1932

Abstract

An estimated 1.3 million infections and 420 deaths occur annually in the United States, with an estimated economic burden of $3.7 billion. More than 50% of US swine operations test positive for according to the National Animal Health Monitoring System, and 20% of from swine are multidrug resistant (resistant to ≥3 antimicrobial classes) as reported by the National Antimicrobial Resistance Monitoring System. This review on in swine addresses the current status of these topics by discussing antimicrobial resistance and metal tolerance in and the contribution of horizontal gene transfer. A major challenge in controlling is that is a foodborne pathogen in humans but is often a commensal in food animals and thereby establishes an asymptomatic reservoir state in such animals, including swine. As food animal production systems continue to expand and antimicrobial usage becomes more limited, the need for interventions has intensified. A promising mitigation strategy is vaccination against in swine to limit animal, environmental, and food contamination.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-013120-043304
2022-02-15
2024-12-06
Loading full text...

Full text loading...

/deliver/fulltext/animal/10/1/annurev-animal-013120-043304.html?itemId=/content/journals/10.1146/annurev-animal-013120-043304&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    World Health Organ 2015. Salmonella (non-typhoidal). Fact Sheet, April 21. https://www.who.int/news-room/fact-sheets/detail/salmonella-(non-typhoidal)
  2. 2. 
    Majowicz SE, Musto J, Scallan E, Angulo FJ, Kirk M et al. 2010. The global burden of nontyphoidal Salmonella gastroenteritis. Clin. Infect. Dis. 50:882–89
    [Google Scholar]
  3. 3. 
    Cent. Dis. Control Prev 2021. Salmonella https://www.cdc.gov/salmonella/index.html
    [Google Scholar]
  4. 4. 
    Hoffmann S, Maculloch B, Batz M. 2015. Economic burden of major foodborne illnesses acquired in the United States. Bull. EIB-140 US Dep. Agric., Econ. Res. Serv. Washington, DC:
    [Google Scholar]
  5. 5. 
    Cent. Dis. Control Prev 2018. National outbreak reporting system dashboard Washington, DC: US Dep. Health Hum. Serv. accessed March 5, 2021. https://wwwn.cdc.gov/norsdashboard/
    [Google Scholar]
  6. 6. 
    Natl. Anim. Health Monit. Serv 2009. Salmonella on U.S. swine sites—prevalence and antimicrobial susceptibility Info Sheet, Vet. Serv., US Dep. Agric. Washington, DC: http://www.aphis.usda.gov/animal_health/nahms/swine/downloads/swine2006/Swine2006_is_salmonella_1.pdf
    [Google Scholar]
  7. 7. 
    Food Drug Adm 2021. NARMS Now: integrated data US Dep. Health Hum. Serv. Washington, DC: https://www.fda.gov/animal-veterinary/national-antimicrobial-resistance-monitoring-system/narms-now-integrated-data. Accessed on April 25, 2021
    [Google Scholar]
  8. 8. 
    Eur. Food Saf. Auth., Eur. Cent. Dis. Prev. Control 2019. The European Union One Health 2018 Zoonoses Report. EFSA J 17:e05926
    [Google Scholar]
  9. 9. 
    Bonardi S. 2017. Salmonella in the pork production chain and its impact on human health in the European Union. Epidemiol. Infect. 145:1513–26
    [Google Scholar]
  10. 10. 
    Berends BR, Urlings HA, Snijders JM, Van Knapen F. 1996. Identification and quantification of risk factors in animal management and transport regarding Salmonella spp. in pigs. Int. J. Food Microbiol. 30:37–53
    [Google Scholar]
  11. 11. 
    Campos J, Mourão J, Peixe L, Antunes P 2019. Non-typhoidal Salmonella in the pig production chain: a comprehensive analysis of its impact on human health. Pathogens 8:19
    [Google Scholar]
  12. 12. 
    Haddock RL. 1970. Asymptomatic salmonellosis in a swine herd. Am. J. Public Health 60:2345–53
    [Google Scholar]
  13. 13. 
    Stevens MP, Humphrey TJ, Maskell DJ. 2009. Molecular insights into farm animal and zoonotic Salmonella infections. Philos. Trans. R. Soc. Lond. B 364:2709–23
    [Google Scholar]
  14. 14. 
    Foley SL, Lynne AM, Nayak R 2008. Salmonella challenges: prevalence in swine and poultry and potential pathogenicity of such isolates. J. Anim. Sci. 86:E149–62
    [Google Scholar]
  15. 15. 
    Boyen F, Haesebrouck F, Maes D, Van Immerseel F, Ducatelle R, Pasmans F 2008. Non-typhoidal Salmonella infections in pigs: a closer look at epidemiology, pathogenesis and control. Vet. Microbiol. 130:1–19
    [Google Scholar]
  16. 16. 
    Andres VM, Davies RH. 2015. Biosecurity measures to control Salmonella and other infectious agents in pig farms: a review. Compr. Rev. Food Sci. Food Saf. 14:317–35
    [Google Scholar]
  17. 17. 
