1932

Abstract

The bare-nosed wombat is an iconic Australian fauna with remarkable biological characteristics and mythology. This solitary, muscular, fossorial, herbivorous marsupial from southeast Australia has continent and continental island subspeciation. Vombatiformes also contains hairy-nosed wombats ( spp.); koala (); and extinct megafauna, (giant wombat), , and (marsupial lion). Culturally important to Aboriginal people, bare-nosed wombats engineer ecosystems through digging, grazing, and defecation. Olfaction and cubic fecal aggregations appear critical for communication, including identity, courtship, and mating. Though among the largest fossorial herbivores, they have a nutrient-poor diet, a home range up to an order of magnitude smaller than expected, and a metabolism among the lowest extreme for mammals >10 kg. Metabolic depression may confer advantages over resource competitors and fossorial lifestyle protection from predators, fires, and climatic extremes. Bare-nosed wombats are loved and persecuted by European colonists. Recent population increases may reflect softening attitudes toward, and greater protections of, bare-nosed wombats.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-021022-042133
2024-02-15
2024-05-04
Loading full text...

Full text loading...

/deliver/fulltext/animal/12/1/annurev-animal-021022-042133.html?itemId=/content/journals/10.1146/annurev-animal-021022-042133&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Temby ID. 1998. The law and wombats in Australia. See Reference 137 305–11
  2. 2.
    Triggs B. 2009. Wombats Collingwood, Aust.: CSIRO Publ.
  3. 3.
    Martin A, Skerratt L, Carver S. 2017. Sarcoptic mange in Australian wildlife Fact Sheet, Wildl. Health Aust. Mosman, Aust.: https://wildlifehealthaustralia.com.au/FactSheets.aspx
  4. 4.
    Carver S, Peters A, Richards SA. 2022. Model Integrated Disease Management to facilitate effective translatable solutions for wildlife disease issues. J. Appl. Ecol. 59:2902–10
    [Google Scholar]
  5. 5.
    Old JM, Sengupta C, Narayan E, Wolfenden J. 2018. Sarcoptic mange in wombats—a review and future research directions. Transbound. Emerg. Dis. 65:399–407
    [Google Scholar]
  6. 6.
    Bryant B, Reiss A. 2008. Wombats. Medicine of Australian Mammals L Vogelnest, R Woods 329–58. Collingwood, Aust.: CSIRO Publ.
    [Google Scholar]
  7. 7.
    Ladds P. 2009. Pathology of Australian Native Wildlife Collingwood, Aust.: CSIRO Publ.
  8. 8.
    WIRES 2021. WIRES Wombat Manual: Rescue, Rehabilitation and Release of Wombats Brookvale, Aust.: WIRES. , 6th ed..
  9. 9.
    Dep. Plan. Ind. Environ 2022. Codes of Practice for injured, sick and orphaned wombats Code, Dep. Plan. Ind. Environ., NSW Gov. Sydney, Aust.:
  10. 10.
    Eldridge MDB, Beck RMD, Croft DA, Travouillon KJ, Fox BJ. 2019. An emerging consensus in the evolution, phylogeny, and systematics of marsupials and their fossil relatives (Metatheria). J. Mammal. 100:802–37
    [Google Scholar]
  11. 11.
    Beck RMD, Louys J, Brewer P, Archer M, Black KH, Tedford RH. 2020. A new family of diprotodontian marsupials from the latest Oligocene of Australia and the evolution of wombats, koalas, and their relatives (Vombatiformes). Sci. Rep. 10:9741
    [Google Scholar]
  12. 12.
    Meredith RW, Westerman M, Springer MS. 2009. A phylogeny of Diprotodontia (Marsupialia) based on sequences for five nuclear genes. Mol. Phylogenet. Evol. 51:554–71
    [Google Scholar]
  13. 13.
    Mitchell KJ, Pratt RC, Watson LN, Gibb GC, Llamas B et al. 2014. Molecular phylogeny, biogeography, and habitat preference evolution of marsupials. Mol. Biol. Evol. 31:2322–30
    [Google Scholar]
  14. 14.
    May-Collado LJ, Kilpatrick CW, Agnarsson I. 2015. Mammals from ‘down under’: a multi-gene species-level phylogeny of marsupial mammals (Mammalia, Metatheria). PeerJ 3:e805
    [Google Scholar]
  15. 15.
    Duchêne DA, Bragg JG, Duchêne S, Neaves LE, Potter S et al. 2018. Analysis of phylogenomic tree space resolves relationships among marsupial families. Syst. Biol. 67:400–12
    [Google Scholar]
  16. 16.
