1932

Abstract

Mitigation of methane emission, a potent greenhouse gas, is a worldwide priority to limit global warming. A substantial part of anthropogenic methane is emitted by the livestock sector, as methane is a normal product of ruminant digestion. We present the latest developments and challenges ahead of the main efficient mitigation strategies of enteric methane production in ruminants. Numerous mitigation strategies have been developed in the last decades, from dietary manipulation and breeding to targeting of methanogens, the microbes that produce methane. The most recent advances focus on specific inhibition of key enzymes involved in methanogenesis. But these inhibitors, although efficient, are not affordable and not adapted to the extensive farming systems prevalent in low- and middle-income countries. Effective global mitigation of methane emissions from livestock should be based not only on scientific progress but also on the feasibility and accessibility of mitigation strategies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-021022-024931
2024-02-15
2024-04-12
Loading full text...

Full text loading...

/deliver/fulltext/animal/12/1/annurev-animal-021022-024931.html?itemId=/content/journals/10.1146/annurev-animal-021022-024931&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Steffen W, Richardson K, Rockstrom J, Cornell SE, Fetzer I et al. 2015. Planetary boundaries: guiding human development on a changing planet. Science 347:1259855
    [Google Scholar]
  2. 2.
    Bowles N, Alexander S, Hadjikakou M. 2019. The livestock sector and planetary boundaries: a ‘limits to growth’ perspective with dietary implications. Ecol. Econ. 160:128–36
    [Google Scholar]
  3. 3.
    Gerber PJ, Steinfeld H, Henderson B, Mottet A, Opio C et al. 2013. Tackling Climate Change Through Livestock – A Global Assessment of Emissions and Mitigation Opportunities Rome: Food Agric. Organ.
  4. 4.
    Nisbet EG, Manning MR, Dlugokencky EJ, Fisher RE, Lowry D et al. 2019. Very strong atmospheric methane growth in the 4 years 2014–2017: implications for the Paris agreement. Glob. Biogeochem. Cycles 33:318–42
    [Google Scholar]
  5. 5.
    Etminan M, Myhre G, Highwood EJ, Shine KP. 2016. Radiative forcing of carbon dioxide, methane, and nitrous oxide: a significant revision of the methane radiative forcing. Geophys. Res. Lett. 43:12614–23
    [Google Scholar]
  6. 6.
    Food Agric. Organ 2022. Gleam v3 dashboard Shiny Apps accessed Febr. 2023. https://foodandagricultureorganization.shinyapps.io/GLEAMV3_Public/
  7. 7.
    Chang J, Peng S, Ciais P, Saunois M, Dangal SRS et al. 2019. Revisiting enteric methane emissions from domestic ruminants and their δ13CCH4 source signature. Nat. Commun. 10:3420
    [Google Scholar]
  8. 8.
    Food Agric. Organ 2020. World Food and Agriculture: Statistical Yearbook 2020 Rome: Food Agric. Organ.
  9. 9.
    Herrero M, Grace D, Njuki J, Johnson N, Enahoro D et al. 2013. The roles of livestock in developing countries. Animal 7:3–18
    [Google Scholar]
  10. 10.
    Randolph TF, Schelling E, Grace D, Nicholson CF, Leroy JL et al. 2007. Invited review: role of livestock in human nutrition and health for poverty reduction in developing countries. J. Anim. Sci. 85:2788–800
    [Google Scholar]
  11. 11.
    McAuliffe GA, Takahashi T, Beal T, Huppertz T, Leroy F et al. 2023. Protein quality as a complementary functional unit in life cycle assessment (LCA). Int. J. Life Cycle Assess. 28:146–55
    [Google Scholar]
  12. 12.
    Mottet A, de Haan C, Falcucci A, Tempio G, Opio C, Gerber P. 2017. Livestock: On our plates or eating at our table? A new analysis of the feed/food debate. Glob. Food Secur. 14:1–8
    [Google Scholar]
  13. 13.
    Cheng L, Zhang X, Reis S, Ren C, Xu J, Gu B. 2022. A 12% switch from monogastric to ruminant livestock production can reduce emissions and boost crop production for 525 million people. Nat. Food 3:1040–51
    [Google Scholar]
  14. 14.
    Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosales M, de Haan C. 2006. Livestock's long shadow: environmental issues and options Rep. Food Agric. Organ. Rome:
  15. 15.
    Morgavi DP, Forano E, Martin C, Newbold CJ. 2010. Microbial ecosystem and methanogenesis in ruminants. Animal 4:1024–36
    [Google Scholar]
  16. 16.
    Beauchemin KA, McAllister TA, McGinn SM. 2009. Dietary mitigation of enteric methane from cattle. CAB Rev. 4:0351–18
    [Google Scholar]
  17. 17.
    Deusch S, Camarinha-Silva A, Conrad J, Beifuss U, Rodehutscord M, Seifert J. 2017. A structural and functional elucidation of the rumen microbiome influenced by various diets and microenvironments. Front. Microbiol. 8:1605
    [Google Scholar]
  18. 18.
    Janssen PH. 2010. Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Anim. Feed Sci. Technol. 160:1–22
    [Google Scholar]
  19. 19.
    Ungerfeld EM. 2020. Metabolic hydrogen flows in rumen fermentation: principles and possibilities of interventions. Front. Microbiol. 11:589
    [Google Scholar]
  20. 20.
    Martinez-Fernandez G, Denman SE, Yang C, Cheung J, Mitsumori M, McSweeney CS. 2016. Methane inhibition alters the microbial community, hydrogen flow and fermentation response in the rumen of cattle. Front. Microbiol. 7:1122
    [Google Scholar]
  21. 21.