    Buncic S, Sofos J. 2012. Interventions to control Salmonella contamination during poultry, cattle and pig slaughter. Food Res. Int. 45:641–55
    [Google Scholar]
  18. 18. 
    Verbrugghe E, Dhaenens M, Leyman B, Boyen F, Shearer N et al. 2016. Host stress drives Salmonella recrudescence. Sci. Rep. 6:20849
    [Google Scholar]
  19. 19. 
    Verbrugghe E, Boyen F, Gaastra W, Bekhuis L, Leyman B et al. 2012. The complex interplay between stress and bacterial infections in animals. Vet. Microbiol. 155:115–27
    [Google Scholar]
  20. 20. 
    Hurd HS, McKean JD, Griffith RW, Wesley IV, Rostagno MH 2002. Salmonella enterica infections in market swine with and without transport and holding. Appl. Environ. Microbiol. 68:2376–81
    [Google Scholar]
  21. 21. 
    Jayaraman B, Nyachoti CM. 2017. Husbandry practices and gut health outcomes in weaned piglets: a review. Anim. Nutr. 3:205–11
    [Google Scholar]
  22. 22. 
    Bernad-Roche M, Casanova-Higes A, Marín-Alcalá CM, Cebollada-Solanas A, Mainar-Jaime RC 2021. Salmonella infection in nursery piglets and its role in the spread of salmonellosis to further production periods. Pathogens 10:123
    [Google Scholar]
  23. 23. 
    Ferrari RG, Rosario DKA, Cunha-Neto A, Mano SB, Figueiredo EES, Conte-Junior CA. 2019. Worldwide epidemiology of Salmonella serovars in animal-based foods: a meta-analysis. Appl. Environ. Microbiol. 85:e00591-19
    [Google Scholar]
  24. 24. 
    Cote S, Letellier A, Lessard L, Quessy S. 2004. Distribution of Salmonella in tissues following natural and experimental infection in pigs. Can. J. Vet. Res. 68:241–48
    [Google Scholar]
  25. 25. 
    Fedorka-Cray PJ, Gray JT, Wray C 2000. Salmonella infections in pigs. In Salmonella in Domestic Animalsed. P Barrow, U Methnerpp. 191207 Wallingford, UK: CAB Int.
    [Google Scholar]
  26. 26. 
    Steenackers H, Hermans K, Vanderleyden J, De Keersmaecke SCJ. 2012. Salmonella biofilms: an overview on occurrence, structure, regulation and eradication. Food Res. Int. 45:502–31
    [Google Scholar]
  27. 27. 
    Capita R, Fernández-Pérez S, Buzón-Durán L, Alonso-Calleja C 2019. Effect of sodium hypochlorite and benzalkonium chloride on the structural parameters of the biofilms formed by ten Salmonella enterica serotypes. Pathogens 8:154
    [Google Scholar]
  28. 28. 
    Cent. Dis. Control Prev 2016. National enteric disease surveillance: Salmonella annual report Rep., Cent. Dis. Control Prev. Atlanta, GA:
    [Google Scholar]
  29. 29. 
    Eur. Food Saf. Auth 2018. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. EFSA J 16:e05500
    [Google Scholar]
  30. 30. 
    Morningstar-Shaw BR, Mackie TA, Barker DK, Palmer EA. 2016. Salmonella Serotypes Isolated from Animals and Related Sources Atlanta: Cent. Dis. Control Prev.
    [Google Scholar]
  31. 31. 
    Hendriksen RS, Vieira AR, Karlsmose S, Lo Fo Wong DMA, Jensen AB et al. 2011. Global monitoring of Salmonella serovar distribution from the World Health Organization Global Foodborne Infections Network Country Data Bank: results of quality assured laboratories from 2001 to 2007. Foodborne Pathog. Dis. 8:887–900
    [Google Scholar]
  32. 32. 
    Wu C, Yan M, Liu L, Lai J, Chan EW, Chen S. 2018. Comparative characterization of nontyphoidal Salmonella isolated from humans and food animals in China, 2003–2011. Heliyon 4:e00613
    [Google Scholar]
  33. 33. 
    Cent. Dis. Control Prev 2021. National Antimicrobial Resistance Monitoring System (NARMS) Now: Human Data Washington, DC: US Food Drug Adm accessed April 21, 2021. https://www.cdc.gov/narmsnow
    [Google Scholar]
  34. 34. 
    Anim. Plant Health Inspect. Serv 2019. Antimicrobial Resistance Pilot Project: year 1 report, 2018 Rep., US Dep. Agric. Washington, DC: https://www.aphis.usda.gov/animal_health/nahln/downloads/2018%20APHIS%20AMR%20Pilot%20Project%20EOY%20Report-05.01.2019.pdf
    [Google Scholar]
  35. 35. 
