1932

Abstract

Mammalian sex chromosomes evolved from an ordinary pair of autosomes. The X chromosome is highly conserved, whereas the Y chromosome varies among species in size, structure, and gene content. Unlike autosomes that contain randomly mixed collections of genes, the sex chromosomes are enriched in testis-biased genes related to sexual development and reproduction, particularly in spermatogenesis and male fertility. This review focuses on how sex chromosome dosage compensation takes place and why meiotic sex chromosome inactivation occurs during spermatogenesis. Furthermore, the review also emphasizes how testis-biased genes are enriched on the sex chromosomes and their functions in male fertility. It is concluded that sex chromosomes are critical to sexual development and male fertility; however, our understanding of how sex chromosome genes direct sexual development and fertility has been hampered by the structural complexities of the sex chromosomes and by the multicopy nature of the testis gene families that also play a role in immunity, cancer development, and brain function.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-020518-115332
2019-02-15
2024-10-09
Loading full text...

Full text loading...

/deliver/fulltext/animal/7/1/annurev-animal-020518-115332.html?itemId=/content/journals/10.1146/annurev-animal-020518-115332&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Goodfellow PN, Lovell-Badge R 1993. SRY and sex determination in mammals. Annu. Rev. Genet. 27:71–92
    [Google Scholar]
  2. 2.  Ohno S 1967. Sex Chromosomes and Sex-Linked Genes Berlin: Springer-Verlag
    [Google Scholar]
  3. 3.  Chang TC, Yang Y, Retzel EF, Liu WS 2013. Male-specific region of the bovine Y chromosome is gene rich with a high transcriptomic activity in testis development. PNAS 110:12373–78
    [Google Scholar]
  4. 4.  Hughes JF, Page DC 2015. The biology and evolution of mammalian Y chromosomes. Annu. Rev. Genet. 49:507–27
    [Google Scholar]
  5. 5.  Muller HJ 1914. A gene for the fourth chromosome of Drosophila. J. Exp. . Zool 17:325–36
    [Google Scholar]
  6. 6.  Bellott DW, Hughes JF, Skaletsky H, Brown LG, Pyntikova T et al. 2014. Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators. Nature 508:494–99
    [Google Scholar]
  7. 7.  Hughes JF, Skaletsky H, Pyntikova T, Graves TA, van Daalen SK et al. 2010. Chimpanzee and human Y chromosomes are remarkably divergent in structure and gene content. Nature 463:536–39
    [Google Scholar]
  8. 8.  Lahn BT, Page DC 1999. Four evolutionary strata on the human X chromosome. Science 286:964–67
    [Google Scholar]
  9. 9.  Graves JA 2006. Sex chromosome specialization and degeneration in mammals. Cell 124:901–14
    [Google Scholar]
  10. 10.  Bull JJ 1983. Evolution of Sex Determining Mechanisms San Francisco, CA: Benjamin/Cummings
    [Google Scholar]
  11. 11.  Quinn AE, Georges A, Sarre SD, Guarino F, Ezaz T, Graves JA 2007. Temperature sex reversal implies sex gene dosage in a reptile. Science 316:411
    [Google Scholar]
  12. 12.  Jablonka E, Lamb MJ 1990. The evolution of heteromorphic sex chromosomes. Biol. Rev. Cambridge Philos. Soc. 65:249–76
    [Google Scholar]
  13. 13.  Graves JA 1995. The evolution of mammalian sex chromosomes and the origin of sex determining genes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 350:305–11; discussion 11–2
    [Google Scholar]
  14. 14.  Veyrunes F, Waters PD, Miethke P, Rens W, McMillan D et al. 2008. Bird-like sex chromosomes of platypus imply recent origin of mammal sex chromosomes. Genome Res 18:965–73
    [Google Scholar]
  15. 15.  Mangs AH, Morris BJ 2007. The human pseudoautosomal region (PAR): origin, function and future. Curr. Genom. 8:129–36
    [Google Scholar]
  16. 16.  Bachtrog D, Kirkpatrick M, Mank JE, McDaniel SF, Pires JC et al. 2011. Are all sex chromosomes created equal?. Trends Genet 27:350–57
    [Google Scholar]
  17. 17.  Rice WR 1996. Evolution of the Y sex chromosome in animals. BioScience 46:331–43
    [Google Scholar]
  18. 18.  Charlesworth B 1991. The evolution of sex chromosomes. Science 251:1030–33