    Mitsumori M, Shinkai T, Takenaka A, Enishi O, Higuchi K et al. 2012. Responses in digestion, rumen fermentation and microbial populations to inhibition of methane formation by a halogenated methane analogue. Br. J. Nutr. 108:482–91
    [Google Scholar]
  22. 22.
    Kinley RD, Martinez-Fernandez G, Matthews MK, de Nys R, Magnusson M, Tomkins NW. 2020. Mitigating the carbon footprint and improving productivity of ruminant livestock agriculture using a red seaweed. J. Clean. Prod. 259:120836
    [Google Scholar]
  23. 23.
    Janssen PH, Kirs M. 2008. Structure of the archaeal community of the rumen. Appl. Environ. Microbiol. 74:3619–25
    [Google Scholar]
  24. 24.
    Tapio I, Snelling TJ, Strozzi F, Wallace RJ. 2017. The ruminal microbiome associated with methane emissions from ruminant livestock. J. Anim. Sci. Biotechnol. 8:7
    [Google Scholar]
  25. 25.
    Bueno de Mesquita CP, Wu D, Tringe SG. 2023. Methyl-based methanogenesis: an ecological and genomic review. Microbiol. Mol. Biol. Rev. 87:1e00024–22
    [Google Scholar]
  26. 26.
    Kurth JM, Op den Camp HJM, Welte CU. 2020. Several ways one goal—methanogenesis from unconventional substrates. Appl. Microbiol. Biotechnol. 104:6839–54
    [Google Scholar]
  27. 27.
    Hungate RE, Smith W, Bauchop T, Yu I, Rabinowitz JC. 1970. Formate as an intermediate in the bovine rumen fermentation. J. Bacteriol. 102:389–97
    [Google Scholar]
  28. 28.
    Oppermann RA, Nelson WO, Brown RE. 1961. In vivo studies of methanogenesis in the bovine rumen: dissimilation of acetate. J. Gen. Microbiol. 25:103–11
    [Google Scholar]
  29. 29.
    Henderson G, Cox F, Ganesh S, Jonker A, Young W et al. 2015. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci. Rep. 5:14567
    [Google Scholar]
  30. 30.
    Poulsen M, Schwab C, Jensen BB, Engberg RM, Spang A et al. 2013. Methylotrophic methanogenic thermoplasmata implicated in reduced methane emissions from bovine rumen. Nat. Commun 4:1428
    [Google Scholar]
  31. 31.
    Morgavi DP, Cantalapiedra-Hijar G, Eugène M, Martin C, Noziere P et al. 2023. Review: Reducing enteric methane emissions improves energy metabolism in livestock: Is the tenet right?. Animal 17:100830
    [Google Scholar]
  32. 32.
    Blaxter KL, Clapperton JL. 1965. Prediction of the amount of methane produced by ruminants. Br. J. Nutr. 19:511–22
    [Google Scholar]
  33. 33.
    Beauchemin KA, Ungerfeld EM, Abdalla AL, Alvarez C, Arndt C et al. 2022. Invited review: current enteric methane mitigation options. J. Dairy Sci. 105:9297–326
    [Google Scholar]
  34. 34.
    Knapp JR, Laur GL, Vadas PA, Weiss WP, Tricarico JM. 2014. Invited review: enteric methane in dairy cattle production: quantifying the opportunities and impact of reducing emissions. J. Dairy Sci. 97:3231–61
    [Google Scholar]
  35. 35.
    Arndt C, Hristov AN, Price WJ, McClelland SC, Pelaez AM et al. 2022. Full adoption of the most effective strategies to mitigate methane emissions by ruminants can help meet the 1.5°C target by 2030 but not 2050. PNAS 119:e2111294119
    [Google Scholar]
  36. 36.
    Ramin M, Huhtanen P. 2013. Development of equations for predicting methane emissions from ruminants. J. Dairy Sci. 96:2476–93
    [Google Scholar]
  37. 37.
    Eugène M, Masse D, Chiquette J, Benchaar C. 2008. Meta-analysis on the effects of lipid supplementation on methane production in lactating dairy cows. Can. J. Anim. Sci. 88:331–34
    [Google Scholar]
  38. 38.
    Patra AK. 2013. The effect of dietary fats on methane emissions, and its other effects on digestibility, rumen fermentation and lactation performance in cattle: a meta-analysis. Livest. Sci. 155:244–54
    [Google Scholar]
  39. 39.
    Maia MRG, Chaudhary LC, Figueres L, Wallace RJ. 2007. Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen. Antonie Van Leeuwenhoek 91:303–14
    [Google Scholar]
  40. 40.
    Machmüller A, Soliva CR, Kreuzer M. 2003. Effect of coconut oil and defaunation treatment on methanogenesis in sheep. Reprod. Nutr. Dev. 43:41–55
    [Google Scholar]
  41. 41.
    Martin C, Morgavi DP, Doreau M. 2010. Methane mitigation in ruminants: from microbe to the farm scale. Animal 4:351–65
    [Google Scholar]
  42. 42.
    Wang K, Xiong B, Zhao X. 2023. Could propionate formation be used to reduce enteric methane emission in ruminants?. Sci. Total Environ. 855:158867
    [Google Scholar]
  43. 43.
    Smith PH, Hungate RE. 1958. Isolation and characterization of Methanobacterium-Ruminantium N. Sp. J. Bacteriol. 75:713–18
    [Google Scholar]
  44. 44.