    Hong S, Rovira A, Davies P, Ahlstrom C, Muellner P et al. 2016. Serotypes and antimicrobial resistance in Salmonella enterica recovered from clinical samples from cattle and swine in Minnesota, 2006 to 2015. PLOS ONE 11:e0168016
    [Google Scholar]
  36. 36. 
    Food Drug Adm 2020. 2018 NARMS Update: Integrated Report Summary Rep., Food Drug Adm Washington, DC: https://www.fda.gov/animal-veterinary/national-antimicrobial-resistance-monitoring-system/2018-narms-update-integrated-report-summary
    [Google Scholar]
  37. 37. 
    Nguyen Thi H, Pham TT, Turchi B, Fratini F, Ebani VV et al. 2020. Characterization of Salmonella spp. isolates from swine: virulence and antimicrobial resistance. Animals 10:2418
    [Google Scholar]
  38. 38. 
    Seiffert SN, Hilty M, Perreten V, Endimiani A 2013. Extended-spectrum cephalosporin-resistant Gram-negative organisms in livestock: An emerging problem for human health?. Drug Resist. Update 16:22–45
    [Google Scholar]
  39. 39. 
    Cuypers WL, Jacobs J, Wong V, Klemm EJ, Deborggraeve S, Van Puyvelde S 2018. Fluoroquinolone resistance in Salmonella: insights by whole-genome sequencing. Microb. Genom 4:e000195
    [Google Scholar]
  40. 40. 
    World Health Organ 2017. Critically Important Antimicrobials for Human Medicine: Ranking of Medically Important Antimicrobials for Risk Management of Antimicrobial Resistance Due to Non-Human Use Geneva, Switz.: World Health Organ 5th rev 2016.
    [Google Scholar]
  41. 41. 
    Cent. Dis. Control Prev 2019. Antibiotic resistance threats in the United States Rep., Cent. Dis. Control Prev Atlanta: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf
    [Google Scholar]
  42. 42. 
    Moreno Switt AI, den Bakker HC, Cummings CA, Rodriguez-Rivera LD, Govoni G et al. 2012. Identification and characterization of novel Salmonella mobile elements involved in the dissemination of genes linked to virulence and transmission. PLOS ONE 7:e41247
    [Google Scholar]
  43. 43. 
    Ilyas B, Tsai CN, Coombes BK. 2017. Evolution of Salmonella-host cell interactions through a dynamic bacterial genome. Front. Cell Infect. Microbiol. 7:428
    [Google Scholar]
  44. 44. 
    Baumler AJ. 1997. The record of horizontal gene transfer in Salmonella. Trends Microbiol 5:318–22
    [Google Scholar]
  45. 45. 
    Ochman H, Wilson AC. 1987. Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J. Mol. Evol. 26:74–86
    [Google Scholar]
  46. 46. 
    Mahillon J, Chandler M. 1998. Insertion sequences. Microbiol. Mol. Biol. Rev. 62:725–74
    [Google Scholar]
  47. 47. 
    Delihas N. 2011. Impact of small repeat sequences on bacterial genome evolution. Genome Biol. Evol. 3:959–73
    [Google Scholar]
  48. 48. 
    Penades JR, Chen J, Quiles-Puchalt N, Carpena N, Novick RP 2015. Bacteriophage-mediated spread of bacterial virulence genes. Curr. Opin. Microbiol. 23:171–78
    [Google Scholar]
  49. 49. 
    Frost LS, Leplae R, Summers AO, Toussaint A. 2005. Mobile genetic elements: the agents of open source evolution. Nat. Rev. Microbiol. 3:722–32
    [Google Scholar]
  50. 50. 
    Soucy SM, Huang J, Gogarten JP. 2015. Horizontal gene transfer: building the web of life. Nat. Rev. Genet. 16:472–82
    [Google Scholar]
  51. 51. 
    Burrus V, Waldor MK. 2004. Shaping bacterial genomes with integrative and conjugative elements. Res. Microbiol. 155:376–86
    [Google Scholar]
  52. 52. 
    McMillan EA, Jackson CR, Frye JG 2020. Transferable plasmids of Salmonella enterica associated with antibiotic resistance genes. Front. Microbiol. 11:562181
    [Google Scholar]
  53. 53. 
    Wales AD, Davies RH 2015. Co-selection of resistance to antibiotics, biocides and heavy metals, and its relevance to foodborne pathogens. Antibiotics 4:567–604
    [Google Scholar]
  54. 54. 
    Bearson BL, Brunelle BW. 2015. Fluoroquinolone induction of phage-mediated gene transfer in multidrug-resistant Salmonella. Int. J. Antimicrob. Agents 46:201–4
    [Google Scholar]
  55. 55. 
    Zeineldin M, Aldridge B, Lowe J 2019. Antimicrobial effects on swine gastrointestinal microbiota and their accompanying antibiotic resistome. Front. Microbiol. 10:1035
    [Google Scholar]
  56. 56. 
    Looft T, Allen HK, Casey TA, Alt DP, Stanton TB 2014. Carbadox has both temporary and lasting effects on the swine gut microbiota. Front. Microbiol. 5:276
    [Google Scholar]
  57. 57. 
