1932

Abstract

Giant pandas and red pandas are endangered species with similar specialized bamboo diet and partial sympatric distribution in China. Over the last two decades, the rapid development of genomics and metagenomics research on these species has enriched our knowledge of their biology, ecology, physiology, genetics, and evolution, which is crucial and useful for their conservation. We describe the evolutionary history, endangerment processes, genetic diversity, and population structure of wild giant pandas and two species of red pandas (Chinese and Himalayan red pandas). In addition, we explore how genomics and metagenomics studies have provided insight into the convergent adaptation of pandas to the specialized bamboo diet. Finally, we discuss how these findings are applied to effective conservation management of giant and red pandas in the wild and in captivity to promote the long-term persistence of these species.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-021022-054730
2024-02-15
2024-12-04
Loading full text...

Full text loading...

/deliver/fulltext/animal/12/1/annurev-animal-021022-054730.html?itemId=/content/journals/10.1146/annurev-animal-021022-054730&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Sarich VM. 1973. The giant panda is a bear. Nature 245:5422218–20
    [Google Scholar]
  2. 2.
    O'Brien SJ, Nash WG, Wildt DE, Bush ME, Benveniste RE. 1985. A molecular solution to the riddle of the giant panda's phylogeny. Nature 317:6033140–44
    [Google Scholar]
  3. 3.
    Slattery JP, O'Brien SJ 1995. Molecular phylogeny of the red panda (Ailurus fulgens). J. Hered. 86:6413–22
    [Google Scholar]
  4. 4.
    Groves C. 2011. The taxonomy and phylogeny of Ailurus. Red Panda AR Glatston 101–24. Oxford, UK: William Andrew Publ.
    [Google Scholar]
  5. 5.
    Hu J. 2001. Research on the Giant Panda Shanghai, China: Shanghai Publ. House Sci. Technol.
    [Google Scholar]
  6. 6.
    Hu Y, Wu Q, Ma S, Ma T, Shan L et al. 2017. Comparative genomics reveals convergent evolution between the bamboo-eating giant and red pandas. PNAS 114:51081–86
    [Google Scholar]
  7. 7.
    Sichuan For. Dep 2015. The 4th Survey Report on Giant Panda in Sichuan Province Chengdu, China: Sichuan Sci. Technol. Press
    [Google Scholar]
  8. 8.
    Swaisgood R, Wang D, Wei F. 2016. Ailuropoda melanoleuca (errata version published in 2017). . In The IUCN Red List of Threatened Species 2016 e.T712A121745669
    [Google Scholar]
  9. 9.
    Glatston A, Wei F, Zaw T, Sherpa A. 2015. Ailurus fulgens (errata version published in 2017). The IUCN Red List of Threatened Species 2015 e.T714A110023718
    [Google Scholar]
  10. 10.
    Hu Y, Thapa A, Fan H, Ma T, Wu Q et al. 2020. Genomic evidence for two phylogenetic species and long-term population bottlenecks in red pandas. Sci. Adv. 6:9eaax5751
    [Google Scholar]
  11. 11.
    Joshi BD, Dalui S, Singh SK, Mukherjee T, Chandra K et al. 2021. Siang river in Arunachal Pradesh splits red panda into two phylogenetic species. Mamm. Biol. 101:1121–24
    [Google Scholar]
  12. 12.
    Wei F, Costanza R, Dai Q, Stoeckl N, Gu X et al. 2018. The value of ecosystem services from giant panda reserves. Curr. Biol. 28:132174–80.e7
    [Google Scholar]
  13. 13.
    Wei F, Hu Y, Zhu L, Bruford MW, Zhan X, Zhang L. 2012. Black and white and read all over: the past, present and future of giant panda genetics. Mol. Ecol. 21:235660–74
    [Google Scholar]
  14. 14.
    Wei F, Hu Y, Yan L, Nie Y, Wu Q, Zhang Z. 2015. Giant pandas are not an evolutionary cul-de-sac: evidence from multidisciplinary research. Mol. Biol. Evol. 32:14–12
    [Google Scholar]
  15. 15.
    Hu Y, Qi D, Wei F 2017. Conservation genetics of red pandas in the wild. Biology and Conservation of Musteloids DW Macdonald, C Newman, LA Harrington 527–40. Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  16. 16.
    Soulé ME, Wilcox BA. 1980. Conservation Biology: An Evolutionary-Ecological Perspective Sunderland, MA: Sinauer Assoc.
    [Google Scholar]
  17. 17.
    Soulé ME. 1986. Conservation Biology: The Science of Scarcity and Diversity Sunderland, MA: Sinauer Assoc.
    [Google Scholar]
  18. 18.
    Smith TB, Wayne RK, eds. 1996. Molecular Genetic Approaches in Conservation Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  19. 19.
    Ryder OA. 2005. Conservation genomics: applying whole genome studies to species conservation efforts. Cytogenet. Genome Res. 108:1–36–15
    [Google Scholar]
  20. 20.