    Miller TL, Lin CZ. 2002. Description of Methanobrevibacter gottschalkii sp nov., Methanobrevibacter thaueri sp nov., Methanobrevibacter woesei sp nov. and Methanobrevibacter wolinii sp nov. Int. J. Syst. Evol. Microbiol. 52:819–22
    [Google Scholar]
  45. 45.
    Miller TL, Wolin MJ. 1985. Methanosphaera stadtmaniae gen. nov., sp. nov.: a species that forms methane by reducing methanol with hydrogen. Arch. Microbiol. 141:116–22
    [Google Scholar]
  46. 46.
    van Kessel JAS, Russell JB. 1996. The effect of pH on ruminal methanogenesis. FEMS Microbiol. Ecol. 20:205–10
    [Google Scholar]
  47. 47.
    Villot C, Meunier B, Bodin J, Martin C, Silberberg M. 2018. Relative reticulo-rumen pH indicators for subacute ruminal acidosis detection in dairy cows. Animal 12:481–90
    [Google Scholar]
  48. 48.
    Kim IS, Hwang MH, Jang NJ, Hyun SH, Lee ST. 2004. Effect of low pH on the activity of hydrogen utilizing methanogen in bio-hydrogen process. Int. J. Hydrogen Energy 29:1133–40
    [Google Scholar]
  49. 49.
    Thomas CM, Desmond-Le Quéméner E, Gribaldo S, Borrel G 2022. Factors shaping the abundance and diversity of the gut archaeome across the animal kingdom. Nat. Commun. 13:3358
    [Google Scholar]
  50. 50.
    Belanche A, Newbold CJ, Morgavi DP, Bach A, Zweifel B, Yáñez-Ruiz DR. 2020. A meta-analysis describing the effects of the essential oils blend agolin ruminant on performance, rumen fermentation and methane emissions in dairy cows. Animals 10:620
    [Google Scholar]
  51. 51.
    Jayanegara A, Leiber F, Kreuzer M. 2012. Meta-analysis of the relationship between dietary tannin level and methane formation in ruminants from in vivo and in vitro experiments. J. Anim. Physiol. Anim. Nutr. 96:365–75
    [Google Scholar]
  52. 52.
    Archiméde H, Rira M, Barde DJ, Labirin F, Marie-Magdeleine C et al. 2016. Potential of tannin-rich plants, Leucaena leucocephala, Glyricidia sepium and Manihot esculenta, to reduce enteric methane emissions in sheep. J. Anim. Physiol. Anim. Nutr. 100:1149–58
    [Google Scholar]
  53. 53.
    Hegarty R, Cortez Passetti R, Dittmer K, Wang Y, Shelton S et al. 2021. An evaluation of emerging feed additives to reduce methane emissions from livestock Rep. Clim. Change Agric. Food Secur., N.Z. Agric. Greenh. Gas Res. Cent., Glob. Res. Alliance https://hdl.handle.net/10568/116489
  54. 54.
    Almeida AK, Hegarty RS, Cowie A. 2021. Meta-analysis quantifying the potential of dietary additives and rumen modifiers for methane mitigation in ruminant production systems. Anim. Nutr. 7:1219–30
    [Google Scholar]
  55. 55.
    Frutos P, Hervás G, Giráldez FJ, Mantecón AR. 2004. Review. Tannins and ruminant nutrition. Span. J. Agric. Res. 2:191–202
    [Google Scholar]
  56. 56.
    Rira M, Morgavi DP, Popova M, Maxin G, Doreau M. 2022. Microbial colonisation of tannin-rich tropical plants: interplay between degradability, methane production and tannin disappearance in the rumen. Animal 16:100589
    [Google Scholar]
  57. 57.
    Benchaar C, Greathead H. 2011. Essential oils and opportunities to mitigate enteric methane emissions from ruminants. Anim. Feed Sci. Technol. 166–67:338–55
    [Google Scholar]
  58. 58.
    Macheboeuf D, Morgavi DP, Papon Y, Mousset JL, Arturo-Schaan M. 2008. Dose-response effects of essential oils on in vitro fermentation activity of the rumen microbial population. Anim. Feed Sci. Technol. 145:335–50
    [Google Scholar]
  59. 59.
    Lagrange S, Beauchemin KA, MacAdam J, Villalba JJ. 2020. Grazing diverse combinations of tanniferous and non-tanniferous legumes: implications for beef cattle performance and environmental impact. Sci. Total Environ. 746:140788
    [Google Scholar]
  60. 60.
    Archimède H, Eugène M, Marie Magdeleine C, Boval M, Martin C et al. 2011. Comparison of methane production between C3 and C4 grasses and legumes. Anim. Feed Sci. Technol. 166–67:59–64
    [Google Scholar]
  61. 61.
    Capper JL, Cady RA, Bauman DE. 2009. The environmental impact of dairy production: 1944 compared with 2007. J. Anim. Sci. 87:2160–67
    [Google Scholar]
  62. 62.
    OECD 2022. OECD-FAO Agricultural Outlook 2022–2031 Paris: OECD Publ https://doi.org/10.1787/f1b0b29c-en
    [Crossref]
  63. 63.
    Lassen J, Difford GF. 2020. Review: genetic and genomic selection as a methane mitigation strategy in dairy cattle. Animal 14:s473–s83
    [Google Scholar]
  64. 64.
    Manzanilla-Pech CIV, Løvendahl P, Mansan Gordo D, Difford GF, Pryce JE et al. 2021. Breeding for reduced methane emission and feed-efficient Holstein cows: an international response. J. Dairy Sci. 104:8983–9001
    [Google Scholar]
  65. 65.