    Johnson TA, Looft T, Severin AJ, Bayles DO, Nasko DJ et al. 2017. The in-feed antibiotic carbadox induces phage gene transcription in the swine gut microbiome. mBio 8:E00709-17
    [Google Scholar]
  58. 58. 
    Food Drug Adm 2021. Questions and answers regarding carbadox Food Drug Adm Washington, DC: accessed April 10, 2021. https://www.fda.gov/animal-veterinary/product-safety-information/questions-and-answers-regarding-carbadox
    [Google Scholar]
  59. 59. 
    Bearson BL, Allen HK, Brunelle BW, Lee IS, Casjens SR, Stanton TB. 2014. The agricultural antibiotic carbadox induces phage-mediated gene transfer in Salmonella. Front. Microbiol. 5:52
    [Google Scholar]
  60. 60. 
    Gill FA, Hook EW 1966. Salmonella strains with transferable antimicrobial resistance. JAMA 198:1267–69
    [Google Scholar]
  61. 61. 
    Pocurull DW, Gaines SA, Mercer HD. 1971. Survey of infectious multiple drug resistance among Salmonella isolated from animals in the United States. Appl. Microbiol. 21:358–62
    [Google Scholar]
  62. 62. 
    Schroeder SA, Terry PM, Bennett JV 1968. Antibiotic resistance and transfer factor in Salmonella, United States 1967. JAMA 205:903–6
    [Google Scholar]
  63. 63. 
    Mastrorilli E, Pietrucci D, Barco L, Ammendola S, Petrin S et al. 2018. A comparative genomic analysis provides novel insights into the ecological success of the monophasic Salmonella serovar 4,[5],12:i-. Front. Microbiol 9:715
    [Google Scholar]
  64. 64. 
    Cent. Dis. Control Prev 2018. National Antimicrobial Resistance Monitoring System for Enteric Bacteria (NARMS): human isolates surveillance report for 2015 (final report) Rep., Cent. Dis. Control Prev. Atlanta:
    [Google Scholar]
  65. 65. 
    Machado J, Bernardo F. 1990. Prevalence of Salmonella in chicken carcasses in Portugal. J. Appl. Bacteriol. 69:477–80
    [Google Scholar]
  66. 66. 
    Naberhaus SA, Krull AC, Bradner LK, Harmon KM, Arruda P et al. 2019. Emergence of Salmonella enterica serovar 4,[5],12:i:- as the primary serovar identified from swine clinical samples and development of a multiplex real-time PCR for improved Salmonella serovar-level identification. J. Vet. Diagn. Investig. 31:818–27
    [Google Scholar]
  67. 67. 
    Self JL, Luna-Gierke RE, Fothergill A, Holt KG, Vieira AR. 2017. Outbreaks attributed to pork in the United States, 1998–2015. Epidemiol. Infect. 145:2980–90
    [Google Scholar]
  68. 68. 
    Kawakami VM, Bottichio L, Angelo K, Linton N, Kissler B et al. 2016. Notes from the field: outbreak of multidrug-resistant Salmonella infections linked to pork—Washington, 2015. MMWR 65:379–81
    [Google Scholar]
  69. 69. 
    Bearson BL, Trachsel JM, Holman DB, Brunelle BW, Sivasankaran SK et al. 2019. Complete genome sequence of multidrug-resistant Salmonella enterica serovar I 4,[5],12:i:- 2015 U.S. pork outbreak isolate USDA15WA-1. Microbiol. Resour. Announc. 8:e00791-19
    [Google Scholar]
  70. 70. 
    Garcia P, Malorny B, Rodicio MR, Stephan R, Hachler H et al. 2016. Horizontal acquisition of a multidrug-resistance module (R-type ASSuT) is responsible for the monophasic phenotype in a widespread clone of Salmonella serovar 4,[5],12:i-. Front. Microbiol 7:680
    [Google Scholar]
  71. 71. 
    Lucarelli C, Dionisi AM, Filetici E, Owczarek S, Luzzi I, Villa L 2012. Nucleotide sequence of the chromosomal region conferring multidrug resistance (R-type ASSuT) in Salmonella Typhimurium and monophasic Salmonella Typhimurium strains. J. Antimicrob. Chemother. 67:111–14
    [Google Scholar]
  72. 72. 
    Loftie-Eaton W, Rawlings DE. 2012. Diversity, biology and evolution of IncQ-family plasmids. Plasmid 67:15–34
    [Google Scholar]
  73. 73. 
    Elnekave E, Hong S, Mather AE, Boxrud D, Taylor AJ et al. 2017. Salmonella enterica serotype 4,[5],12:i:- in swine in the United States Midwest: an emerging multidrug-resistant clade. Clin. Infect. Dis 66:877–85
    [Google Scholar]
  74. 74. 