    Tate GHH. 1951. The wombats (Marsupialia, Phascolomyidae). Am. Mus. Novit. 1525:1–18
    [Google Scholar]
  17. 17.
    McIlroy JC. 1995. Common wombat. The Mammals of Australia S Van Dyck, R Strahan 204–5. Sydney: Reed Books
    [Google Scholar]
  18. 18.
    Mackintosh AN, Barrows TT, Colhoun EA, Fifield LK. 2006. Exposure dating and glacial reconstruction at Mt. Field, Tasmania, Australia, identifies MIS 3 and MIS 2 glacial advances and climatic variability. J. Quat. Sci. 21:363–76
    [Google Scholar]
  19. 19.
    Martin A, Carver S, Proft K, Fraser TA, Polkinghorne A et al. 2019. Isolation, marine transgression and translocation of the bare-nosed wombat (Vombatus ursinus). Evol. Appl. 12:1114–23
    [Google Scholar]
  20. 20.
    Deakin JE, O'Neill RJ. 2020. Evolution of marsupial genomes. Annu. Rev. Anim. Biosci. 8:25–45
    [Google Scholar]
  21. 21.
    Westerman M, Meredith RW, Springer MS. 2010. Cytogenetics meets phylogenetics: a review of karyotype evolution in diprotodontian marsupials. J. Hered. 101:690–702
    [Google Scholar]
  22. 22.
    NCBI (Natl. Cent. Biotechnol. Inf.) 2016. Genome assembly bare-nosed wombat genome assembly BioProject PRJEB27783. https://www.ncbi.nlm.nih.gov/data-hub/genome/GCF_900497805.2/
  23. 23.
    Brewer P, Archer M, Hand S, Price GJ. 2018. A new species of Miocene wombat (Marsupialia, Vombatiformes) from Riversleigh, Queensland, Australia, and implications for the evolutionary history of the Vombatidae. Palaeontol. Electron. 21:1–49
    [Google Scholar]
  24. 24.
    Johnson CN. 2005. What can the data on late survival of Australian megafauna tell us about the cause of their extinction?. Quaternary Sci. Rev. 24:2167–72
    [Google Scholar]
  25. 25.
    Flood J. 1973. The moth-hunters: investigations towards a prehistory of the south-eastern highlands of Australia PhD thesis Aust. Natl. Univ. Canberra, Aust:.
  26. 26.
    Ossa P, Marshall B, Webb C. 1995. New Guinea II Cave: a Pleistocene site on the Snowy River, Victoria. Archaeol. Ocean. 30:22–35
    [Google Scholar]
  27. 27.
    Theden-Ringl F. 2016. Aboriginal presence in the high country: new dates from the Namadgi Ranges in the Australian Capital Territory. Aust. Archaeol. 82:25–42
    [Google Scholar]
  28. 28.
    Cosgrove R. 1996. Nunamira Cave. Report of the Southern Forests Archaeological Project J Allen 43–68. Melbourne, Aust.: Archaeol. Publ., School Archaeol, La Trobe Univ.
    [Google Scholar]
  29. 29.
    Allen J, Marshall B, Ranson D. 1989. A note on excavations at the Maxwell River site, M86/2, southwest Tasmania. Aust. Archaeol. 29:3–8
    [Google Scholar]
  30. 30.
    Garvey JM. 2006. Preliminary zooarchaeological interpretations from Kutikina Cave, south-west Tasmania. Aust. Aborig. Stud. 2006:57
    [Google Scholar]
  31. 31.
    Stern N, Marshall B. 1993. Excavations at Mackintosh 90/1 in western Tasmania: a discussion of stratigraphy, chronology and site formation. Archaeol. Ocean. 28:8–17
    [Google Scholar]
  32. 32.
    Bulmer J. 1994. Victorian Aborigines: John Bulmer's Recollections 1855–1908 Melbourne, Aust.: Mus. Vic. 88 pp .
  33. 33.
    Eyre EJ. 1845. Journals of Expeditions of Discovery into Central Australia and Overland from Adelaide to King George's Sound (1840–1841) London: T. & W. Boone
  34. 34.
    Morgan J. 1852. The Life and Adventures of William Buckley: Thirty-Two Years a Wanderer amongst the Aborigines of the Then Unexplored Country around Port Phillip, Now the Province of Victoria Hobart, Aust.: Archibald MacDougall
  35. 35.