    Allendorf FW, Hohenlohe PA, Luikart G. 2010. Genomics and the future of conservation genetics. Nat. Rev. Genet. 11:10697–709
    [Google Scholar]
  21. 21.
    Steiner CC, Putnam AS, Hoeck PEA, Ryder OA. 2013. Conservation genomics of threatened animal species. Annu. Rev. Anim. Biosci. 1:261–81
    [Google Scholar]
  22. 22.
    Shafer ABA, Wolf JBW, Alves PC, Bergström L, Bruford MW et al. 2015. Genomics and the challenging translation into conservation practice. Trends Ecol. Evol. 30:278–87
    [Google Scholar]
  23. 23.
    Supple MA, Shapiro B. 2018. Conservation of biodiversity in the genomics era. Genome Biol. 19:131
    [Google Scholar]
  24. 24.
    Hohenlohe PA, Funk WC, Rajora OP. 2021. Population genomics for wildlife conservation and management. Mol. Ecol. 30:162–82
    [Google Scholar]
  25. 25.
    Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. 2005. Host-bacterial mutualism in the human intestine. Science 307:57171915–20
    [Google Scholar]
  26. 26.
    Gill SR, Pop M, DeBoy RT, Eckburg PB, Turnbaugh PJ et al. 2006. Metagenomic analysis of the human distal gut microbiome. Science 312:57781355–59
    [Google Scholar]
  27. 27.
    Flint HJ, Scott KP, Louis P, Duncan SH. 2012. The role of the gut microbiota in nutrition and health. Nat. Rev. Gastroenterol. Hepatol. 9:10577–89
    [Google Scholar]
  28. 28.
    Ezenwa VO, Gerardo NM, Inouye DW, Medina M, Xavier JB. 2012. Animal behavior and the microbiome. Science 338:6104198–99
    [Google Scholar]
  29. 29.
    Sommer F, Bäckhed F. 2013. The gut microbiota—masters of host development and physiology. Nat. Rev. Microbiol. 11:4227–38
    [Google Scholar]
  30. 30.
    Pope PB, Denman SE, Jones M, Tringe SG, Barry K et al. 2010. Adaptation to herbivory by the tammar wallaby includes bacterial and glycoside hydrolase profiles different from other herbivores. PNAS 107:3314793–98
    [Google Scholar]
  31. 31.
    Amato KR, Leigh SR, Kent A, Mackie RI, Yeoman CJ et al. 2015. The gut microbiota appears to compensate for seasonal diet variation in the wild black howler monkey (Alouatta pigra). Microb. Ecol. 69:2434–43
    [Google Scholar]
  32. 32.
    Gomez A, Petrzelkova K, Yeoman CJ, Vlckova K, Mrázek J et al. 2015. Gut microbiome composition and metabolomic profiles of wild western lowland gorillas (Gorilla gorilla gorilla) reflect host ecology. Mol. Ecol. 24:102551–65
    [Google Scholar]
  33. 33.
    Gomez A, Rothman JM, Petrzelkova K, Yeoman CJ, Vlckova K et al. 2016. Temporal variation selects for diet-microbe co-metabolic traits in the gut of Gorilla spp. ISME J. 10:2514–26
    [Google Scholar]
  34. 34.
    Stumpf RM, Gomez A, Amato KR, Yeoman CJ, Polk JD et al. 2016. Microbiomes, metagenomics, and primate conservation: new strategies, tools, and applications. Biol. Conserv. 199:56–66
    [Google Scholar]
  35. 35.
    Sharpton TJ. 2018. Role of the gut microbiome in vertebrate evolution. mSystems 3:2e00174-17
    [Google Scholar]
  36. 36.
    Zhu L, Wu Q, Deng C, Zhang M, Zhang C et al. 2018. Adaptive evolution to a high purine and fat diet of carnivorans revealed by gut microbiomes and host genomes. Environ. Microbiol. 20:51711–22
    [Google Scholar]
  37. 37.
    Wei F, Wu Q, Hu Y, Huang G, Nie Y, Yan L. 2019. Conservation metagenomics: a new branch of conservation biology. Sci. China Life Sci. 62:2168–78
    [Google Scholar]
  38. 38.
    Qiu Z, Qi G. 1989. Ailuropoda found from the late Miocene deposits in Lufeng, Yunnan. Vertebr. Palasiat. 27:153–69
    [Google Scholar]
  39. 39.
    Salesa MJ, Peigné S, Antón M, Morales J. 2011. Evolution of the family Ailuridae: origins and old-world fossil record. Red Panda AR Glatston 27–41. Oxford, UK: William Andrew Publ.
    [Google Scholar]
  40. 40.
    Li R, Fan W, Tian G, Zhu H, He L et al. 2010. The sequence and de novo assembly of the giant panda genome. Nature 463:7279311–17
    [Google Scholar]
  41. 41.
    Li H, Durbin R. 2011. Inference of human population history from individual whole-genome sequences. Nature 475:7357493–96
    [Google Scholar]
  42. 42.