    Petrovska L, Mather AE, AbuOun M, Branchu P, Harris SR et al. 2016. Microevolution of monophasic Salmonella Typhimurium during epidemic, United Kingdom, 2005–2010. Emerg. Infect. Dis. 22:617–24
    [Google Scholar]
  75. 75. 
    Bearson BL, Trachsel JM, Shippy DC, Sivasankaran SK, Kerr BJ et al. 2020. The role of Salmonella genomic island 4 in metal tolerance of Salmonella enterica serovar I 4,[5],12:i:- pork outbreak isolate USDA15WA-1. Genes 11:1291
    [Google Scholar]
  76. 76. 
    Arai N, Sekizuka T, Tamamura Y, Tanaka K, Barco L et al. 2018. Phylogenetic characterization of Salmonella enterica serovar Typhimurium and its monophasic variant isolated from food animals in Japan revealed replacement of major epidemic clones in the last 4 decades. J. Clin. Microbiol. 56:e01758-17
    [Google Scholar]
  77. 77. 
    Arai N, Sekizuka T, Tamamura Y, Kusumoto M, Hinenoya A et al. 2019. Salmonella genomic island 3 is an integrative and conjugative element and contributes to copper and arsenic tolerance of Salmonella enterica. Antimicrob. Agents Chemother. 63:e00429-19
    [Google Scholar]
  78. 78. 
    Rensing C, Grass G. 2003. Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol. Rev. 27:197–213
    [Google Scholar]
  79. 79. 
    Espariz M, Checa SK, Audero MEP, Pontel LB, Soncini FC. 2007. Dissecting the Salmonella response to copper. Microbiology 153:2989–97
    [Google Scholar]
  80. 80. 
    Branchu P, Charity OJ, Bawn M, Thilliez G, Dallman TJ et al. 2019. SGI-4 in monophasic Salmonella Typhimurium ST34 is a novel ICE that enhances resistance to copper. Front. Microbiol. 10:1118
    [Google Scholar]
  81. 81. 
    Kapetanovic R, Bokil NJ, Achard ME, Ong CL, Peters KM et al. 2016. Salmonella employs multiple mechanisms to subvert the TLR-inducible zinc-mediated antimicrobial response of human macrophages. FASEB J 30:1901–12
    [Google Scholar]
  82. 82. 
    Stafford SL, Bokil NJ, Achard ME, Kapetanovic R, Schembri MA et al. 2013. Metal ions in macrophage antimicrobial pathways: emerging roles for zinc and copper. Biosci. Rep. 33:300049
    [Google Scholar]
  83. 83. 
    Jacela JY, DeRouchey JM, Tokach MD, Goodband RD, Nelssen JL et al. 2010. Feed additives for swine: fact sheets—high dietary levels of copper and zinc for young pigs, and phytase. J. Swine Health Prod. 18:87–91
    [Google Scholar]
  84. 84. 
    Hahn JD, Baker DH. 1993. Growth and plasma zinc responses of young pigs fed pharmacologic levels of zinc. J. Anim. Sci. 71:3020–24
    [Google Scholar]
  85. 85. 
    Hu C, Song J, You Z, Luan Z, Li W. 2012. Zinc oxide–montmorillonite hybrid influences diarrhea, intestinal mucosal integrity, and digestive enzyme activity in weaned pigs. Biol. Trace Element Res. 149:190–96
    [Google Scholar]
  86. 86. 
    Pieper R, Vahjen W, Neumann K, Van Kessel AG, Zentek J. 2012. Dose-dependent effects of dietary zinc oxide on bacterial communities and metabolic profiles in the ileum of weaned pigs. J. Anim. Physiol. Anim. Nutr. 96:825–33
    [Google Scholar]
  87. 87. 
    Højberg O, Canibe N, Poulsen HD, Hedemann MS, Jensen BB. 2005. Influence of dietary zinc oxide and copper sulfate on the gastrointestinal ecosystem in newly weaned piglets. Appl. Environ. Microbiol. 71:2267–77
    [Google Scholar]
  88. 88. 
    Namkung H, Gong J, Yu H, de Lange CFM. 2006. Effect of pharmacological intakes of zinc and copper on growth performance, circulating cytokines and gut microbiota of newly weaned piglets challenged with coliform lipopolysaccharides. Can. J. Anim. Sci. 86:511–22
    [Google Scholar]
  89. 89. 
    Brown NL, Barrett SR, Camakaris J, Lee BT, Rouch DA 1995. Molecular genetics and transport analysis of the copper-resistance determinant (pco) from Escherichia coli plasmid pRJ1004. Mol. Microbiol. 17:1153–66
    [Google Scholar]
  90. 90. 
    Campos J, Mourao J, Marcal S, Machado J, Novais C et al. 2016. Clinical Salmonella Typhimurium ST34 with metal tolerance genes and an IncHI2 plasmid carrying oqxAB-aac(6')-Ib-cr from Europe. J. Antimicrob. Chemother. 71:843–45
    [Google Scholar]
  91. 91. 
