1932

Abstract

Demand for ruminant products (dairy products, beef, and sheep meat) is increasing rapidly with population and income growth and the acceleration of urbanization. However, ruminant animals exert the highest environmental impacts and consume the most resources in the livestock system. Increasing studies have focused on various measures to reduce ammonia, greenhouse gas emissions, and resource depletion from ruminant production to consumption. This review offers supply- and demand-side management strategies to reduce the environmental impact of ruminant products and emphasizes the mitigation potential of coupling livestock production with cultivation and renewable energy. On a global scale, more attention should be paid to the green-source trade and to strengthening global technology sharing. The success of these strategies depends on the cost effectiveness of technology, public policy, and financial support. Future studies and practice should focus on global database development for sharing mitigation strategies, thus facilitating technology innovations and socioeconomic feasibility.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-020420-043152
2022-02-15
2024-06-23
Loading full text...

Full text loading...

/deliver/fulltext/animal/10/1/annurev-animal-020420-043152.html?itemId=/content/journals/10.1146/annurev-animal-020420-043152&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Tilman D, Clark M. 2014. Global diets link environmental sustainability and human health. Nature 515:7528518–22
    [Google Scholar]
  2. 2. 
    Godfray HCJ, Aveyard P, Garnett T, Hall JW, Key TJ et al. 2018. Meat consumption, health, and the environment. Science 361:243eaam5324
    [Google Scholar]
  3. 3. 
    Ripple WJ. 2014. Ruminants, climate change and climate policy. Nat. Clim. Change 4:2–5
    [Google Scholar]
  4. 4. 
    Gerber PJFood Agric. Organ. 2013. Tackling Climate Change Through Livestock: A Global Assessment of Emissions and Mitigation Opportunities Rome: Food Agric. Organ.
    [Google Scholar]
  5. 5. 
    Du Y, Ge Y, Ren Y, Fan X, Pan K et al. 2018. A global strategy to mitigate the environmental impact of China's ruminant consumption boom. Nat. Commun. 9:4133
    [Google Scholar]
  6. 6. 
    Behera SN, Sharma M, Aneja VP, Balasubramanian R. 2013. Ammonia in the atmosphere: a review on emission sources, atmospheric chemistry and deposition on terrestrial bodies. Environ. Sci. Pollut. Res. 20:118092–131
    [Google Scholar]
  7. 7. 
    Sooknah RD, Wilkie AC. 2004. Nutrient removal by floating aquatic macrophytes cultured in anaerobically digested flushed dairy manure wastewater. Ecol. Eng. 22:127–42
    [Google Scholar]
  8. 8. 
    Zhang X, Gu B, van Grinsven H, Lam SK, Liang X et al. 2020. Societal benefits of halving agricultural ammonia emissions in China far exceed the abatement costs. Nat. Commun. 11:4357
    [Google Scholar]
  9. 9. 
    Ma L, Wang F, Zhang W, Ma W, Velthof G et al. 2013. Environmental assessment of management options for nutrient flows in the food chain in China. Environ. Sci. Technol. 47:137260–68
    [Google Scholar]
  10. 10. 
    Tan B, Yin Y 2017. Environmental sustainability analysis and nutritional strategies of animal production in China. Annu. Rev. Anim. Biosci. 5:171–84
    [Google Scholar]
  11. 11. 
    Aneja VP, Schlesinger WH, Erisman JW. 2008. Farming pollution. Nat. Geosci. 1:7409–11
    [Google Scholar]
  12. 12. 
    Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosales M, de Haan C. 2006. Livestock's Long Shadow: Environmental Issues and Options Rome: Food Agric. Organ.
    [Google Scholar]
  13. 13. 
    Herrero M, Havlík P, Valin H, Notenbaert A, Ru MC et al. 2013. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. PNAS 10:5220888–93
    [Google Scholar]
  14. 14. 
    Crippa M, Solazzo E, Guizzardi D, Monforti-Ferrario F, Tubiello FN, Leip A. 2021. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2:3198–209
    [Google Scholar]
  15. 15. 
    Oita A, Malik A, Kanemoto K, Geschke A, Nishijima S, Lenzen M 2016. Substantial nitrogen pollution embedded in international trade. Nat. Geosci. 9:2111–15
    [Google Scholar]
  16. 16. 
    Springmann M, Clark M, Mason-D'Croz D, Wiebe K, Bodirsky BL et al. 2018. Options for keeping the food system within environmental limits. Nature 562:7728519–25
    [Google Scholar]
  17. 17. 