    [Google Scholar]
  19. 19.  Ross MT, Grafham DV, Coffey AJ, Scherer S, McLay K et al. 2005. The DNA sequence of the human X chromosome. Nature 434:325–37
    [Google Scholar]
  20. 20.  Skaletsky H, Kuroda-Kawaguchi T, Minx PJ, Cordum HS, Hillier L et al. 2003. The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 423:825–37
    [Google Scholar]
  21. 21.  Bachtrog D 2013. Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration. Nat. Rev. Genet. 14:113–24
    [Google Scholar]
  22. 22.  Charlesworth B, Charlesworth D 2000. The degeneration of Y chromosomes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 355:1563–72
    [Google Scholar]
  23. 23.  Liu WS, Chang TC 2014. Y chromosome-linked genes required for spermatogenesis in cattle. Reproduction in Domestic Ruminants VIII JL Juengel, A Miyamoto, C Price, LP Reynolds, MF Smith, R Webb 239–55 Packington, UK: Context Prod
    [Google Scholar]
  24. 24.  Muller HJ 1918. Genetic variability, twin hybrids and constant hybrids, in a case of balanced lethal factors. Genetics 3:422–99
    [Google Scholar]
  25. 25.  Haigh J 1978. The accumulation of deleterious genes in a population—Muller's Ratchet. Theor. Popul. Biol. 14:251–67
    [Google Scholar]
  26. 26.  Rice WR 1987. Genetic hitchhiking and the evolution of reduced genetic activity of the Y sex chromosome. Genetics 116:161–67
    [Google Scholar]
  27. 27.  Hill WG, Robertson A 1966. The effect of linkage on limits to artificial selection. Genet. Res. 8:269–94
    [Google Scholar]
  28. 28.  Peck JR 1994. A ruby in the rubbish: beneficial mutations, deleterious mutations and the evolution of sex. Genetics 137:597–606
    [Google Scholar]
  29. 29.  Yue XP, Dechow C, Liu WS 2015. A limited number of Y chromosome lineages present in North American Holsteins. J. Dairy Sci. 98:2738–45
    [Google Scholar]
  30. 30.  Pearks Wilkerson AJ, Raudsepp T, Graves T, Albracht D, Warren W et al. 2008. Gene discovery and comparative analysis of X-degenerate genes from the domestic cat Y chromosome. Genomics 92:329–38
    [Google Scholar]
  31. 31.  Yang Y, Chang TC, Yasue H, Bharti AK, Retzel EF, Liu WS 2011. ZNF280BY and ZNF280AY: autosome derived Y-chromosome gene families in Bovidae. BMC Genom 12:13
    [Google Scholar]
  32. 32.  Wilson MA, Makova KD 2009. Evolution and survival on eutherian sex chromosomes. PLOS Genet 5:e1000568
    [Google Scholar]
  33. 33.  Graves JA 1998. Evolution of the mammalian Y chromosome and sex-determining genes. J. Exp. Zool. 281:472–81
    [Google Scholar]
  34. 34.  Liu WS 2010. Comparative genomics of Y chromosome and male fertility. Reproductive Genomics in Domestic Animals Z Jiang, TL Ott 129–55 Hoboken, NJ: Wiley-Blackwell
    [Google Scholar]
  35. 35.  Livernois AM, Graves JA, Waters PD 2012. The origin and evolution of vertebrate sex chromosomes and dosage compensation. Heredity 108:50–58
    [Google Scholar]
  36. 36.  Lucchesi JC, Kuroda MI 2015. Dosage compensation in Drosophila. Cold Spring Harb. Perspect. . Biol 7:a019398
    [Google Scholar]
  37. 37.  Meyer BJ 2000. Sex in the wormcounting and compensating X-chromosome dose. Trends Genet 16:247–53
    [Google Scholar]
  38. 38.  Barr ML, Bertram EG 1949. A morphological distinction between neurones of the male and female, and the behaviour of the nucleolar satellite during accelerated nucleoprotein synthesis. Nature 163:676–77
    [Google Scholar]
  39. 39.  Lyon MF 1961. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190:372–73
    [Google Scholar]
  40. 40.  Kratzer PG, Chapman VM 1981. X chromosome reactivation in oocytes of Mus caroli. . PNAS 78:3093–97
    [Google Scholar]
  41. 41.  Ohhata T, Wutz A 2013. Reactivation of the inactive X chromosome in development and reprogramming. Cell. Mol. Life Sci. 70:2443–61
    [Google Scholar]
  42. 42.  Gupta V, Parisi M, Sturgill D, Nuttall R, Doctolero M et al. 2006. Global analysis of X-chromosome dosage compensation. J. Biol. 5:3
    [Google Scholar]
  43. 43.  Nguyen DK, Disteche CM 2006. Dosage compensation of the active X chromosome in mammals. Nat. Genet. 38:47–53