    Pyke WT. 1904. Thirty Years Among the Blacks of Australia: The Life and Adventures of William Buckley, the Runaway Convict London: George Routledge & Sons Ltd.
  36. 36.
    Smyth RB. 1878. The Aborigines of Victoria: with Notes Relating to the Habits of the Native of Other Parts of Australia and Tasmania London: John Ferres Gov. Print.
    [Google Scholar]
  37. 37.
    Blandowski W. 1855. Personal observations made in an excursion towards the central parts of Victoria, including Mount Macedon, McIvor and Black Ranges. Trans. Philos. Soc. Vic. 1:50–74
    [Google Scholar]
  38. 38.
    Plomley NJB. 2008. Friendly Mission: The Tasmanian Journals and Papers of George Augustus Robinson 1829–1834 Launceston, Aust.: Queen Victoria Mus. Art Gallery/Quintus Publ.
  39. 39.
    Plomley NJB. 1976. A Word-List of the Tasmanian Aboriginal Languages Launceston, Aust.: Foot & Playsted Pty. Ltd.
  40. 40.
    Collins D. 1802. An Account of the English Colony in New South Wales London: Cadell & Davies
  41. 41.
    Shaw G. 1800. General Zoology, or, Systematic Natural History London: G. Kearsley
  42. 42.
    Taggart D, Martin R, Menkhorst R. 2016. Vombatus ursinus. IUCN Red List of Threatened Species e T40556A21958985. https://dx.doi.org/10.2305/IUCN.UK.2016-2.RLTS.T40556A21958985.en
    [Google Scholar]
  43. 43.
    Mayadunnage S, Stannard HJ, West P, Old JM. 2023. Identification of roadkill hotspots and the factors affecting wombat vehicle collisions using the citizen science tool, WomSAT. Aust. Mammal. 45:53–61
    [Google Scholar]
  44. 44.
    Hope JH. 1974. The biogeography of the mammals of the islands of Bass Straight. Biogeography and Ecology in Tasmania WD Williams 397–415. Monogr. Biol. The Hague Neth.: Dr. W. Junk
    [Google Scholar]
  45. 45.
    Rounsevell D, Taylor R, Hocking G. 1991. Distribution records of native terrestrial mammals in Tasmania. Wildl. Res. 18:699–717
    [Google Scholar]
  46. 46.
    Rounsevell D. 1989. Managing offshore island reserves for nature conservation in Tasmania. Australian and New Zealand Islands: Nature Conservation Values and Management A Burbidge 157–61. Perth, Aust.: Dep. Conserv. Land Manag.
    [Google Scholar]
  47. 47.
    Carver S, Charleston M, Hocking G, Gales R, Driessen MM. 2021. Long-term spatiotemporal dynamics and factors associated with trends in bare-nosed wombats. J. Wildl. Manag. 85:449–61
    [Google Scholar]
  48. 48.
    Ringwaldt EM, Brook BW, Buettel JC, Cunningham CX, Fuller C et al. 2023. Host, environment, and anthropogenic factors drive landscape dynamics of an environmentally transmitted pathogen: sarcoptic mange in the bare-nosed wombat. J. Anim. Ecol. 92:91786–801
    [Google Scholar]
  49. 49.
    Matthews A, Green K. 2012. Seasonal and altitudinal influences on the home range and movements of common wombats in the Australian Snowy Mountains. J. Zool. 287:24–33
    [Google Scholar]
  50. 50.
    Driessen MM, Dewar E, Carver S, Lawrence C, Gales R. 2022. Conservation status of common wombats in Tasmania II: population distribution and trends, and the incidence and significance of roadkill. Pac. Conserv. Biol. 28:115–23
    [Google Scholar]
  51. 51.
    Banks SC, Skerratt LF, Taylor AC. 2002. Female dispersal and relatedness structure in common wombats (Vombatus ursinus). J. Zool. 256:389–99
    [Google Scholar]
  52. 52.
    Tan WJ, Carver S, Martin AM, Fountain-Jones NM, Proft KM, Burridge CP. 2023. Sex and landscape influence spatial genetic variation in a large fossorial mammal (Vombatus ursinus). J. Mammal. In review
    [Google Scholar]
  53. 53.
    Greenwood PJ. 1980. Mating systems, philopatry and dispersal in birds and mammals. Anim. Behav. 28:1140–62
    [Google Scholar]
  54. 54.
    Dep. Clim. Change Energy Environ. Water 2019. Vombatus ursinus ursinus—common wombat (Bass Strait). Species Profile and Threats Database. Aust. Gov., accessed on Febr. 5, 2023. http://www.environment.gov.au/cgi-bin/sprat/public/publicspecies.pl?taxon_id=66644
  55. 55.