    Rowe SJ, Hickey SM, Jonker A, Hess MK, Janssen P et al. 2019. Selection for divergent methane yield in New Zealand sheep—a ten-year perspective. Proceedings of the 23rd Conference of the Association for the Advancement of Animal Breeding and Genetics, Armidale, NSW, Aust., Oct. 27–Novemb. 1306–9 Armidale, Aust.: Assoc. Adv. Anim. Breed. Genet.
    [Google Scholar]
  66. 66.
    de Haas Y, Veerkamp RF, de Jong G, Aldridge MN. 2021. Selective breeding as a mitigation tool for methane emissions from dairy cattle. Animal 15:Suppl. 1100294
    [Google Scholar]
  67. 67.
    Johnson PL, Hickey S, Knowler K, Wing J, Bryson B et al. 2022. Genetic parameters for residual feed intake, methane emissions, and body composition in New Zealand maternal sheep. Front. Genet. 13:911639
    [Google Scholar]
  68. 68.
    Breider IS, Wall E, Garnsworthy PC. 2019. Short communication: heritability of methane production and genetic correlations with milk yield and body weight in Holstein-Friesian dairy cows. J. Dairy Sci. 102:7277–81
    [Google Scholar]
  69. 69.
    Lassen J, Løvendahl P, Madsen J. 2012. Accuracy of noninvasive breath methane measurements using Fourier transform infrared methods on individual cows. J. Dairy Sci. 95:890–98
    [Google Scholar]
  70. 70.
    Saborío-Montero A, Gutiérrez-Rivas M, García-Rodríguez A, Atxaerandio R, Goiri I et al. 2020. Structural equation models to disentangle the biological relationship between microbiota and complex traits: methane production in dairy cattle as a case of study. J. Anim. Breed. Genet. 137:36–48
    [Google Scholar]
  71. 71.
    Difford GF, Olijhoek DW, Hellwing ALF, Lund P, Bjerring MA et al. 2018. Ranking cows' methane emissions under commercial conditions with sniffers versus respiration chambers. Acta Agric. Scand. A 68:25–32
    [Google Scholar]
  72. 72.
    de Haas Y, Pszczola M, Soyeurt H, Wall E, Lassen J. 2017. Invited review: phenotypes to genetically reduce greenhouse gas emissions in dairying. J. Dairy Sci. 100:855–70
    [Google Scholar]
  73. 73.
    Shadpour S, Chud TCS, Hailemariam D, Plastow G, Oliveira HR et al. 2022. Predicting methane emission in Canadian Holstein dairy cattle using milk mid-infrared reflectance spectroscopy and other commonly available predictors via artificial neural networks. J. Dairy Sci. 105:8272–85
    [Google Scholar]
  74. 74.
    Sepulveda BJ, Muir SK, Bolormaa S, Knight MI, Behrendt R et al. 2022. Eating time as a genetic indicator of methane emissions and feed efficiency in Australian maternal composite sheep. Front. Genet. 13:883520
    [Google Scholar]
  75. 75.
    Ramayo-Caldas Y, Zingaretti L, Popova M, Estellé J, Bernard A et al. 2020. Identification of rumen microbial biomarkers linked to methane emission in Holstein dairy cows. J. Anim. Breed. Genet. 137:49–59
    [Google Scholar]
  76. 76.
    Engelke SW, Das G, Derno M, Tuchscherer A, Wimmers K et al. 2019. Methane prediction based on individual or groups of milk fatty acids for dairy cows fed rations with or without linseed. J. Dairy Sci. 102:1788–802
    [Google Scholar]
  77. 77.
    Vanlierde A, Vanrobays ML, Dehareng F, Froidmont E, Soyeurt H et al. 2015. Hot topic: innovative lactation-stage-dependent prediction of methane emissions from milk mid-infrared spectra. J. Dairy Sci. 98:5740–47
    [Google Scholar]
  78. 78.
    de Haas Y, Windig JJ, Calus MPL, Dijkstra J, de Haan M et al. 2011. Genetic parameters for predicted methane production and potential for reducing enteric emissions through genomic selection. J. Dairy Sci. 94:6122–34
    [Google Scholar]
  79. 79.
    Renand G, Vinet A, Decruyenaere V, Maupetit D, Dozias D. 2019. Methane and carbon dioxide emission of beef heifers in relation with growth and feed efficiency. Animals 9:1136
    [Google Scholar]
  80. 80.
    Flay HE, Kuhn-Sherlock B, Macdonald KA, Camara M, Lopez-Villalobos N et al. 2019. Hot topic: Selecting cattle for low residual feed intake did not affect daily methane production but increased methane yield. J. Dairy Sci. 102:2708–13
    [Google Scholar]
  81. 81.
    Donoghue KA, Bird-Gardiner T, Arthur PF, Herd RM, Hegarty RF. 2016. Genetic and phenotypic variance and covariance components for methane emission and postweaning traits in angus cattle. J. Anim. Sci. 94:1438–45
    [Google Scholar]
  82. 82.
    Richardson CM, Amer PR, Quinton C, Crowley J, Hely FS et al. 2022. Reducing greenhouse gas emissions through genetic selection in the Australian dairy industry. J. Dairy Sci. 105:4272–88
    [Google Scholar]
  83. 83.
    Beauchemin KA, Ungerfeld EM, Eckard RJ, Wang M. 2020. Review: fifty years of research on rumen methanogenesis: lessons learned and future challenges for mitigation. Animal 14:s2–s16
    [Google Scholar]
  84. 84.