    [Google Scholar]
  44. 44.  Straub T, Becker PB 2007. Dosage compensation: the beginning and end of generalization. Nat. Rev. Genet. 8:47–57
    [Google Scholar]
  45. 45.  Lin H, Halsall JA, Antczak P, O'Neill LP, Falciani F, Turner BM 2011. Relative overexpression of X-linked genes in mouse embryonic stem cells is consistent with Ohno's hypothesis. Nat. Genet. 43:1169–70; author reply 71–72
    [Google Scholar]
  46. 46.  Xiong Y, Chen X, Chen Z, Wang X, Shi S et al. 2010. RNA sequencing shows no dosage compensation of the active X-chromosome. Nat. Genet. 42:1043–47
    [Google Scholar]
  47. 47.  Gu L, Walters JR 2017. Evolution of sex chromosome dosage compensation in animals: a beautiful theory, undermined by facts and bedeviled by details. Genome Biol. Evol. 9:2461–76
    [Google Scholar]
  48. 48.  Mank JE 2013. Sex chromosome dosage compensation: definitely not for everyone. Trends Genet 29:677–83
    [Google Scholar]
  49. 49.  Naqvi S, Bellott DW, Lin KS, Page DC 2018. Conserved microRNA targeting reveals preexisting gene dosage sensitivities that shaped amniote sex chromosome evolution. Genome Res 28:474–83
    [Google Scholar]
  50. 50.  Jue NK, Murphy MB, Kasowitz SD, Qureshi SM, Obergfell CJ et al. 2013. Determination of dosage compensation of the mammalian X chromosome by RNA-seq is dependent on analytical approach. BMC Genom 14:150
    [Google Scholar]
  51. 51.  Kelly WG, Schaner CE, Dernburg AF, Lee MH, Kim SK et al. 2002. X-chromosome silencing in the germline of C. elegans. . Development 129:479–92
    [Google Scholar]
  52. 52.  Turner JM 2007. Meiotic sex chromosome inactivation. Development 134:1823–31
    [Google Scholar]
  53. 53.  Richler C, Soreq H, Wahrman J 1992. X inactivation in mammalian testis is correlated with inactive X-specific transcription. Nat. Genet. 2:192–95
    [Google Scholar]
  54. 54.  Turner JM, Mahadevaiah SK, Ellis PJ, Mitchell MJ, Burgoyne PS 2006. Pachytene asynapsis drives meiotic sex chromosome inactivation and leads to substantial postmeiotic repression in spermatids. Dev. Cell 10:521–29
    [Google Scholar]
  55. 55.  Royo H, Polikiewicz G, Mahadevaiah SK, Prosser H, Mitchell M et al. 2010. Evidence that meiotic sex chromosome inactivation is essential for male fertility. Curr. Biol. 20:2117–23
    [Google Scholar]
  56. 56.  Heard E, Turner J 2011. Function of the sex chromosomes in mammalian fertility. Cold Spring Harb. Perspect. Biol. 3:a002675
    [Google Scholar]
  57. 57.  Solari AJ 1974. The behavior of the XY pair in mammals. Int. Rev. Cytol. 38:273–317
    [Google Scholar]
  58. 58.  Cloutier JM, Turner JM 2010. Meiotic sex chromosome inactivation. Curr. Biol. 20:R962–63
    [Google Scholar]
  59. 59.  Schimenti J 2005. Synapsis or silence. Nat. Genet. 37:11–13
    [Google Scholar]
  60. 60.  Heard E, Disteche CM 2006. Dosage compensation in mammals: fine-tuning the expression of the X chromosome. Genes Dev 20:1848–67
    [Google Scholar]
  61. 61.  Herzing LB, Romer JT, Horn JM, Ashworth A 1997. Xist has properties of the X-chromosome inactivation centre. Nature 386:272–75
    [Google Scholar]
  62. 62.  Lee JT 2000. Disruption of imprinted X inactivation by parent-of-origin effects at Tsix. . Cell 103:17–27
    [Google Scholar]
  63. 63.  Lee JT, Lu N 1999. Targeted mutagenesis of Tsix leads to nonrandom X inactivation. Cell 99:47–57
    [Google Scholar]
  64. 64.  Ayoub N, Richler C, Wahrman J 1997. Xist RNA is associated with the transcriptionally inactive XY body in mammalian male meiosis. Chromosoma 106:1–10
    [Google Scholar]
  65. 65.  Marahrens Y, Panning B, Dausman J, Strauss W, Jaenisch R 1997. Xist-deficient mice are defective in dosage compensation but not spermatogenesis. Genes Dev 11:156–66
    [Google Scholar]
  66. 66.  McCarrey JR, Watson C, Atencio J, Ostermeier GC, Marahrens Y et al. 2002. X-chromosome inactivation during spermatogenesis is regulated by an Xist/Tsix-independent mechanism in the mouse. Genesis 34:257–66
    [Google Scholar]