    Knoblauch W, Carver S, Driessen MM, Gales R, Richards SA. 2023. Abundance and population growth estimates for bare-nosed wombats. Ecol. Evol 13:9e10465
    [Google Scholar]
  56. 56.
    Heard GW, Ramsey DSL. 2020. Modelling the abundance of the common wombat across Victoria. Unpubl. Client Rep., Biodivers. Div., Dep. Environ. Land Water Plan., Arthur Rylah Inst. Environ. Res., Heidelberg Victoria, Aust.:
  57. 57.
    Martin AM, Burridge CP, Ingram J, Fraser TA, Carver S. 2018. Invasive pathogen drives host population collapse: effects of a travelling wave of sarcoptic mange on bare-nosed wombats. J. Appl. Ecol. 55:331–41
    [Google Scholar]
  58. 58.
    Johnson CN. 1998. The evolutionary ecology of wombats. See Reference 137 34–41
  59. 59.
    Scott GG, Richardson KC. 1987. Appendicular osteological differences between Lasioruinus latifrons (Owen, 1845) and Vombatus ursinus (Shaw, 1800) (Marsupialia: Vombatidae). Rec. South Aust. Mus. 22:95–102
    [Google Scholar]
  60. 60.
    Green RH, Rainbird JL. 1987. The common wombat Vombatus ursinus (Shaw, 1800) in northern Tasmania—part 1. Breeding, growth and development. Rec. Queen Victoria Mus. 91:1–20
    [Google Scholar]
  61. 61.
    Fraser RA. 2005. A study of stable carbon, nitrogen and oxygen isotopes in modern Australian marsupial herbivores, and their relationships with environmental conditions PhD thesis Aust. Natl. Univ. Canberra:
  62. 62.
    Roberts GL. 2017. Seasonal places: a revised model of human adaptation, economy and movement within Pleistocene Southwest Tasmania PhD thesis La Trobe Univ. Melbourne, Aust:.
  63. 63.
    Saber ASM, Gummow B. 2014. Morphometric studies on the skull in three marsupial species (koala, wombat, wallaby). J. Vet. Anat. 7:117–31
    [Google Scholar]
  64. 64.
    Scott GG, Richardson KC, Groves CP. 1988. Osteological differences of the skulls of Lasiorhinus latifrons Owen, 1845 and Vombatus ursinus Shaw, 1800 (Marsupialia, Vombatidae). Aust. J. Zool. 36:599–609
    [Google Scholar]
  65. 65.
    Nakajima K. 1994. A morphometric study of the skulls of two species of wombats (Vombatus ursinus and Lasiorhinus latifrons). Aust. Mammal. 17:65–72
    [Google Scholar]
  66. 66.
    Sharp AC, Trusler PW. 2015. Morphology of the jaw-closing musculature in the common wombat (Vombatus ursinus) using digital dissection and magnetic resonance imaging. PLOS ONE 10:e0117730
    [Google Scholar]
  67. 67.
    Green RH, Rainbird JL. 1988. The common wombat Vombatus ursinus (Shaw, 1800) in northern Tasmania—part 2. The Bass Strait population. Rec. Queen Victoria Mus. 92:1–8
    [Google Scholar]
  68. 68.
    Skerratt LF, Skerratt JHL, Banks S, Martin R, Handasyde K. 2004. Aspects of the ecology of common wombats (Vombatus ursinus) at high density on pastoral land in Victoria. Aust. J. Zool. 52:303–30
    [Google Scholar]
  69. 69.
    Taylor RJ. 1993. Observations on the behaviour and ecology of the common wombat Vombatus ursinus in northeast Tasmania. Aust. Mammal. 16:1–7
    [Google Scholar]
  70. 70.
    Hughes MA, Hughes RD. 2006. Field observation of daytime courtship and mating of the common wombat Vombatus ursinus. Aust. Mammal. 28:115–16
    [Google Scholar]
  71. 71.
    McIlroy JC. 1973. Aspects of the Ecology of the Common Wombat, Vombatus ursinus (Shaw, 1800) Canberra: Aust. Natl. Univ.
    [Google Scholar]
  72. 72.
    Simpson K, Johnson CN, Carver S. 2016. Sarcoptes scabiei: the mange mite with mighty effects on the common wombat (Vombatus ursinus). PLOS ONE 11:e0149749
    [Google Scholar]
  73. 73.