    Difford GF, Plichta DR, Lovendahl P, Lassen J, Noel SJ et al. 2018. Host genetics and the rumen microbiome jointly associate with methane emissions in dairy cows. PLOS Genet. 14:e1007580
    [Google Scholar]
  85. 85.
    Manzanilla-Pech CIV, Difford GF, Sahana G, Romé H, Løvendahl P, Lassen J. 2022. Genome-wide association study for methane emission traits in Danish Holstein cattle. J. Dairy Sci. 105:1357–68
    [Google Scholar]
  86. 86.
    Jalil Sarghale A, Moradi Shahrebabak M, Moradi Shahrebabak H, Nejati Javaremi A, Saatchi M et al. 2020. Genome-wide association studies for methane emission and ruminal volatile fatty acids using Holstein cattle sequence data. BMC Genet. 21:129
    [Google Scholar]
  87. 87.
    Pszczola M, Strabel T, Mucha S, Sell-Kubiak E. 2018. Genome-wide association identifies methane production level relation to genetic control of digestive tract development in dairy cows. Sci. Rep. 8:15164
    [Google Scholar]
  88. 88.
    Lee SH, Clark S, van der Werf JHJ. 2017. Estimation of genomic prediction accuracy from reference populations with varying degrees of relationship. PLOS ONE 12:e0189775
    [Google Scholar]
  89. 89.
    Ducrocq V, Laloe D, Swaminathan M, Rognon X, Tixier-Boichard M, Zerjal T. 2018. Genomics for ruminants in developing countries: from principles to practice. Front. Genet. 9:251
    [Google Scholar]
  90. 90.
    Martinez-Alvaro M, Auffret MD, Duthie CA, Dewhurst RJ, Cleveland MA et al. 2022. Bovine host genome acts on rumen microbiome function linked to methane emissions. Commun. Biol. 5:16
    [Google Scholar]
  91. 91.
    Hess MK, Zetouni L, Hess AS, Budel J, Dodds KG et al. 2023. Combining host and rumen metagenome profiling for selection in sheep: prediction of methane, feed efficiency, production, and health traits. Genet. Sel. Evol. 55:53
    [Google Scholar]
  92. 92.
    Pérez-Enciso M, Zingaretti LM, Ramayo-Caldas Y, de los Campos G. 2021. Opportunities and limits of combining microbiome and genome data for complex trait prediction. Genet. Sel. Evol. 53:65
    [Google Scholar]
  93. 93.
    Thornton PK, Herrero M. 2010. Potential for reduced methane and carbon dioxide emissions from livestock and pasture management in the tropics. PNAS 107:19667–72
    [Google Scholar]
  94. 94.
    Duin EC, Wagner T, Shima S, Prakash D, Cronin B et al. 2016. Mode of action uncovered for the specific reduction of methane emissions from ruminants by the small molecule 3-nitrooxypropanol. PNAS 113:6172–77
    [Google Scholar]
  95. 95.
    Jayanegara A, Sarwono KA, Kondo M, Matsui H, Ridla M et al. 2017. Use of 3-nitrooxypropanol as feed additive for mitigating enteric methane emissions from ruminants: a meta-analysis. Ital. J. Anim. Sci. 17:650–56
    [Google Scholar]
  96. 96.
    Dijkstra J, Bannink A, France J, Kebreab E, van Gastelen S. 2018. Short communication: antimethanogenic effects of 3-nitrooxypropanol depend on supplementation dose, dietary fiber content, and cattle type. J. Dairy Sci. 101:9041–47
    [Google Scholar]
  97. 97.
    Kim H, Lee HG, Baek YC, Lee S, Seo J. 2020. The effects of dietary supplementation with 3-nitrooxypropanol on enteric methane emissions, rumen fermentation, and production performance in ruminants: a meta-analysis. J. Anim. Sci. Technol. 62:31–42
    [Google Scholar]
  98. 98.
    Yu GH, Beauchemin KA, Dong RL. 2021. A review of 3-nitrooxypropanol for enteric methane mitigation from ruminant livestock. Animals 11:3540
    [Google Scholar]
  99. 99.
    Martínez-Fernández G, Abecia L, Arco A, Cantalapiedra-Hijar G, Martín-García A et al. 2014. Effects of ethyl-3-nitrooxy propionate and 3-nitrooxypropanol on ruminal fermentation, microbial abundance, and methane emissions in sheep. J. Dairy Sci. 97:3790–99
    [Google Scholar]
  100. 100.
    Meale SJ, Popova M, Saro C, Martin C, Bernard A et al. 2021. Early life dietary intervention in dairy calves results in a long-term reduction in methane emissions. Sci. Rep. 11:3003
    [Google Scholar]
  101. 101.
    Gruninger RJ, Zhang XM, Smith ML, Kung L Jr., Vyas D et al. 2022. Application of 3-nitrooxypropanol and canola oil to mitigate enteric methane emissions of beef cattle results in distinctly different effects on the rumen microbial community. Anim. Microbiome 4:35
    [Google Scholar]
  102. 102.
    Martinez-Fernandez G, Duval S, Kindermann M, Schirra HJ, Denman SE, McSweeney CS. 2018. 3-NOP vs. halogenated compound: methane production, ruminal fermentation and microbial community response in forage fed cattle. Front. Microbiol. 9:1582
    [Google Scholar]
  103. 103.
    Muetzel S, Lowe K, Janssen P, Pacheco D, Bird N et al. 2019. Towards the application of 3-nitrooxypropanol in pastoral farming systems Poster presented at the New Zealand Agricultural Climate Change Conference Palmerston North, N.Z.: April 8–9
  104. 104.