    Mourão J, Marçal S, Ramos P, Campos J, Machado J et al. 2016. Tolerance to multiple metal stressors in emerging non-typhoidal MDR Salmonella serotypes: a relevant role for copper in anaerobic conditions. J. Antimicrob. Chemother. 71:2147–57
    [Google Scholar]
  92. 92. 
    Seiler C, Berendonk TU. 2012. Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Front. Microbiol. 3:399
    [Google Scholar]
  93. 93. 
    Baker-Austin C, Wright MS, Stepanauskas R, McArthur JV. 2006. Co-selection of antibiotic and metal resistance. Trends Microbiol 14:176–82
    [Google Scholar]
  94. 94. 
    Mourão J, Novais C, Machado J, Peixe L, Antunes P 2015. Metal tolerance in emerging clinically relevant multidrug-resistant Salmonella enterica serotype 4,[5],12:i:- clones circulating in Europe. Int. J. Antimicrob. Agents 45:610–16
    [Google Scholar]
  95. 95. 
    Figueiredo R, Card RM, Nunez-Garcia J, Mendonça N, da Silva GJ, Anjum MF. 2019. Multidrug-resistant Salmonella enterica isolated from food animal and foodstuff may also be less susceptible to heavy metals. Foodborne Pathog. Dis. 16:166–72
    [Google Scholar]
  96. 96. 
    Poole K. 2017. At the nexus of antibiotics and metals: the impact of Cu and Zn on antibiotic activity and resistance. Trends Microbiol 25:820–32
    [Google Scholar]
  97. 97. 
    Argudin MA, Hoefer A, Butaye P. 2019. Heavy metal resistance in bacteria from animals. Res. Vet. Sci. 122:132–47
    [Google Scholar]
  98. 98. 
    Chalmers G, Rozas KM, Amachawadi RG, Scott HM, Norman KN et al. 2018. Distribution of the pco gene cluster and associated genetic determinants among swine Escherichia coli from a controlled feeding trial. Genes 9:504
    [Google Scholar]
  99. 99. 
    Medardus JJ, Molla BZ, Nicol M, Morrow WM, Rajala-Schultz PJ et al. 2014. In-feed use of heavy metal micronutrients in U.S. swine production systems and its role in persistence of multidrug-resistant salmonellae. Appl. Environ. Microbiol. 80:2317–25
    [Google Scholar]
  100. 100. 
    Tassinari E, Duffy G, Bawn M, Burgess CM, McCabe EM et al. 2019. Microevolution of antimicrobial resistance and biofilm formation of Salmonella Typhimurium during persistence on pig farms. Sci. Rep. 9:8832
    [Google Scholar]
  101. 101. 
    Seixas R, Machado J, Bernardo F, Vilela C, Oliveira M. 2014. Biofilm formation by Salmonella enterica serovar 1,4,[5],12:i:- Portuguese isolates: a phenotypic, genotypic, and socio-geographic analysis. Curr. Microbiol. 68:670–77
    [Google Scholar]
  102. 102. 
    Shippy DC, Bearson BL, Holman DB, Brunelle BW, Allen HK, Bearson SMD 2018. Porcine response to a multidrug-resistant Salmonella enterica serovar I 4,[5],12:i:- outbreak isolate. Foodborne Pathog. Dis. 15:253–61
    [Google Scholar]
  103. 103. 
    Arruda BL, Burrough ER, Schwartz KJ. 2019. Salmonella enterica I 4,[5],12:i:- associated with lesions typical of swine enteric salmonellosis. Emerg Infect. Dis. 25:1377–79
    [Google Scholar]
  104. 104. 
    Naberhaus SA, Krull AC, Arruda BL, Arruda P, Sahin O et al. 2020. Pathogenicity and competitive fitness of Salmonella enterica serovar 4,[5],12:i:- compared to Salmonella Typhimurium and Salmonella Derby in swine. Front. Vet. Sci 6:502
    [Google Scholar]
  105. 105. 
    Burrough E 2021. Intestinal salmonellosis in pigs. Merck Veterinary Manual Merck & Co Kenilworth, NJ: Merck & Co https://www.merckvetmanual.com/digestive-system/intestinal-diseases-in-pigs/intestinal-salmonellosis-in-pigs
    [Google Scholar]
  106. 106. 
    Wales AD, Cook AJ, Davies RH. 2011. Producing Salmonella-free pigs: a review focusing on interventions at weaning. Vet. Rec. 168:267–76
    [Google Scholar]
  107. 107. 
    Kim HB, Isaacson RE. 2017. Salmonella in swine: microbiota interactions. Annu. Rev. Anim. Biosci. 5:43–63
    [Google Scholar]
  108. 108. 
    Bearson SM, Bearson BL, Loving CL, Allen HK, Lee I et al. 2016. Prophylactic administration of vector-encoded porcine granulocyte-colony stimulating factor reduces Salmonella shedding, tonsil colonization, and microbiota alterations of the gastrointestinal tract in Salmonella-challenged swine. Front. Vet. Sci. 3:66
    [Google Scholar]
  109. 109. 