  67. 67.  Turner JM, Aprelikova O, Xu X, Wang R, Kim S et al. 2004. BRCA1, histone H2AX phosphorylation, and male meiotic sex chromosome inactivation. Curr. Biol. 14:2135–42
    [Google Scholar]
  68. 68.  Yan W, McCarrey JR 2009. Sex chromosome inactivation in the male. Epigenetics 4:452–56
    [Google Scholar]
  69. 69.  Song R, Ro S, Michaels JD, Park C, McCarrey JR, Yan W 2009. Many X-linked microRNAs escape meiotic sex chromosome inactivation. Nat. Genet. 41:488–93
    [Google Scholar]
  70. 70.  Namekawa SH, Park PJ, Zhang LF, Shima JE, McCarrey JR et al. 2006. Postmeiotic sex chromatin in the male germline of mice. Curr. Biol. 16:660–67
    [Google Scholar]
  71. 71.  Mueller JL, Mahadevaiah SK, Park PJ, Warburton PE, Page DC, Turner JM 2008. The mouse X chromosome is enriched for multicopy testis genes showing postmeiotic expression. Nat. Genet. 40:794–99
    [Google Scholar]
  72. 72.  Wang PJ 2004. X chromosomes, retrogenes and their role in male reproduction. Trends Endocrinol. Metab. 15:79–83
    [Google Scholar]
  73. 73.  Rohozinski J, Bishop CE 2004. The mouse juvenile spermatogonial depletion (jsd) phenotype is due to a mutation in the X-derived retrogene. mUtp14b. PNAS 101:11695–700
    [Google Scholar]
  74. 74.  Bradley J, Baltus A, Skaletsky H, Royce-Tolland M, Dewar K, Page DC 2004. An X-to-autosome retrogene is required for spermatogenesis in mice. Nat. Genet. 36:872–76
    [Google Scholar]
  75. 75.  Yokota S 2008. Historical survey on chromatoid body research. Acta Histochem. Cytochem. 41:65–82
    [Google Scholar]
  76. 76.  Meikar O, Da Ros M, Korhonen H, Kotaja N 2011. Chromatoid body and small RNAs in male germ cells. Reproduction 142:195–209
    [Google Scholar]
  77. 77.  Fawcett DW, Eddy EM, Phillips DM 1970. Observations on the fine structure and relationships of the chromatoid body in mammalian spermatogenesis. Biol. Reprod. 2:129–53
    [Google Scholar]
  78. 78.  Liu WS, Zhao Y, Lu C, Ning G, Ma Y et al. 2017. A novel testis-specific protein, PRAMEY, is involved in spermatogenesis in cattle. Reproduction 153:847–63
    [Google Scholar]
  79. 79.  Parvinen M 2005. The chromatoid body in spermatogenesis. Int. J. Androl. 28:189–201
    [Google Scholar]
  80. 80.  Kotaja N, Bhattacharyya SN, Jaskiewicz L, Kimmins S, Parvinen M et al. 2006. The chromatoid body of male germ cells: similarity with processing bodies and presence of Dicer and microRNA pathway components. PNAS 103:2647–52
    [Google Scholar]
  81. 81.  Kotaja N, Sassone-Corsi P 2007. The chromatoid body: a germ-cell-specific RNA-processing centre. Nat. Rev. Mol. Cell Biol. 8:85–90
    [Google Scholar]
  82. 82.  Mueller JL, Skaletsky H, Brown LG, Zaghlul S, Rock S et al. 2013. Independent specialization of the human and mouse X chromosomes for the male germ line. Nat. Genet. 45:1083–87
    [Google Scholar]
  83. 83.  Braun RE, Behringer RR, Peschon JJ, Brinster RL, Palmiter RD 1989. Genetically haploid spermatids are phenotypically diploid. Nature 337:373–76
    [Google Scholar]
  84. 84.  Fawcett DW, Ito S, Slautterback D 1959. The occurrence of intercellular bridges in groups of cells exhibiting synchronous differentiation. J. Biophys. Biochem. Cytol. 5:453–60
    [Google Scholar]
  85. 85.  Dahl H-HM, Brown RM, Hutchison WM, Maragos C, Brown GK 1990. A testis-specific form of the human pyruvate dehydrogenase E1α subunit is coded for by an intronless gene on chromosome 4. Genomics 8:225–32
    [Google Scholar]
  86. 86.  Hendriksen PJ, Hoogerbrugge JW, Baarends WM, de Boer P, Vreeburg JT et al. 1997. Testis-specific expression of a functional retroposon encoding glucose-6-phosphate dehydrogenase in the mouse. Genomics 41:350–59
    [Google Scholar]
  87. 87.  Khil PP, Smirnova NA, Romanienko PJ, Camerini-Otero RD 2004. The mouse X chromosome is enriched for sex-biased genes not subject to selection by meiotic sex chromosome inactivation. Nat. Genet. 36:642–46
    [Google Scholar]
  88. 88.  Lahn BT, Page DC 1997. Functional coherence of the human Y chromosome. Science 278:675–80
    [Google Scholar]
  89. 89.  Khil PP, Oliver B, Camerini-Otero RD 2005. X for intersection: Retrotransposition both on and off the X chromosome is more frequent. Trends Genet 21:3–7