    Guyader J, Ungerfeld EM, Beauchemin KA. 2017. Redirection of metabolic hydrogen by inhibiting methanogenesis in the rumen simulation technique (RUSITEC). Front. Microbiol. 8:393
    [Google Scholar]
  105. 105.
    Weimer PJ. 2015. Redundancy, resilience and host specificity of the ruminal microbiota: implications for engineering improved ruminal fermentations. Front. Microbiol. 6:296
    [Google Scholar]
  106. 106.
    Glasson CRK, Kinley RD, de Nys R, King N, Adams SL et al. 2022. Benefits and risks of including the bromoform containing seaweed Asparagopsis in feed for the reduction of methane production from ruminants. Algal Res 64:102673
    [Google Scholar]
  107. 107.
    Sawyer MS, Hoover WH, Sniffen CJ. 1974. Effects of a ruminal methane inhibitor on growth and energy metabolism in the ovine. J. Anim. Sci. 38:908–14
    [Google Scholar]
  108. 108.
    Tomkins NW, Colegate SM, Hunter RA. 2009. A bromochloromethane formulation reduces enteric methanogenesis in cattle fed grain-based diets. Anim. Prod. Sci. 49:1053–58
    [Google Scholar]
  109. 109.
    Knight T, Ronimus RS, Dey D, Tootill C, Naylor G et al. 2011. Chloroform decreases rumen methanogenesis and methanogen populations without altering rumen function in cattle. Anim. Feed Sci. Technol. 166–67:101–12
    [Google Scholar]
  110. 110.
    Paul NA, de Nys R, Steinberg PD. 2006. Chemical defence against bacteria in the red alga Asparagopsis armata: linking structure with function. Mar. Ecol. Prog. Ser. 306:87–101
    [Google Scholar]
  111. 111.
    Li X, Norman HC, Kinley RD, Laurence M, Wilmot M et al. 2016. Asparagopsis taxiformis decreases enteric methane production from sheep. Anim. Prod. Sci. 58:681–88
    [Google Scholar]
  112. 112.
    Roque BM, Salwen JK, Kinley R, Kebreab E. 2019. Inclusion of Asparagopsis armata in lactating dairy cows' diet reduces enteric methane emission by over 50 percent. J. Clean. Prod. 234:132–38
    [Google Scholar]
  113. 113.
    Stefenoni HA, Räisänen SE, Cueva SF, Wasson DE, Lage CFA et al. 2021. Effects of the macroalga Asparagopsis taxiformis and oregano leaves on methane emission, rumen fermentation, and lactational performance of dairy cows. J. Dairy Sci. 104:4157–73
    [Google Scholar]
  114. 114.
    Roque BM, Venegas M, Kinley RD, de Nys R, Duarte TL et al. 2021. Red seaweed (Asparagopsis taxiformis) supplementation reduces enteric methane by over 80 percent in beef steers. PLOS ONE 16:e0247820
    [Google Scholar]
  115. 115.
    Muizelaar W, Groot M, van Duinkerken G, Peters R, Dijkstra J. 2021. Safety and transfer study: transfer of bromoform present in Asparagopsis taxiformis to milk and urine of lactating dairy cows. Foods 10:584
    [Google Scholar]
  116. 116.
    Graham DE, White RH. 2002. Elucidation of methanogenic coenzyme biosyntheses: from spectroscopy to genomics. Nat. Prod. Rep. 19:133–47
    [Google Scholar]
  117. 117.
    Banerjee R, Ragsdale SW. 2003. The many faces of vitamin B12: catalysis by cobalamin-dependent enzymes. Annu. Rev. Biochem. 72:209–47
    [Google Scholar]
  118. 118.
    Kubo I, Muroi H, Himejima M, Yamagiwa Y, Mera H et al. 1993. Structure-antibacterial activity relationships of anacardic acids. J. Agric. Food Chem. 41:1016–19
    [Google Scholar]
  119. 119.
    Van Nevel CJ, Demeyer DI, Henderickx HK. 1971. Effect of fatty acid derivatives on rumen methane and propionate in vitro. Appl. Microbiol. 21:365–66
    [Google Scholar]
  120. 120.
    Watanabe Y, Suzuki R, Koike S, Nagashima K, Mochizuki M et al. 2010. In vitro evaluation of cashew nut shell liquid as a methane-inhibiting and propionate-enhancing agent for ruminants. J. Dairy Sci. 93:5258–67
    [Google Scholar]
  121. 121.
    Wakai M, Hayashi S, Chiba Y, Koike S, Nagashima K, Kobayashi Y. 2021. Growth and morphologic response of rumen methanogenic archaea and bacteria to cashew nut shell liquid and its alkylphenol components. Anim. Sci. J. 92:e13598
    [Google Scholar]
  122. 122.
    Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS. 1979. Methanogens: reevaluation of a unique biological group. Microbiol. Rev. 43:260–96
    [Google Scholar]
  123. 123.
    Oh S, Suzuki Y, Hayashi S, Suzuki Y, Koike S, Kobayashi Y. 2017. Potency of cashew nut shell liquid in rumen modulation under different dietary conditions and indication of its surfactant action against rumen bacteria. J. Anim. Sci. Technol. 59:27
    [Google Scholar]
  124. 124.
    Shinkai T, Enishi O, Mitsumori M, Higuchi K, Kobayashi Y et al. 2012. Mitigation of methane production from cattle by feeding cashew nut shell liquid. J. Dairy Sci. 95:5308–16
    [Google Scholar]
  125. 125.