    Evans MC. 2008. Home range, burrow-use and activity patterns in common wombats (Vombatus ursinus). Wildl. Res. 35:455–62
    [Google Scholar]
  74. 74.
    Story G, Driscoll D, Banks S. 2014. What can camera traps tell us about the diurnal activity of the nocturnal bare-nosed wombat (Vombatus ursinus)?. Camera Trapping: Wildlife Management and Research P Meek, P Fleming 35–44. Collingwood, Aust.: CSIRO Publ.
    [Google Scholar]
  75. 75.
    Flinders M. 1814. Voyage to Terra Australis London: G. & W. Nicol
  76. 76.
    Marks CA. 1998. Courtship and mating in a pair of free-ranging common wombats Vombatus ursinus. See Reference 137 125–28
  77. 77.
    Marks CA. 2005. Wombat sex. Nat. Aust. 28:56–63
    [Google Scholar]
  78. 78.
    Brown G, Young G. 1982. Wombats—amiable native lawnmowers. Aust. Nat. Hist. 20:279–85
    [Google Scholar]
  79. 79.
    Nicholson PJ. 1963. Wombats. Timbertop Mag. 8:32–38
    [Google Scholar]
  80. 80.
    McIlroy JC, Cooper RJ, Gifford EJ. 1981. Inside the burrow of the common wombat, Vombatus ursinus (Shaw, 1800). Vic. Nat. 98:60–64
    [Google Scholar]
  81. 81.
    Buchan A, Goldney DC. 1998. The common wombat Vombatus ursinus in a fragmented landscape. See Reference 137 251–61
  82. 82.
    Browne E, Driessen MM, Ross R, Roach M, Carver S. 2021. Environmental suitability of bare-nosed wombat burrows for Sarcoptes scabiei. Int. J. Parasitol. 16:37–47
    [Google Scholar]
  83. 83.
    Martin AM, Ricardo H, Tompros A, Fraser TA, Polkinghorne A, Carver S. 2019. Burrows with resources have greater visitation and may enhance mange transmission among wombats. Aust. Mammal. 41:287–90
    [Google Scholar]
  84. 84.
    Roger E, Laffan SW, Ramp D. 2007. Habitat selection by the common wombat (Vombatus ursinus) in disturbed environments: implications for the conservation of a ‘common’ species. Biol. Conserv. 137:437–49
    [Google Scholar]
  85. 85.
    Borchard P, McIlroy J, McArthur C. 2008. Links between riparian characteristics and the abundance of common wombat (Vombatus ursinus) burrows in an agricultural landscape. Wildl. Res. 35:760–67
    [Google Scholar]
  86. 86.
    Old JM, Lin SH, Franklin MJM. 2019. Mapping out bare-nosed wombat (Vombatus ursinus) burrows with the use of a drone. BMC Ecol. 19:39
    [Google Scholar]
  87. 87.
    Ross R, Carver S, Browne E, Thai BS. 2021. WomBot: an exploratory robot for monitoring wombat burrows. SN Appl. Sci. 3:647
    [Google Scholar]
  88. 88.
    Martin AM, Richards SA, Fraser TA, Polkinghorne A, Burridge CP, Carver S. 2019. Population-scale treatment informs solutions for control of environmentally transmitted wildlife disease. J. Appl. Ecol. 56:2363–75
    [Google Scholar]
  89. 89.
    Guy TR, Kirkpatrick JB. 2021. Environmental associations and effects of disturbances by common wombats in alpine Tasmania. Aust. Ecol. 46:1392–403
    [Google Scholar]
  90. 90.
    Green K, Osborne WS. 1994. Wildlife of the Australian Snow-Country Sydney: Reed
  91. 91.
    Old JM, Hunter NE, Wolfenden J. 2018. Who utilises bare-nosed wombat burrows?. Aust. Zool. 39:409–13
    [Google Scholar]
  92. 92.
    Favreau F, Jarman PJ, Goldizen AW, Dubot A, Sourice S, Pays O. 2010. Vigilance in a solitary marsupial, the common wombat (Vombatus ursinus). Aust. J. Zool. 57:363–71
    [Google Scholar]
  93. 93.
    Sanderson KJ, Nelson JE. 1998. Brain studies of wombats. See Reference 137 48–54
  94. 94.
    Yang PJ, Lee AB, Chan M, Kowalski M, Qiu K et al. 2021. Intestines of non-uniform stiffness mold the corners of wombat feces. Soft Matter 17:475–88
    [Google Scholar]
  95. 95.