    Pelletier N, Tyedmers P. 2010. Forecasting potential global environmental costs of livestock production 2000–2050. PNAS 107:4318371–74
    [Google Scholar]
  18. 18. 
    McMichael AJ, Powles JW, Butler CD, Uauy R. 2007. Food, livestock production, energy, climate change, and health. Lancet 370:95941253–63
    [Google Scholar]
  19. 19. 
    Elmadfa I, Meyer AL. 2017. Animal proteins as important contributors to a healthy human diet. Annu. Rev. Anim. Biosci. 5:111–31
    [Google Scholar]
  20. 20. 
    Gustavsson J, Cederberg C, Sonesson U. 2011. Global food losses and food waste: extent, causes and prevention Study, Int. Congr. Save Food!, Interpack 2011, May 16–17 Düsseldorf, Ger.:
    [Google Scholar]
  21. 21. 
    Shafiee-Jood M, Cai X. 2016. Reducing food loss and waste to enhance food security and environmental sustainability. Environ. Sci. Technol. 50:168432–43
    [Google Scholar]
  22. 22. 
    Hou Y, Velthof GL, Oenema O. 2015. Mitigation of ammonia, nitrous oxide and methane emissions from manure management chains: a meta-analysis and integrated assessment. Glob. Change Biol. 21:31293–312
    [Google Scholar]
  23. 23. 
    Hou Y, Velthof GL, Lesschen JP, Staritsky IG, Oenema O. 2017. Nutrient recovery and emissions of ammonia, nitrous oxide, and methane from animal manure in Europe: effects of manure treatment technologies. Environ. Sci. Technol. 51:1375–83
    [Google Scholar]
  24. 24. 
    Webb J, Menzi H, Pain BF, Misselbrook TH. 2005. Managing ammonia emissions from livestock production in Europe. Environ. Pollut. 135:399–406
    [Google Scholar]
  25. 25. 
    Döhler H, Eurich-Menden B, Rößler R, Vandré R, Wulf S. 2011. UN ECE Convention on Long-Range Transboundary Air Pollution—Task Force on Reactive Nitrogen: Systematic Cost-Benefit Analysis of Reduction Measures for Ammonia Emissions in Agriculture for National Cost Estimates Dessau-Roßlaus, Ger.: Fed. Environ. Agency
    [Google Scholar]
  26. 26. 
    Wagner S, Angenendt E, Beletskaya O, Zeddies J. 2017. Assessing ammonia emission abatement measures in agriculture: farmers’ costs and society's benefits—a case study for Lower Saxony, Germany. Agric. Syst. 157:70–80
    [Google Scholar]
  27. 27. 
    Wagner S, Angenendt E, Beletskaya O, Zeddies J. 2015. Costs and benefits of ammonia and particulate matter abatement in German agriculture including interactions with greenhouse gas emissions. Agric. Syst. 141:58–68
    [Google Scholar]
  28. 28. 
    Oenema O, Velthof G, Klimont Z, Winiwarter W. 2012. Emissions from agriculture and their control potentials TSAP Rep. 3, Version 2.1, Eur. Comm. Brussels:
    [Google Scholar]
  29. 29. 
    MacLeod M, Moran D, Eory V, Rees RM, Barnes A et al. 2010. Developing greenhouse gas marginal abatement cost curves for agricultural emissions from crops and soils in the UK. Agric. Syst. 103:4198–209
    [Google Scholar]
  30. 30. 
    Hoekstra AY. 2012. The hidden water resource use behind meat and dairy. Anim. Front. 2:23–8
    [Google Scholar]
  31. 31. 
    Fan X, Chang J, Ren Y, Wu X, Du Y et al. 2018. Recoupling industrial dairy feedlots and industrial farmlands mitigates the environmental impacts of milk production in China. Environ. Sci. Technol. 52:73917–25
    [Google Scholar]
  32. 32. 
    Mokomele T, da Costa Sousa L, Balan V, van Rensburg E, Dale BE, Görgens JF 2019. Incorporating anaerobic co-digestion of steam exploded or ammonia fiber expansion pretreated sugarcane residues with manure into a sugarcane-based bioenergy-livestock nexus. Bioresour. Technol. 272:326–36
    [Google Scholar]
  33. 33. 
    Eisler MC, Lee MRF, Tarlton JF, Martin GB, Beddington J et al. 2014. Steps to sustainable livestock. Nature 507:749032–34
    [Google Scholar]
  34. 34. 
    Asseng S, Guarin JR, Raman M, Monje O, Kiss G et al. 2020. Wheat yield potential in controlled-environment vertical farms. PNAS 117:3219131–35
    [Google Scholar]
  35. 35. 