    Mitsumori M, Enishi O, Shinkai T, Higuchi K, Kobayashi Y et al. 2014. Effect of cashew nut shell liquid on metabolic hydrogen flow on bovine rumen fermentation: methane and metabolic hydrogen in rumen. Anim. Sci. J. 85:227–32
    [Google Scholar]
  126. 126.
    Su C, Shinkai T, Miyazawa N, Mitsumori M, Enishi O et al. 2021. Microbial community structure of the bovine rumen as affected by feeding cashew nut shell liquid, a methane-inhibiting and propionate-enhancing agent. Anim. Sci. J. 92:e13503
    [Google Scholar]
  127. 127.
    Maeda K, Nguyen VT, Suzuki T, Yamada K, Kudo K et al. 2021. Network analysis and functional estimation of the microbiome reveal the effects of cashew nut shell liquid feeding on methanogen behaviour in the rumen. Microb. Biotechnol. 14:277–90
    [Google Scholar]
  128. 128.
    Tyman JHP, Wilczynski D, Kashani MA. 1978. Compositional studies on technical cashew nutshell liquid (CNSL) by chromatography and mass spectroscopy. J. Am. Oil Chem. Soc. 55:663–68
    [Google Scholar]
  129. 129.
    Branco AF, Giallongo F, Frederick T, Weeks H, Oh J, Hristov AN. 2015. Effect of technical cashew nut shell liquid on rumen methane emission and lactation performance of dairy cows. J. Dairy Sci. 98:4030–40
    [Google Scholar]
  130. 130.
    El-Zaiat HM, Araujo RC, Soltan YA, Morsy AS, Louvandini H et al. 2014. Encapsulated nitrate and cashew nut shell liquid on blood and rumen constituents, methane emission, and growth performance of lambs. J. Anim. Sci. 92:2214–24
    [Google Scholar]
  131. 131.
    Lee C, Beauchemin KA. 2014. A review of feeding supplementary nitrate to ruminant animals: nitrate toxicity, methane emissions, and production performance. Can. J. Anim. Sci. 94:557–70
    [Google Scholar]
  132. 132.
    Greening C, Geier R, Wang C, Woods LC, Morales SE et al. 2019. Diverse hydrogen production and consumption pathways influence methane production in ruminants. ISME J. 13:2617–32
    [Google Scholar]
  133. 133.
    Iwamoto M, Asanuma N, Hino T. 2002. Ability of Selenomonas ruminantium, Veillonella parvula, and Wolinella succinogenes to reduce nitrate and nitrite with special reference to the suppression of ruminal methanogenesis. Anaerobe 8:209–15
    [Google Scholar]
  134. 134.
    Guyader J, Eugène M, Meunier B, Doreau M, Morgavi DP et al. 2015. Additive methane-mitigating effect between linseed oil and nitrate fed to cattle. J. Anim. Sci. 93:3564–77
    [Google Scholar]
  135. 135.
    van Zijderveld SM, Gerrits WJJ, Apajalahti JA, Newbold JR, Dijkstra J et al. 2010. Nitrate and sulfate: effective alternative hydrogen sinks for mitigation of ruminal methane production in sheep. J. Dairy Sci. 93:5856–66
    [Google Scholar]
  136. 136.
    Zhao LP, Meng QX, Li Y, Wu H, Huo YL et al. 2018. Nitrate decreases ruminal methane production with slight changes to ruminal methanogen composition of nitrate-adapted steers. BMC Microbiol 18:21
    [Google Scholar]
  137. 137.
    Popova M, Guyader J, Silberberg M, Seradj AR, Saro C et al. 2019. Changes in the rumen microbiota of cows in response to dietary supplementation with nitrate, linseed, and saponin alone or in combination. Appl. Environ. Microbiol. 85:e02657–18
    [Google Scholar]
  138. 138.
    van Lingen HJ, Fadel JG, Yáñez-Ruiz DR, Kindermann M, Kebreab E. 2021. Inhibited methanogenesis in the rumen of cattle: microbial metabolism in response to supplemental 3-nitrooxypropanol and nitrate. Front. Microbiol. 12:705613
    [Google Scholar]
  139. 139.
    Villar ML, Godwin IR, Hegarty RS, Erler DV, Farid HT, Nolan JV. 2021. Nitrate and nitrite absorption, recycling and retention in tissues of sheep. Small Rumin. Res. 200:106392
    [Google Scholar]
  140. 140.
    Guo WS, Schaefer DM, Guo XX, Ren LP, Meng QX. 2009. Use of nitrate-nitrogen as a sole dietary nitrogen source to inhibit ruminal methanogenesis and to improve microbial nitrogen synthesis in vitro. Asian-Australas. J. Anim. Sci. 22:542–49
    [Google Scholar]
  141. 141.
    Shu Q, Gill HS, Hennessy DW, Leng RA, Bird SH, Rowe JB. 1999. Immunisation against lactic acidosis in cattle. Res. Vet. Sci. 67:65–71
    [Google Scholar]
  142. 142.
    Gill HS, Shu Q, Leng RA. 2000. Immunization with Streptococcus bovis protects against lactic acidosis in sheep. Vaccine 18:2541–48
    [Google Scholar]
  143. 143.
    Gnanasampanthan G. 1993. Immune responses of sheep to rumen ciliates and the survival and activity of antibodies in the rumen fluid PhD Thesis Univ. Adelaide Adelaide, Aust.:
  144. 144.