    Magondu B, Lee AB, Schulz A, Buchelli GC, Meng M et al. 2023. Drying dynamics of pellet feces. Soft Matter 19:723–32
    [Google Scholar]
  96. 96.
    Banks SC, Piggott MP, Hansen BD, Robinson NA, Taylor AC. 2002. Wombat coprogenetics: enumerating a common wombat population by microsatellite analysis of faecal DNA. Aust. J. Zool. 50:193–204
    [Google Scholar]
  97. 97.
    Cooke BD. 1998. Did introduced European rabbits Oryctolagus cuniculus (L.) displace common wombats Vombatus ursinus (Shaw) from part of their range in South Australia?. See Reference 137 262–70
  98. 98.
    Bird P, Mutze G, Peacock D, Jennings S. 2012. Damage caused by low-density exotic herbivore populations: the impact of introduced European rabbits on marsupial herbivores and Allocasuarina and Bursaria seedling survival in Australian coastal shrubland. Biol. Invasions 14:743–55
    [Google Scholar]
  99. 99.
    Green K, Davis NE, Robinson WA. 2017. Diet of two fossorial herbivores in a seasonally snow-covered environment. Aust. Mammal. 39:169–77
    [Google Scholar]
  100. 100.
    Tamura J, Ingram J, Martin AM, Burridge CP, Carver S. 2021. Contrasting population manipulations reveal resource competition between two large marsupials: bare-nosed wombats and eastern grey kangaroos. Oecologia 197:313–25
    [Google Scholar]
  101. 101.
    Davis NE, Gordon IR, Coulson G. 2017. The influence of evolutionary history and body size on partitioning of habitat resources by mammalian herbivores in south-eastern Australia. Aust. J. Zool. 65:226–39
    [Google Scholar]
  102. 102.
    Ingram J. 2019. Macropod management, Maria Island National Park. Annu. Rep. Recomm., June, Dep. Prim. Ind. Parks Water Environ., Hobart Tasmania, Aust.:
  103. 103.
    Evans M, Green B, Newgrain K. 2003. The field energetics and water fluxes of free-living wombats (Marsupialia: Vombatidae). Oecologia 137:171–80
    [Google Scholar]
  104. 104.
    Newsome AE, Catling PC, Corbett LK. 1983. The feeding ecology of the dingo II. Dietary and numerical relationships with fluctuating prey populations in south-eastern Australia. Aust. J. Ecol. 8:345–66
    [Google Scholar]
  105. 105.
    Triggs B, Brunner H, Cullen J. 1984. The food of fox, dog and cat in Croajingalong National Park, south-eastern Victoria. Wildl. Res. 11:491–99
    [Google Scholar]
  106. 106.
    Davis NE, Forsyth DM, Triggs B, Pascoe C, Benshemesh J et al. 2015. Interspecific and geographic variation in the diets of sympatric carnivores: dingoes/wild dogs and red foxes in South-Eastern Australia. PLOS ONE 10:e0120975
    [Google Scholar]
  107. 107.
    Rogers T, Fox S, Pemberton D, Wise P. 2016. Sympathy for the devil: Captive-management style did not influence survival, body-mass change or diet of Tasmanian devils 1 year after wild release. Wildl. Res. 43:544–52
    [Google Scholar]
  108. 108.
    Jones ME, Barmuta LA. 1998. Diet overlap and relative abundance of sympatric dasyurid carnivores: a hypothesis of competition. J. Anim. Ecol. 67:410–21
    [Google Scholar]
  109. 109.
    Fleming PA, Anderson H, Prendergast AS, Bretz MR, Valentine LE, Hardy GES. 2014. Is the loss of Australian digging mammals contributing to a deterioration in ecosystem function?. Mammal Rev. 44:94–108
    [Google Scholar]
  110. 110.
    Borchard P, Eldridge DJ. 2011. The geomorphic signature of bare-nosed wombats (Vombatus ursinus) and cattle (Bos taurus) in an agricultural riparian ecosystem. Geomorphology 130:365–73
    [Google Scholar]
  111. 111.
    Ingram J, Kirkpatrick JB. 2013. Native vertebrate herbivores facilitate native plant dominance in old fields while preventing native tree invasion—implications for threatened species. Pac. Conserv. Biol. 19:331–42
    [Google Scholar]
  112. 112.
    Haussmann NS. 2017. Soil movement by burrowing mammals: a review comparing excavation size and rate to body mass of excavators. Prog. Phys. Geogr. 41:29–45
    [Google Scholar]
  113. 113.