    [Google Scholar]
  90. 90.  Saifi GM, Chandra HS 1999. An apparent excess of sex- and reproduction-related genes on the human X chromosome. Proc. Biol. Sci. 266:203–9
    [Google Scholar]
  91. 91.  Wang PJ, McCarrey JR, Yang F, Page DC 2001. An abundance of X-linked genes expressed in spermatogonia. Nat. Genet. 27:422–26
    [Google Scholar]
  92. 92.  Ramani V, Shendure J, Duan Z 2016. Understanding spatial genome organization: methods and insights. Genom. Proteom. Bioinform. 14:7–20
    [Google Scholar]
  93. 93.  Bourque G, Pevzner PA, Tesler G 2004. Reconstructing the genomic architecture of ancestral mammals: lessons from human, mouse, and rat genomes. Genome Res 14:507–16
    [Google Scholar]
  94. 94.  Lercher MJ, Urrutia AO, Hurst LD 2003. Evidence that the human X chromosome is enriched for male-specific but not female-specific genes. Mol. Biol. Evol. 20:1113–16
    [Google Scholar]
  95. 95.  Zechner U, Wilda M, Kehrer-Sawatzki H, Vogel W, Fundele R, Hameister H 2001. A high density of X-linked genes for general cognitive ability: A run-away process shaping human evolution?. Trends Genet 17:697–701
    [Google Scholar]
  96. 96.  Graves JA, Gecz J, Hameister H 2002. Evolution of the human X—a smart and sexy chromosome that controls speciation and development. Cytogenet. Genome Res. 99:141–45
    [Google Scholar]
  97. 97.  Fisher RA 1931. The evolution of dominance. Biol. Rev. 6:345–68
    [Google Scholar]
  98. 98.  Rice WR 1992. Sexually antagonistic genes: experimental evidence. Science 256:1436–39
    [Google Scholar]
  99. 99.  Parker GA 2006. Sexual conflict over mating and fertilization: an overview. Philos. Trans. R. Soc. Lond. B Biol. Sci. 361:235–59
    [Google Scholar]
  100. 100.  Rice WR 1984. Sex chromosomes and the evolution of sexual dimorphism. Evolution 38:735–42
    [Google Scholar]
  101. 101.  Larson EL, Vanderpool D, Keeble S, Zhou M, Sarver BA et al. 2016. Contrasting levels of molecular evolution on the mouse X chromosome. Genetics 203:1841–57
    [Google Scholar]
  102. 102.  Kousathanas A, Halligan DL, Keightley PD 2014. Faster-X adaptive protein evolution in house mice. Genetics 196:1131–43
    [Google Scholar]
  103. 103.  Chiurazzi P, Schwartz CE, Gecz J, Neri G 2008. XLMR genes: update 2007. Eur. J. Hum. Genet. 16:422–34
    [Google Scholar]
  104. 104.  Turelli M, Orr HA 1995. The dominance theory of Haldane's rule. Genetics 140:389–402
    [Google Scholar]
  105. 105.  Wu CI, Davis AW 1993. Evolution of postmating reproductive isolation: the composite nature of Haldane's rule and its genetic bases. Am. Nat. 142:187–212
    [Google Scholar]
  106. 106.  Presgraves DC 2008. Sex chromosomes and speciation in Drosophila. . Trends Genet 24:336–43
    [Google Scholar]
  107. 107.  Larson EL, Keeble S, Vanderpool D, Dean MD, Good JM 2017. The composite regulatory basis of the large X-effect in mouse speciation. Mol. Biol. Evol. 34:282–95
    [Google Scholar]
  108. 108.  Lande R, Arnold SJ 1985. Evolution of mating preference and sexual dimorphism. J. Theor. Biol. 117:651–64
    [Google Scholar]
  109. 109.  Stevenson BJ, Iseli C, Panji S, Zahn-Zabal M, Hide W et al. 2007. Rapid evolution of cancer/testis genes on the X chromosome. BMC Genom 8:129
    [Google Scholar]
  110. 110.  Scanlan MJ, Simpson AJ, Old LJ 2004. The cancer/testis genes: review, standardization, and commentary. Cancer Immun 4:1
    [Google Scholar]
  111. 111.  Ezkurdia I, Juan D, Rodriguez JM, Frankish A, Diekhans M et al. 2014. Multiple evidence strands suggest that there may be as few as 19,000 human protein-coding genes. Hum. Mol. Genet. 23:5866–78
    [Google Scholar]
  112. 112.  Chang TC, Yang Y, Yasue H, Bharti AK, Retzel EF, Liu WS 2011. The expansion of the PRAME gene family in Eutheria. PLOS ONE 6:e16867
    [Google Scholar]
  113. 113.  Birtle Z, Goodstadt L, Ponting C 2005. Duplication and positive selection among hominin-specific PRAME genes. BMC Genom 6:120
    [Google Scholar]