    Lordan C, Thapa D, Ross RP, Cotter PD 2020. Potential for enriching next-generation health-promoting gut bacteria through prebiotics and other dietary components. Gut Microbes 11:1–20
    [Google Scholar]
  110. 110. 
    Berge AC, Wierup M. 2012. Nutritional strategies to combat Salmonella in mono-gastric food animal production. Animal 6:557–64
    [Google Scholar]
  111. 111. 
    Zhang J, Li Z, Cao Z, Wang L, Li X et al. 2015. Bacteriophages as antimicrobial agents against major pathogens in swine: a review. J. Anim. Sci. Biotechnol. 6:39
    [Google Scholar]
  112. 112. 
    Xiao H, Shao F, Wu M, Ren W, Xiong X et al. 2015. The application of antimicrobial peptides as growth and health promoters for swine. J. Anim. Sci. Biotechnol. 6:19
    [Google Scholar]
  113. 113. 
    Liu Y, Espinosa CD, Abelilla JJ, Casas GA, Lagos LV et al. 2018. Non-antibiotic feed additives in diets for pigs: a review. Anim. Nutr. 4:113–25
    [Google Scholar]
  114. 114. 
    Menegat MB, Goodband RD, DeRouchey JM, Tokach MD, Woodworth JC, Dritz SS. 2019. Feed additives in swine diets Swine Nutr. Guide, Kans. State Univ Manhattan, KS:
    [Google Scholar]
  115. 115. 
    Wales AD, Davies RH. 2017. Salmonella vaccination in pigs: a review. Zoonoses Public Health 64:1–13
    [Google Scholar]
  116. 116. 
    de la Cruz ML, Conrado I, Nault A, Perez A, Dominguez L, Alvarez J. 2017. Vaccination as a control strategy against Salmonella infection in pigs: a systematic review and meta-analysis of the literature. Res. Vet. Sci. 114:86–94
    [Google Scholar]
  117. 117. 
    Murtaugh MP. 2014. Advances in swine immunology help move vaccine technology forward. Vet. Immunol. Immunopathol. 159:202–7
    [Google Scholar]
  118. 118. 
    Schmidt S, Sassu EL, Vatzia E, Pierron A, Lagler J et al. 2020. Vaccination and infection of swine with Salmonella Typhimurium induces a systemic and local multifunctional CD4+ T-cell response. Front. Immunol. 11:603089
    [Google Scholar]
  119. 119. 
    Lumsden JS, Wilkie BN. 1992. Immune response of pigs to parenteral vaccination with an aromatic-dependent mutant of Salmonella typhimurium. Can. J. Vet. Res. 56:296–302
    [Google Scholar]
  120. 120. 
    Gayet R, Bioley G, Rochereau N, Paul S, Corthesy B 2017. Vaccination against Salmonella infection: the mucosal way. Microbiol. Mol. Biol. Rev. 81:e0007-17
    [Google Scholar]
  121. 121. 
    Pollard AJ, Bijker EM. 2021. A guide to vaccinology: from basic principles to new developments. Nat. Rev. Immunol. 21:83–100
    [Google Scholar]
  122. 122. 
    Smith RP, Andres V, Martelli F, Gosling B, Marco-Jimenez F et al. 2018. Maternal vaccination as a Salmonella Typhimurium reduction strategy on pig farms. J. Appl. Microbiol. 124:274–85
    [Google Scholar]
  123. 123. 
    Matiasovic J, Kudlackova H, Babickova K, Stepanova H, Volf J et al. 2013. Impact of maternally-derived antibodies against Salmonella enterica serovar Typhimurium on the bacterial load in suckling piglets. Vet. J. 196:114–15
    [Google Scholar]
  124. 124. 
    Ruggeri J, Pesciaroli M, Foresti F, Giacomini E, Lazzaro M et al. 2015. Inactivated Salmonella enterica serovar Typhimurium monophasic variant (S. Typhimurium 1,4,[5],12:i-) in sows is effective to control infection in piglets under field condition. Vet. Microbiol. 180:82–89
    [Google Scholar]
  125. 125. 
    Hur J, Song SO, Lim JS, Chung IK, Lee JH 2011. Efficacy of a novel virulence gene-deleted Salmonella Typhimurium vaccine for protection against Salmonella infections in growing piglets. Vet. Immunol. Immunopathol. 139:250–56
    [Google Scholar]
  126. 126. 
    Cent. Vet. Biol 2020. Veterinary biological products: licensees and permittees prepared April 1, 2020 Vet. Biol. Prod. Cat., Cent. Vet. Biol. Ames, IA: https://www.aphis.usda.gov/animal_health/vet_biologics/publications/currentprodcodebook.pdf
    [Google Scholar]
  127. 127. 
    Schwarz P, Kich JD, Kolb J, Cardoso M. 2011. Use of an avirulent live Salmonella Choleraesuis vaccine to reduce the prevalence of Salmonella carrier pigs at slaughter. Vet. Rec. 169:553
    [Google Scholar]
  128. 128. 