    Troughton E, Cayley NW. 1947. Furred Animals of Australia Sydney: Angus & Robertson
  114. 114.
    McNab BK. 2005. Uniformity in the basal metabolic rate of marsupials: its causes and consequences. Rev. Chil. Hist. Nat. 78:183–98
    [Google Scholar]
  115. 115.
    Barboza PS, Hume ID, Nolan JV. 1993. Nitrogen metabolism and requirements of nitrogen and energy in the wombats (Marsupialia: Vombatidae). Physiol. Zool. 66:807–28
    [Google Scholar]
  116. 116.
    Martin AM, Fraser TA, Lesku JA, Simpson K, Roberts GL et al. 2018. The cascading pathogenic consequences of Sarcoptes scabiei infection that manifest in host disease. R. Soc. Open Sci. 5:180018
    [Google Scholar]
  117. 117.
    Short J. 1986. The effect of pasture availability on food intake, species selection and grazing behavior of kangaroos. J. Appl. Ecol. 23:559–72
    [Google Scholar]
  118. 118.
    Nagy KA. 1987. Field metabolic rate and food requirement scaling in mammals and birds. Ecol. Monogr. 57:111–28
    [Google Scholar]
  119. 119.
    Evans MC, Macgregor C, Jarman PJ. 2006. Diet and feeding selectivity of common wombats. Wildl. Res. 33:321–30
    [Google Scholar]
  120. 120.
    Barboza PS. 1993. Digestive strategies of the wombats: feed intake, fiber digestion, and digesta passage in two grazing marsupials with hindgut fermentation. Physiol. Zool. 66:983–99
    [Google Scholar]
  121. 121.
    Barboza P. 1993. Effects of restricted water-intake on digestion, urea recycling and renal-function in wombats (Marsupialia, Vombatidae) from contrasting habitats. Aust. J. Zool. 41:527–36
    [Google Scholar]
  122. 122.
    Barboza PS, Hume ID. 1992. Digestive-tract morphology and digestion in the wombats (Marsupialia, Vombatidae). J. Comp. Physiol. B 162:552–60
    [Google Scholar]
  123. 123.
    Beal AM. 1995. Secretion of electrolytes, protein and urea by the mandibular gland of the common wombat (Vombatus ursinus). J. Comp. Physiol. B 164:629–35
    [Google Scholar]
  124. 124.
    Barboza PS, Hume ID. 1992. Hindgut fermentation in the wombats: two marsupial grazers. J. Comp. Physiol. B 162:561–66
    [Google Scholar]
  125. 125.
    Eisenhofer R, D'Agnese E, Taggart D, Carver S, Penrose B. 2022. Microbial biogeography of the wombat gastrointestinal tract. PeerJ 10:e12982
    [Google Scholar]
  126. 126.
    Rishworth C, Mcilroy J, Tanton M. 1995. Diet of the common wombat, Vombatus ursinus, in plantations of Pinus radiata. Wildl. Res. 22:333–39
    [Google Scholar]
  127. 127.
    Green K. 2005. Winter home range and foraging of common wombats (Vombatus ursinus) in patchily burnt subalpine areas of the Snowy Mountains, Australia. Wildl. Res. 32:525–29
    [Google Scholar]
  128. 128.
    Green K, Davis NE, Robinson WA. 2015. The diet of the common wombat (Vombatus ursinus) above the winter snowline in the decade following a wildfire. Aust. Mammal. 37:146–56
    [Google Scholar]
  129. 129.
    Roberts GL, Towers J, Gagan MK, Cosgrove R, Smith C. 2019. Isotopic variation within Tasmanian bare-nosed wombat tooth enamel: implications for archaeological and palaeoecological research. Palaeogeogr. Palaeoclimatol. Palaeoecol. 523:97–115
    [Google Scholar]
  130. 130.
    Fraser RA, Grün R, Privat K, Gagan MK. 2008. Stable-isotope microprofiling of wombat tooth enamel records seasonal changes in vegetation and environmental conditions in eastern Australia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 269:66–77
    [Google Scholar]
  131. 131.
    Koutamanis D, Roberts GL, Dosseto A. 2021. Inter- and intra-individual variability of calcium and strontium isotopes in modern Tasmanian wombats. Palaeogeogr. Palaeoclimatol. Palaeoecol. 574:110435
    [Google Scholar]
  132. 132.
    McIlroy JC. 1977. Aspects of the ecology of the common wombat, Vombatus ursinus II. Methods for estimating population numbers. Aust. Wildlife Res. 4:223–28
    [Google Scholar]
  133. 133.