    Despommier D. 2013. Farming up the city: the rise of urban vertical farms. Trends Biotechnol 31:7388–89
    [Google Scholar]
  36. 36. 
    Reis S, Howard C, Sutton MA 2015. Costs of Ammonia Abatement and the Climate Co-Benefits Dordrecht: Springer Neth.
    [Google Scholar]
  37. 37. 
    Brink C, van Ierland E, Hordijk L, Kroeze C 2005. Cost-effective emission abatement in agriculture in the presence of interrelations: cases for the Netherlands and Europe. Ecol. Econ. 53:159–74
    [Google Scholar]
  38. 38. 
    Zhang N, Bai Z, Winiwarter W, Ledgard S, Luo J et al. 2019. Reducing ammonia emissions from dairy cattle production via cost-effective manure management techniques in China. Environ. Sci. Technol. 53:2011840–48
    [Google Scholar]
  39. 39. 
    VanderZaag AC, Gordon RJ, Burton DL, Jamieson RC, Stratton GW. 2008. Ammonia emissions from surface flow and subsurface flow constructed wetlands treating dairy wastewater. J. Environ. Qual. 37:62028–36
    [Google Scholar]
  40. 40. 
    Stokstad E. 2014. Ammonia pollution from farming may exact hefty health costs. Science 343:6168238
    [Google Scholar]
  41. 41. 
    Van Grinsven HJM, Holland M, Jacobsen BH, Klimont Z, Sutton MA, Jaap Willems W. 2013. Costs and benefits of nitrogen for Europe and implications for mitigation. Environ. Sci. Technol. 47:83571–79
    [Google Scholar]
  42. 42. 
    Giannakis E, Kushta J, Bruggeman A, Lelieveld J. 2019. Costs and benefits of agricultural ammonia emission abatement options for compliance with European air quality regulations. Environ. Sci. Eur. 31:93
    [Google Scholar]
  43. 43. 
    Webb J, Ryan M, Anthony S, Brewer A, Laws J et al. 2006. Cost-effective means of reducing ammonia emissions from UK agriculture using the NARSES model. Atmos. Environ. 40:377222–33
    [Google Scholar]
  44. 44. 
    Kavanagh I, Burchill W, Healy MG, Fenton O, Krol DJ, Lanigan GJ. 2019. Mitigation of ammonia and greenhouse gas emissions from stored cattle slurry using acidifiers and chemical amendments. J. Clean. Prod. 237:117822
    [Google Scholar]
  45. 45. 
    Bai Z, Ma W, Ma L, Velthof GL, Wei Z et al. 2018. China's livestock transition: driving forces, impacts, and consequences. Sci. Adv. 4:7eaar9534
    [Google Scholar]
  46. 46. 
    Van Damme M, Clarisse L, Whitburn S, Hadji-Lazaro J, Hurtmans D et al. 2018. Industrial and agricultural ammonia point sources exposed. Nature 564:773499–103
    [Google Scholar]
  47. 47. 
    Chang J, Wu X, Liu A, Wang Y, Xu B et al. 2011. Assessment of net ecosystem services of plastic greenhouse vegetable cultivation in China. Ecol. Econ. 70:740–48
    [Google Scholar]
  48. 48. 
    Liu D, Wu X, Chang J, Gu B, Min Y et al. 2012. Constructed wetlands as biofuel production systems. Nat. Clim. Change 2:190–94
    [Google Scholar]
  49. 49. 
    Luo P, Liu F, Zhang S, Li H, Yao R et al. 2018. Constructed wetlands under sustainable plant harvesting management. Bioresour. Technol. 258:247–54
    [Google Scholar]
  50. 50. 
    Dunne EJ, Culleton N, O'Donovan G, Harrington R, Olsen AE 2005. An integrated constructed wetland to treat contaminants and nutrients from dairy farmyard dirty water. Ecol. Eng. 24:3219–32
    [Google Scholar]
  51. 51. 
    Mantovi P, Marmiroli M, Maestri E, Tagliavini S, Piccinini S, Marmiroli N 2003. Application of a horizontal subsurface flow constructed wetland on treatment of dairy parlor wastewater. Bioresour. Technol. 88:85–94
    [Google Scholar]
  52. 52. 
    Du Y, Pan K, Yu C, Luo B, Gu W et al. 2018. Plant diversity decreases net global warming potential integrating multiple functions in microcosms of constructed wetlands. J. Clean. Prod. 184:718–26
    [Google Scholar]
  53. 53. 
    Avellán T. 2019. Constructed wetlands for resource recovery in developing countries. Renew. Sustain. Energy Rev. 99:42–57
    [Google Scholar]
  54. 54. 