    Husa JA, Edler RA, Walter DH, Holck JT, Saltzman RJ. 2009. A comparison of the safety, cross-protection, and serologic response associated with two commercial oral Salmonella vaccines in swine. J. Swine Health Prod. 17:10–21
    [Google Scholar]
  129. 129. 
    Peeters L, Dewulf J, Boyen F, Brosse C, Vandersmissen T et al. 2020. Evaluation of group vaccination of sows and gilts against Salmonella Typhimurium with an attenuated vaccine in subclinically infected pig herds. Prev. Vet. Med. 182:104884
    [Google Scholar]
  130. 130. 
    Peeters L, Dewulf J, Boyen F, Brosse C, Vandersmissen T et al. 2019. Effects of attenuated vaccine protocols against Salmonella Typhimurium on Salmonella serology in subclinically infected pig herds. Vet. J. 249:67–72
    [Google Scholar]
  131. 131. 
    Peeters L, Dewulf J, Boyen F, Brosse C, Vandersmissen T et al. 2020. Bacteriological evaluation of vaccination against Salmonella Typhimurium with an attenuated vaccine in subclinically infected pig herds. Prev. Vet. Med. 182:104687
    [Google Scholar]
  132. 132. 
    Theuss T, Ueberham E, Lehmann J, Lindner T, Springer S. 2017. Immunogenic potential of a Salmonella Typhimurium live vaccine for pigs against monophasic Salmonella Typhimurium DT 193. BMC Vet. Res. 13:343
    [Google Scholar]
  133. 133. 
    Selke M, Meens J, Springer S, Frank R, Gerlach GF 2007. Immunization of pigs to prevent disease in humans: construction and protective efficacy of a Salmonella enterica serovar Typhimurium live negative-marker vaccine. Infect. Immun. 75:2476–83
    [Google Scholar]
  134. 134. 
    Leyman B, Boyen F, Verbrugghe E, Parys AV, Haesebrouck F, Pasmans F. 2012. Vaccination of pigs reduces Salmonella Typhimurium numbers in a model mimicking pre-slaughter stress. Vet. J. 194:250–52
    [Google Scholar]
  135. 135. 
    Grimont P, Weill FX. 2007. Antigenic Formulae of the Salmonella Serovars Paris: Inst. Pasteur. , 9th ed..
    [Google Scholar]
  136. 136. 
    Foss DL, Agin TS, Bade D, Dearwester DA, Jolie R et al. 2013. Protective immunity to Salmonella enterica is partially serogroup specific. Vet. Immunol. Immunopathol. 155:76–86
    [Google Scholar]
  137. 137. 
    Bearson BL, Bearson SMD, Brunelle BW, Bayles DO, Lee IS, Kich JD 2017. Salmonella DIVA vaccine reduces disease, colonization and shedding due to virulent S. Typhimurium infection in swine. J. Med. Microbiol. 66:651–61
    [Google Scholar]
  138. 138. 
    Bearson BL, Bearson SM, Kich JD. 2016. A DIVA vaccine for cross-protection against Salmonella. Vaccine 34:1241–46
    [Google Scholar]
  139. 139. 
    Bearson SMD, Bearson BL, Sylte MJ, Looft T, Kogut MH, Cai G. 2019. Cross-protective Salmonella vaccine reduces cecal and splenic colonization of multidrug-resistant Salmonella enterica serovar Heidelberg. Vaccine 37:1255–59
    [Google Scholar]
  140. 140. 
    Gil C, Latasa C, García-Ona E, Lázaro I, Labairu J et al. 2020. A DIVA vaccine strain lacking RpoS and the secondary messenger c-di-GMP for protection against salmonellosis in pigs. Vet. Res. 51:3
    [Google Scholar]
  141. 141. 
    Leyman B, Boyen F, Van Parys A, Verbrugghe E, Haesebrouck F, Pasmans F. 2011. Salmonella Typhimurium LPS mutations for use in vaccines allowing differentiation of infected and vaccinated pigs. Vaccine 29:3679–85
    [Google Scholar]
  142. 142. 
    Haneda T, Okada N, Kikuchi Y, Takagi M, Kurotaki T et al. 2011. Evaluation of Salmonella enterica serovar Typhimurium and Choleraesuis slyA mutant strains for use in live attenuated oral vaccines. Comp. Immunol. Microbiol. Infect. Dis. 34:399–409
    [Google Scholar]
  143. 143. 
    Gradassi M, Pesciaroli M, Martinelli N, Ruggeri J, Petrucci P et al. 2013. Attenuated Salmonella enterica serovar Typhimurium lacking the ZnuABC transporter: an efficacious orally-administered mucosal vaccine against salmonellosis in pigs. Vaccine 31:3695–701
    [Google Scholar]
/content/journals/10.1146/annurev-animal-013120-043304
Loading
/content/journals/10.1146/annurev-animal-013120-043304
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error