    Burgess LG, Richards SA, Driessen MM, Wilkinson V, Amin RJ, Carver S. 2023. Fine-scale landscape epidemiology: sarcoptic mange in bare-nosed wombats (Vombatus ursinus). Transbound. Emerg. Dis. 2023:2955321
    [Google Scholar]
  134. 134.
    Newsome AE, McIlroy JC, Catling PC. 1975. The effects of an extensive wildfire on populations of twenty ground vertebrates in south-east Australia. Proc. Ecol. Soc. Aust. 9:107–23
    [Google Scholar]
  135. 135.
    Heaton DJ, McHenry MT, Kirkpatrick JB. 2022. The fire and fodder reversal phenomenon: vertebrate herbivore activity in burned and unburned Tasmanian ecosystems. Fire 5:111
    [Google Scholar]
  136. 136.
    Penrose B, MacIntosh AE, Parbhakar-Fox A, Smith LBE, Sawyer T et al. 2022. Heavy metal wombats? Metal exposure pathways to bare-nosed wombats (Vombatus ursinus) living on remediated tin mine tailings. . Sci. Total Environ. 835:155526
    [Google Scholar]
  137. 137.
    Wells RT, Pridmore PA, eds. 1998. Wombats Chipping Norton, Aust.: Surrey Beatty & Sons
  138. 138.
    Marks CA. 1998. Review of the humaneness of destruction techniques used on the common wombat Vombatus ursinus in Victoria. See Reference 137 287–97
  139. 139.
    Marks CA. 1998. Field assessment of electric fencing to reduce fence damage by the common wombat Vombatus ursinus. See Reference 137 298–304
    [Google Scholar]
  140. 140.
    Borchard P, Wright IA. 2010. Bulldozers and blueberries: managing fence damage by bare-nosed wombats at the agricultural–riparian interface. Hum.-Wildl. Interact. 4:247–56
    [Google Scholar]
  141. 141.
    Driessen MM, Gales R, Hehn K, Dewar E, Dobner G. 2020. Wombat gates effectively exclude browsing mammals from pasture and allow passage of common wombats. Aust. Mammal. 42:375–79
    [Google Scholar]
  142. 142.
    Coates TD. 2013. The performance of wombat gates in controlling wildlife movement through a predator fence. Aust. Mammal. 35:184–87
    [Google Scholar]
  143. 143.
    McIlroy JC, Rishworth C. 1998. The effect on common wombat Vombatus ursinus populations of replacing native eucalypt forests with plantations of Monterey pine Pinus radiata. See Reference 137 271–79
  144. 144.
    Ramp D, Caldwell J, Edwards KA, Warton D, Croft DB. 2005. Modelling of wildlife fatality hotspots along the Snowy Mountain Highway in New South Wales, Australia. Biol. Conserv. 126:474–90
    [Google Scholar]
  145. 145.
    Roger E, Laffan S, Ramp D. 2011. Road impacts a tipping point for wildlife populations in threatened landscapes. Popul. Ecol. 53:215–27
    [Google Scholar]
  146. 146.
    Roger E, Ramp D. 2009. Incorporating habitat use in models of fauna fatalities on roads. Divers. Distrib. 15:222–31
    [Google Scholar]
  147. 147.
    Hobday AJ, Minstrell ML. 2008. Distribution and abundance of roadkill on Tasmanian highways: human management options. Wildl. Res. 35:712–26
    [Google Scholar]
  148. 148.
    Nguyen HKD, Buettel JC, Fielding MW, Brook BW. 2022. Predicting spatial and seasonal patterns of wildlife-vehicle collisions in high-risk areas. Wildl. Res. 49:428–37
    [Google Scholar]
  149. 149.
    Stannard HJ, Wynan MB, Wynan RJ, Dixon BA, Mayadunnage S, Old JM. 2021. Can virtual fences reduce wombat road mortalities?. Ecol. Eng. 172:106414
    [Google Scholar]
  150. 150.
    Coulson G, Bender H. 2022. Wombat roadkill was not reduced by a virtual fence. Comment on Stannard et al. Can virtual fences reduce wombat road mortalities?. Ecol. Eng. 2021. 172:106414 Animals 12:1323
    [Google Scholar]
  151. 151.
    Vogelnest L, Allan G. 2015. Radiology of Australian Native Wildlife Clayton, Aust: CSIRO Publ.
/content/journals/10.1146/annurev-animal-021022-042133
Loading
/content/journals/10.1146/annurev-animal-021022-042133
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error