  114. 114.  Church DM, Goodstadt L, Hillier LW, Zody MC, Goldstein S et al. 2009. Lineage-specific biology revealed by a finished genome assembly of the mouse. PLOS Biol 7:e1000112
    [Google Scholar]
  115. 115.  Patterson N, Richter DJ, Gnerre S, Lander ES, Reich D 2006. Genetic evidence for complex speciation of humans and chimpanzees. Nature 441:1103–8
    [Google Scholar]
  116. 116.  Yang Z 2002. Inference of selection from multiple species alignments. Curr. Opin. Genet. Dev. 12:688–94
    [Google Scholar]
  117. 117.  Liu WS, Zhang YY, Wang AH 2017. Sex chromosome-linked cancer/testis antigens (CTAs) and male fertility in cattle (Abstr. MT342) Presented at the 36th International Society for Animal Genetics Conference Dublin: Ireland July 16–21
    [Google Scholar]
  118. 118.  Gure AO, Chua R, Williamson B, Gonen M, Ferrera CA et al. 2005. Cancer-testis genes are coordinately expressed and are markers of poor outcome in non-small cell lung cancer. Clin. Cancer Res. 11:8055–62
    [Google Scholar]
  119. 119.  Velazquez EF, Jungbluth AA, Yancovitz M, Gnjatic S, Adams S et al. 2007. Expression of the cancer/testis antigen NY-ESO-1 in primary and metastatic malignant melanoma (MM)—correlation with prognostic factors. Cancer Immun 7:11
    [Google Scholar]
  120. 120.  Grigoriadis A, Caballero OL, Hoek KS, da Silva L, Chen YT et al. 2009. CT-X antigen expression in human breast cancer. PNAS 106:13493–98
    [Google Scholar]
  121. 121.  Kim R, Kulkarni P, Hannenhalli S 2013. Derepression of cancer/testis antigens in cancer is associated with distinct patterns of DNA hypomethylation. BMC Cancer 13:144
    [Google Scholar]
  122. 122.  Scanlan MJ, Gure AO, Jungbluth AA, Old LJ, Chen YT 2002. Cancer/testis antigens: an expanding family of targets for cancer immunotherapy. Immunol. Rev. 188:22–32
    [Google Scholar]
  123. 123.  De Smet C, De Backer O, Faraoni I, Lurquin C, Brasseur F, Boon T 1996. The activation of human gene MAGE-1 in tumor cells is correlated with genome-wide demethylation. PNAS 93:7149–53
    [Google Scholar]
  124. 124.  Cronwright G, Le Blanc K, Gotherstrom C, Darcy P, Ehnman M, Brodin B 2005. Cancer/testis antigen expression in human mesenchymal stem cells: Down-regulation of SSX impairs cell migration and matrix metalloproteinase 2 expression. Cancer Res 65:2207–15
    [Google Scholar]
  125. 125.  Lifantseva N, Koltsova A, Krylova T, Yakovleva T, Poljanskaya G, Gordeeva O 2011. Expression patterns of cancer-testis antigens in human embryonic stem cells and their cell derivatives indicate lineage tracks. Stem Cells Int 2011:795239
    [Google Scholar]
  126. 126.  Gjerstorff MF, Harkness L, Kassem M, Frandsen U, Nielsen O et al. 2008. Distinct GAGE and MAGE-A expression during early human development indicate specific roles in lineage differentiation. Hum. Reprod. 23:2194–201
    [Google Scholar]
  127. 127.  Ikeda H, Lethe B, Lehmann F, van Baren N, Baurain JF et al. 1997. Characterization of an antigen that is recognized on a melanoma showing partial HLA loss by CTL expressing an NK inhibitory receptor. Immunity 6:199–208
    [Google Scholar]
  128. 128.  Hermes N, Kewitz S, Staege MS 2016. Preferentially expressed antigen in melanoma (PRAME) and the PRAME family of leucine-rich repeat proteins. Curr. Cancer Drug Targets 16:400–14
    [Google Scholar]
  129. 129.  Matsushita M, Yamazaki R, Ikeda H, Kawakami Y 2003. Preferentially expressed antigen of melanoma (PRAME) in the development of diagnostic and therapeutic methods for hematological malignancies. Leuk. Lymphoma 44:439–44
    [Google Scholar]
  130. 130.  Epping MT, Hart AA, Glas AM, Krijgsman O, Bernards R 2008. PRAME expression and clinical outcome of breast cancer. Br. J. Cancer 99:398–403
    [Google Scholar]
  131. 131.  Oberthuer A, Hero B, Spitz R, Berthold F, Fischer M 2004. The tumor-associated antigen PRAME is universally expressed in high-stage neuroblastoma and associated with poor outcome. Clin. Cancer Res. 10:4307–13
    [Google Scholar]
  132. 132. Genomeweb 2011. Abbott, GSK extend companion Dx partnership to PRAME antigen marker for NSCLC immunotherapeutic. Genomeweb Nov. 30. http://www.genomeweb.com/mdx/abbott-gsk-extend-companion-dx-partnership-prame-antigen-marker-nsclc-immunother