    Liu D, Ge Y, Chang J, Peng C, Gu B et al. 2009. Constructed wetlands in China: recent developments and future challenges. Front. Ecol. Environ. 7:5261–68
    [Google Scholar]
  55. 55. 
    Halachmi I, Guarino M, Bewley J, Pastell M. 2019. Smart animal agriculture: application of real-time sensors to improve animal well-being and production. Annu. Rev. Anim. Biosci. 7:403–25
    [Google Scholar]
  56. 56. 
    Houston C, Gyamfi S, Whale J 2014. Evaluation of energy efficiency and renewable energy generation opportunities for small scale dairy farms: a case study in Prince Edward Island, Canada. Renew. Energy 67:20–29
    [Google Scholar]
  57. 57. 
    Nacer T, Hamidat A, Nadjemi O. 2016. A comprehensive method to assess the feasibility of renewable energy on Algerian dairy farms. J. Clean. Prod. 112:3631–42
    [Google Scholar]
  58. 58. 
    Cantrell KB, Ducey T, Ro KS, Hunt PG. 2008. Livestock waste-to-bioenergy generation opportunities. Bioresour. Technol. 99:177941–53
    [Google Scholar]
  59. 59. 
    Mannina G, Ekama GA, Capodici M, Cosenza A, Di Trapani D et al. 2018. Influence of carbon to nitrogen ratio on nitrous oxide emission in an Integrated Fixed Film Activated Sludge Membrane BioReactor plant. J. Clean. Prod. 176:1078–90
    [Google Scholar]
  60. 60. 
    Bey M, Hamidat A, Benyoucef B, Nacer T. 2016. Viability study of the use of grid connected photovoltaic system in agriculture: case of Algerian dairy farms. Renew. Sustain. Energy Rev. 63:333–45
    [Google Scholar]
  61. 61. 
    Poore J, Nemecek T. 2018. Reducing food's environmental impacts through producers and consumers. Science 360:6392987–92
    [Google Scholar]
  62. 62. 
    Kulicki P, Trypuz R, Wierzbicki J. 2012. Towards beef ontology and its application. Proceedings of the Federated Conference on Computer Science and Information Systems483–88 Piscataway, NJ: IEEE
    [Google Scholar]
  63. 63. 
    Madin JS, Bowers S, Schildhauer MP, Jones MB. 2008. Advancing ecological research with ontologies. Trends Ecol. Evol. 23:3159–68
    [Google Scholar]
  64. 64. 
    Bodirsky BL, Popp A, Lotze-Campen H, Dietrich JP, Rolinski S et al. 2014. Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nat. Commun. 5:13858–65
    [Google Scholar]
  65. 65. 
    McAlpine CA, Etter A, Fearnside PM, Seabrook L, Laurance WF. 2009. Increasing world consumption of beef as a driver of regional and global change: a call for policy action based on evidence from Queensland (Australia), Colombia and Brazil. Glob. Environ. Change 19:121–33
    [Google Scholar]
  66. 66. 
    Springmann M, Godfray HCJ, Rayner M, Scarborough P 2016. Analysis and valuation of the health and climate change cobenefits of dietary change. PNAS 113:154146–51
    [Google Scholar]
  67. 67. 
    Vanham D, Comero S, Gawlik BM, Bidoglio G. 2018. The water footprint of different diets within European sub-national geographical entities. Nat. Sustain. 1:9518–25
    [Google Scholar]
  68. 68. 
    Havlík P, Valin H, Herrero M, Obersteiner M, Schmid E et al. 2014. Climate change mitigation through livestock system transitions. PNAS 111:103709–14
    [Google Scholar]
  69. 69. 
    Guyader J, Janzen HH, Kroebel R, Beauchemin KA 2016. Forage use to improve environmental sustainability of ruminant production. J. Anim. Sci. 94:83147–58
    [Google Scholar]
  70. 70. 
    zu Ermgassen EKHJ, Balmford A, Salemdeeb R. 2016. Reduce, relegalize, and recycle food waste. Science 352:62931526
    [Google Scholar]
  71. 71. 
    Alexandratos N, Bruinsma J. 2012. World Agriculture Towards 2030/2050: The 2012 Revision Rome: Food Agric. Organ.
    [Google Scholar]
  72. 72. 
    Paulot F, Jacob DJ. 2014. Hidden cost of U.S. agricultural exports: particulate matter from ammonia emissions. Environ. Sci. Technol. 48:2903–8
    [Google Scholar]
/content/journals/10.1146/annurev-animal-020420-043152
Loading
/content/journals/10.1146/annurev-animal-020420-043152
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error