    Baker SK. 2000. Method for improving utilisation of nutrients by ruminant or ruminant-like animals USA Patent No. 6,036,950
  145. 145.
    Wright AD, Kennedy P, O'Neill CJ, Toovey AF, Popovski S et al. 2004. Reducing methane emissions in sheep by immunization against rumen methanogens. Vaccine 22:3976–85
    [Google Scholar]
  146. 146.
    Khanum S, Roberts JM, Heathcott RW, Bagley S, Wilson T et al. 2022. Cross-reactivity of antibodies to different rumen methanogens demonstrated using immunomagnetic capture technology. Front. Microbiol. 13:14
    [Google Scholar]
  147. 147.
    Williams YJ, Popovski S, Rea SM, Skillman LC, Toovey AF et al. 2009. A vaccine against rumen methanogens can alter the composition of archaeal populations. Appl. Environ. Microbiol. 75:1860–66
    [Google Scholar]
  148. 148.
    Baca-González V, Asensio-Calavia P, González-Acosta S, Pérez de la Lastra JM, Morales de la Nuez A. 2020. Are vaccines the solution for methane emissions from ruminants? A systematic review. Vaccines 8:460
    [Google Scholar]
  149. 149.
    Reisinger A, Clark H, Cowie AL, Emmet-Booth J, Gonzalez Fischer C et al. 2021. How necessary and feasible are reductions of methane emissions from livestock to support stringent temperature goals?. Philos. Trans. A 379:20200452
    [Google Scholar]
  150. 150.
    Budan A, Roman Garcia Y, Piantoni P, Humphries D, Sun Y 2022. Potential of ZELP to improve the Cargill holistic approach to mitigate enteric methane emissions. Proceedings of the 8th International Greenhouse Gas and Animal Agriculture Conference, Orlando, FL36 Gainesville: Univ. Fla.
    [Google Scholar]
  151. 151.
    Jeyanathan J, Martin C, Morgavi DP. 2014. The use of direct-fed microbials for mitigation of ruminant methane emissions: a review. Animal 8:250–61
    [Google Scholar]
  152. 152.
    Doyle N, Mbandlwa P, Kelly WJ, Attwood G, Li Y et al. 2019. Use of lactic acid bacteria to reduce methane production in ruminants, a critical review. Front. Microbiol. 10:13
    [Google Scholar]
  153. 153.
    Zhao Y, Zhao G. 2022. Decreasing ruminal methane production through enhancing the sulfate reduction pathway. Anim. Nutr. 9:320–26
    [Google Scholar]
  154. 154.
    Leng RA. 2014. Interactions between microbial consortia in biofilms: a paradigm shift in rumen microbial ecology and enteric methane mitigation. Anim. Prod. Sci. 54:519–43
    [Google Scholar]
  155. 155.
    Qomariyah N, Ella A, Nurdin Ahmad S, Yusriani Y, Miftakhus Sholikin M et al. 2023. Dietary biochar as a feed additive for increasing livestock performance: a meta-analysis of in vitro and in vivo experiment. Czech J. Anim. Sci. 68:72–86
    [Google Scholar]
  156. 156.
    Schmidt HP, Hagemann N, Draper K, Kammann C. 2019. The use of biochar in animal feeding. PeerJ 7:e7373
    [Google Scholar]
  157. 157.
    Fernandez GM, Durmic Z, Vercoe P, Joseph S. 2022. Fit-for-purpose biochar to improve efficiency in ruminants Rep. Meat Livest. Aust. North Sydney, NSW, Aust.:
  158. 158.
    Nardone A, Ronchi B, Lacetera N, Ranieri MS, Bernabucci U. 2010. Effects of climate changes on animal production and sustainability of livestock systems. Livest. Sci. 130:57–69
    [Google Scholar]
  159. 159.
    Thornton P, Nelson G, Mayberry D, Herrero M. 2022. Impacts of heat stress on global cattle production during the 21st century: a modelling study. Lancet Planet. Health 6:E192–201
    [Google Scholar]
  160. 160.
    Uyeno Y, Sekiguchi Y, Tajima K, Takenaka A, Kurihara M, Kamagata Y. 2010. An rRNA-based analysis for evaluating the effect of heat stress on the rumen microbial composition of Holstein heifers. Anaerobe 16:27–33
    [Google Scholar]
  161. 161.
    Yadav B, Singh G, Wankar A, Dutta N, Chaturvedi VB, Verma MR. 2016. Effect of simulated heat stress on digestibility, methane emission and metabolic adaptability in crossbred cattle. Asian Australas. J. Anim. Sci. 29:1585–92
    [Google Scholar]
  162. 162.
    Goopy JP, Korir D, Pelster D, Ali AIM, Wassie SE et al. 2020. Severe below-maintenance feed intake increases methane yield from enteric fermentation in cattle. Br. J. Nutr. 123:1239–46
    [Google Scholar]
  163. 163.
    Herrero M, Havlík P, Valin H, Notenbaert A, Rufino M et al. 2013. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. PNAS 110:20888–93
    [Google Scholar]
  164. 164.
    Kuhla B, Viereck G. 2022. Enteric methane emission factors, total emissions and intensities from Germany's livestock in the late 19th century: a comparison with the today's emission rates and intensities. Sci. Total Environ. 848:157754
    [Google Scholar]
  165. 165.
    Benoit M, Mottet A. 2023. Energy scarcity and rising cost: towards a paradigm shift for livestock. Agric. Syst. 205:103585
    [Google Scholar]
/content/journals/10.1146/annurev-animal-021022-024931
Loading
/content/journals/10.1146/annurev-animal-021022-024931
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error