    [Google Scholar]
  133. 133.  Gallardo TD, John GB, Shirley L, Contreras CM, Akbay EA et al. 2007. Genomewide discovery and classification of candidate ovarian fertility genes in the mouse. Genetics 177:179–94
    [Google Scholar]
  134. 134.  Kalupov T, Brillard-Bourdet M, Dade S, Serrano H, Wartelle J et al. 2009. Structural characterization of mouse neutrophil serine proteases and identification of their substrate specificities: relevance to mouse models of human inflammatory diseases. J. Biol. Chem. 284:34084–91
    [Google Scholar]
  135. 135.  Monti M, Redi CA 2009. Oogenesis specific genes (Nobox, Oct4, Bmp15, Gdf9, Oogenesin1 and Oogenesin2) are differentially expressed during natural and gonadotropin-induced mouse follicular development. Mol. Reprod. Dev 76:994–1003
    [Google Scholar]
  136. 136.  Mistry BV, Zhao Y, Chang TC, Yasue H, Chiba M et al. 2013. Differential expression of PRAMEL1, a cancer/testis antigen, during spermatogenesis in the mouse. PLOS ONE 8:e60611
    [Google Scholar]
  137. 137.  Krausz C, Degl'Innocenti S 2006. Y chromosome and male infertility: update, 2006. Front. Biosci. 11:3049–61
    [Google Scholar]
  138. 138.  Liu WS, Ponce de León FA 2007. Mapping of the bovine Y chromosome. Electron. J. Biol. 3:5–12
    [Google Scholar]
  139. 139.  Hughes JF, Rozen S 2012. Genomics and genetics of human and primate Y chromosomes. Annu. Rev. Genom. Hum. Genet. 13:83–108
    [Google Scholar]
  140. 140.  Hughes JF, Skaletsky H, Brown LG, Pyntikova T, Graves T et al. 2012. Strict evolutionary conservation followed rapid gene loss on human and rhesus Y chromosomes. Nature 483:82–86
    [Google Scholar]
  141. 141.  Tomaszkiewicz M, Rangavittal S, Cechova M, Campos Sanchez R, Fescemyer HW et al. 2016. A time- and cost-effective strategy to sequence mammalian Y chromosomes: an application to the de novo assembly of gorilla Y. Genome Res 26:530–40
    [Google Scholar]
  142. 142.  Alföldi JE 2008. Sequence of the mouse Y chromosome PhD Thesis, Dep. Biol., Mass. Inst. Technol Cambridge, MA:
    [Google Scholar]
  143. 143.  Hughes JF, Skaletsky H, Koutseva N, Pyntikova T, Page DC 2015. Sex chromosome-to-autosome transposition events counter Y-chromosome gene loss in mammals. Genome Biol 16:104
    [Google Scholar]
  144. 144.  Ford CE, Jones KW, Polani PE, De Almeida JC, Briggs JH 1959. A sex-chromosome anomaly in a case of gonadal dysgenesis (Turner's syndrome). Lancet 1:711–13
    [Google Scholar]
  145. 145.  Jacobs PA, Strong JA 1959. A case of human intersexuality having a possible XXY sex-determining mechanism. Nature 183:302–3
    [Google Scholar]
  146. 146.  Ferguson-Smith MA 2009. It is 50 years since the discovery of the male determining role of the Y chromosome! Sex. . Dev 3:233–36
    [Google Scholar]
  147. 147.  Sinclair AH, Berta P, Palmer MS, Hawkins JR, Griffiths BL et al. 1990. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 346:240–44
    [Google Scholar]
  148. 148.  Berta P, Hawkins JR, Sinclair AH, Taylor A, Griffiths BL et al. 1990. Genetic evidence equating SRY and the testis-determining factor. Nature 348:448–50
    [Google Scholar]
  149. 149.  Stern C 1957. The problem of complete Y-linkage in man. Am. J. Hum. Genet. 9:147–66
    [Google Scholar]
  150. 150.  Reijo R, Lee TY, Salo P, Alagappan R, Brown LG et al. 1995. Diverse spermatogenic defects in humans caused by Y chromosome deletions encompassing a novel RNA-binding protein gene. Nat. Genet. 10:383–93
    [Google Scholar]
  151. 151.  Vogt P, Chandley AC, Hargreave TB, Keil R, Ma K, Sharkey A 1992. Microdeletions in interval 6 of the Y chromosome of males with idiopathic sterility point to disruption of AZF, a human spermatogenesis gene. Hum. Genet. 89:491–96
    [Google Scholar]
  152. 152.  Soh YQ, Alfoldi J, Pyntikova T, Brown LG, Graves T et al. 2014. Sequencing the mouse Y chromosome reveals convergent gene acquisition and amplification on both sex chromosomes. Cell 159:800–13
    [Google Scholar]
