations. Conserv. Biol. 30:51010–18
    [Google Scholar]
  113. 113. 
    Supple MA, Shapiro B. 2018. Conservation of biodiversity in the genomics era. Genome Biol 19:131
    [Google Scholar]
  114. 114. 
    McNew SM, Beck D, Sadler-Riggleman I, Knutie SA, Koop JAH et al. 2017. Epigenetic variation between urban and rural populations of Darwin's finches. BMC Evol. Biol. 17:1183
    [Google Scholar]
  115. 115. 
    Thorson JLM, Smithson M, Beck D, Sadler-Riggleman I, Nilsson E et al. 2017. Epigenetics and adaptive phenotypic variation between habitats in an asexual snail. Sci. Rep. 7:14139
    [Google Scholar]
  116. 116. 
    Schmid MW, Heichinger C, Coman Schmid D, Guthörl D, Gagliardini V et al. 2018. Contribution of epigenetic variation to adaptation in Arabidopsis. Nat. Commun 9:4446
    [Google Scholar]
  117. 117. 
    Ho WC, Zhang J. 2018. Evolutionary adaptations to new environments generally reverse plastic phenotypic changes. Nat. Commun. 9:350
    [Google Scholar]
  118. 118. 
    Ngo SNT, McKinnon RA, Stupans I 2006. Cloning and expression of koala (Phascolarctos cinereus) liver cytochrome P450 CYP4A15. Gene 376:123–32
    [Google Scholar]
  119. 119. 
    Kratzing JE. 1984. The anatomy and histology of the nasal cavity of the koala (Phascolarctos cinereus). J. Anat. 138:55–65
    [Google Scholar]
  120. 120. 
    Moore BD, Foley WJ, Wallis IR, Cowling A, Handasyde KA 2005. Eucalyptus foliar chemistry explains selective feeding by koalas. Biol. Lett. 1:64–67
    [Google Scholar]
  121. 121. 
    Morris K, Austin JJ, Belov K 2013. Low major histocompatibility complex diversity in the Tasmanian devil predates European settlement and may explain susceptibility to disease epidemics. Biol. Lett. 9:20120900
    [Google Scholar]
  122. 122. 
    Brüniche-Olsen A, Jones ME, Austin JJ, Burridge CP, Holland BR 2014. Extensive population decline in the Tasmanian devil predates European settlement and devil facial tumour disease. Biol. Lett. 10:20140619
    [Google Scholar]
  123. 123. 
    Schiffels S, Durbin R. 2014. Inferring human population size and separation history from multiple genome sequences. Nat. Genet. 46:919–25
    [Google Scholar]
  124. 124. 
    McCallum H, Jones M, Hawkins C, Hamede R, Lachish S et al. 2009. Transmission dynamics of Tasmanian devil facial tumor disease may lead to disease-induced extinction. Ecology 90:3379–92
    [Google Scholar]
  125. 125. 
    Epstein B, Jones M, Hamede R, Hendricks S, McCallum H et al. 2016. Rapid evolutionary response to a transmissible cancer in Tasmanian devils. Nat. Commun. 7:12684
    [Google Scholar]
  126. 126. 
    Wright B, Willet CE, Hamede R, Jones M, Belov K, Wade CM 2017. Variants in the host genome may inhibit tumour growth in devil facial tumours: evidence from genome-wide association. Sci. Rep. 7:1423
    [Google Scholar]
  127. 127. 
    Polkinghorne A, Hanger J, Timms P 2013. Recent advances in understanding the biology, epidemiology and control of chlamydial infections in koalas. Vet. Microbiol. 165:3–4214–23
    [Google Scholar]
  128. 128. 
    Skerratt LF, Martin RW, Handasyde KA 1998. Sarcoptic mange in wombats. Aust. Vet. J. 76:6408–10
    [Google Scholar]
  129. 129. 
    May-Collado LJ, Kilpatrick CW, Agnarsson I 2015. Mammals from ‘down under’: a multi-gene species-level phylogeny of marsupial mammals (Mammalia, Metatheria). PeerJ 26:3e805
    [Google Scholar]
  130. 130. 
    Meredith RW, Westerman M, Springer MS 2009. A phylogeny of Diprotodontia (Marsupialia) based on sequences for five nuclear genes. Mol. Phylogenet. Evol. 51:3554–71
    [Google Scholar]
  131. 131. 
    Malekian M, Cooper SJB, Norman JA, Christidis L, Carthew SM 2010. Molecular systematics and evolutionary origins of the genus Petaurus (Marsupialia: Petauridae) in Australia and New Guinea. Mol. Phylogenet. Evol. 54:1122–35
    [Google Scholar]
  132. 132. 
    Life 1943. Life presents R. Buckminster Fuller's dymaxion world. Life March 1 41–55
    [Google Scholar]
  133. 133. 
    Uno Y, Nishida C, Tarui H, Ishishita S, Takagi C et al. 2012. Inference of the protokaryotypes of amniotes and tetrapods and the evolutionary processes of microchromosomes from comparative gene mapping. PLOS ONE 7:12e53027
    [Google Scholar]
/content/journals/10.1146/annurev-animal-021419-083555
Loading
/content/journals/10.1146/annurev-animal-021419-083555
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error