  153. 153.  Cortez D, Marin R, Toledo-Flores D, Froidevaux L, Liechti A et al. 2014. Origins and functional evolution of Y chromosomes across mammals. Nature 508:488–93
    [Google Scholar]
  154. 154.  Bachtrog D 2014. Signs of genomic battles in mouse sex chromosomes. Cell 159:716–18
    [Google Scholar]
  155. 155.  Clark AG 2014. Genetics: the vital Y chromosome. Nature 508:463–65
    [Google Scholar]
  156. 156.  Rozen S, Skaletsky H, Marszalek JD, Minx PJ, Cordum HS et al. 2003. Abundant gene conversion between arms of palindromes in human and ape Y chromosomes. Nature 423:873–76
    [Google Scholar]
  157. 157.  Conway SJ, Mahadevaiah SK, Darling SM, Capel B, Rattigan AM, Burgoyne PS 1994. Y353/B: a candidate multiple-copy spermiogenesis gene on the mouse Y chromosome. Mamm. Genome 5:203–10
    [Google Scholar]
  158. 158.  Toure A, Grigoriev V, Mahadevaiah SK, Rattigan A, Ojarikre OA, Burgoyne PS 2004. A protein encoded by a member of the multicopy Ssty gene family located on the long arm of the mouse Y chromosome is expressed during sperm development. Genomics 83:140–47
    [Google Scholar]
  159. 159.  Riel JM, Yamauchi Y, Sugawara A, Li HY, Ruthig V et al. 2013. Deficiency of the multi-copy mouse Y gene Sly causes sperm DNA damage and abnormal chromatin packaging. J. Cell Sci. 126:803–13
    [Google Scholar]
  160. 160.  Reynard LN, Cocquet J, Burgoyne PS 2009. The multi-copy mouse gene Sycp3-like Y-linked (Sly) encodes an abundant spermatid protein that interacts with a histone acetyltransferase and an acrosomal protein. Biol. Reprod. 81:250–57
    [Google Scholar]
  161. 161.  Hamilton CK, Verduzco-Gomez AR, Favetta LA, Blondin P, King WA 2012. Testis-specific protein Y-encoded copy number is correlated to its expression and the field fertility of Canadian Holstein bulls. Sex. Dev. 6:231–39
    [Google Scholar]
  162. 162.  Verkaar ELC, Zijlstra C, van't Veld EM, Boutaga K, van Boxtel DCJ, Lenstra JA 2004. Organization and concerted evolution of the ampliconic Y-chromosomal TSPY genes from cattle. Genomics 84:468–74
    [Google Scholar]
  163. 163.  Vogel T, Dechend F, Manz E, Jung C, Jakubiczka S et al. 1997. Organization and expression of bovine TSPY. Mamm. . Genome 8:491–96
    [Google Scholar]
  164. 164.  Yue XP, Chang TC, Dejarnette JM, Marshall CE, Lei CZ, Liu WS 2013. Copy number variation of PRAMEY across breeds and its association with male fertility in Holstein sires. J. Dairy Sci. 96:8024–34
    [Google Scholar]
  165. 165.  Yue XP, Dechow C, Chang TC, Dejarnette JM, Marshall CE et al. 2014. Copy number variations of the extensively amplified Y-linked genes, HSFY and ZNF280BY, in cattle and their association with male reproductive traits in Holstein bulls. BMC Genom 15:113
    [Google Scholar]
  166. 166.  Hamilton CK, Favetta LA, Di Meo GP, Floriot S, Perucatti A et al. 2009. Copy number variation of testis-specific protein, Y-encoded (TSPY) in 14 different breeds of cattle (Bos taurus). Sex. Dev. 3:205–13
    [Google Scholar]
  167. 167.  Rives N 2014. Y chromosome microdeletions and alterations of spermatogenesis, patient approach and genetic counseling. Ann. Endocrinol. 75:112–14
    [Google Scholar]
  168. 168.  Vogt PH 2005. AZF deletions and Y chromosomal haplogroups: history and update based on sequence. Hum. Reprod. Update 11:319–36
    [Google Scholar]
  169. 169.  Dhanoa JK, Mukhopadhyay CS, Arora JS 2016. Y-chromosomal genes affecting male fertility: a review. Vet. World 9:783–91
    [Google Scholar]
  170. 170.  Hotaling JM 2014. Genetics of male infertility. Urol. Clin. N. Am. 41:1–17
    [Google Scholar]
  171. 171.  Sadeghi-Nejad H, Oates RD 2008. The Y chromosome and male infertility. Curr. Opin. Urol. 18:628–32
    [Google Scholar]
  172. 172.  Dechow CD, Liu WS, Idun JS, Maness B 2018. Short communication: two dominant paternal lineages for North American Jersey artificial insemination sires. J. Dairy Sci. 101:2281–84
    [Google Scholar]
/content/journals/10.1146/annurev-animal-020518-115332
Loading
/content/journals/10.1146/annurev-animal-020518-115332
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error