    Zhao S, Zheng P, Dong S, Zhan X, Wu Q et al. 2013. Whole-genome sequencing of giant pandas provides insights into demographic history and local adaptation. Nat. Genet. 45:167–71
    [Google Scholar]
  43. 43.
    Han H, Wei W, Hu Y, Nie Y, Ji X et al. 2019. Diet evolution and habitat contraction of giant pandas via stable isotope analysis. Curr. Biol. 29:4664–69.e2
    [Google Scholar]
  44. 44.
    Wang J. 1974. On the taxonomic status of species, geological distribution and evolutionary history of Ailuropoda. Acta Zool. Sin. 20:191–201
    [Google Scholar]
  45. 45.
    Ko AM-S, Zhang Y, Yang MA, Hu Y, Cao P et al. 2018. Mitochondrial genome of a 22,000-year-old giant panda from southern China reveals a new panda lineage. Curr. Biol. 28:12R693–94
    [Google Scholar]
  46. 46.
    Sheng GL, Barlow A, Cooper A, Hou XD, Ji XP et al. 2018. Ancient DNA from giant panda (Ailuropoda melanoleuca) of south-western China reveals genetic diversity loss during the Holocene. Genes 9:4198
    [Google Scholar]
  47. 47.
    Sheng GL, Basler N, Ji XP, Paijmans JLA, Alberti F et al. 2019. Paleogenome reveals genetic contribution of extinct giant panda to extant populations. Curr. Biol. 29:101695–700.e6
    [Google Scholar]
  48. 48.
    Gutenkunst RN, Hernandez RD, Williamson SH, Bustamante CD. 2009. Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. PLOS Genet. 5:10e1000695
    [Google Scholar]
  49. 49.
    Su B, Fu Y, Wang Y, Jin L, Chakraborty R 2001. Genetic diversity and population history of the red panda (Ailurus fulgens) as inferred from mitochondrial DNA sequence variations. Mol. Biol. Evol. 18:1070–76
    [Google Scholar]
  50. 50.
    Li M, Wei F, Goossens B, Feng Z, Tamate HB et al. 2005. Mitochondrial phylogeography and subspecific variation in the red panda (Ailurus fulgens): implications for conservation. Mol. Phylogenet. Evol. 36:178–89
    [Google Scholar]
  51. 51.
    Hu Y, Guo Y, Qi D, Zhan X, Wu H et al. 2011. Genetic structuring and recent demographic history of red pandas (Ailurus fulgens) inferred from microsatellite and mitochondrial DNA. Mol. Ecol. 20:132662–75
    [Google Scholar]
  52. 52.
    Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:91312–13
    [Google Scholar]
  53. 53.
    Alexander DH, Novembre J, Lange K. 2009. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19:91655–64
    [Google Scholar]
  54. 54.
    Yang J, Lee SH, Goddard ME, Visscher PM. 2011. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88:176–82
    [Google Scholar]
  55. 55.
    Hu Y, Qi D, Wang H, Wei F. 2010. Genetic evidence of recent population contraction in the southernmost population of giant pandas. Genetica 138:11–121297–306
    [Google Scholar]
  56. 56.
    Zhu L, Zhan X, Wu H, Zhang S, Meng T et al. 2010. Conservation implications of drastic reductions in the smallest and most isolated populations of giant pandas: reductions in giant panda population. Conserv. Biol. 24:51299–306
    [Google Scholar]
  57. 57.
    Frankham R, Ballou JD, Briscoe DA. 2002. Introduction to Conservation Genetics Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  58. 58.
    Ferrière R, Dieckmann U, Couvet D, eds. 2004. Evolutionary Conservation Biology Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  59. 59.
    Conv. Biol. Divers 2022. Kunming-Montreal Global Biodiversity Framework Framew. CBD/COP/15/L.25 Conv. Biol. Divers. Montreal, Can.:
    [Google Scholar]
  60. 60.
    Su B, Shi L, He G, Zhang A, Song Y et al. 1994. Genetic diversity in the giant panda: evidence from protein electrophoresis. Chin. Sci. Bull. 39:151305–9
    [Google Scholar]
  61. 61.
    Zhang Y, Ryder OA, Fan Z, Zhang H, He T et al. 1997. Sequence variation and genetic diversity in the giant panda. Sci. China C 40:2210–16
    [Google Scholar]
  62. 62.
    Zhang BW, Li M, Ma LC, Wei FW. 2006. A widely applicable protocol for DNA isolation from fecal samples. Biochem. Genet. 44:11–12494–503
    [Google Scholar]
  63. 63.
    Zhan X, Li M, Zhang Z, Goossens B, Chen Y et al. 2006. Molecular censusing doubles giant panda population estimate in a key nature reserve. Curr. Biol. 16:12R451–52
    [Google Scholar]
  64. 64.
    Zhang B, Li M, Zhang Z, Goossens B, Zhu L et al. 2007. Genetic viability and population history of the giant panda, putting an end to the “evolutionary dead end”?. Mol. Biol. Evol. 24:81801–10
    [Google Scholar]
  65. 65.
    Zhu L, Hu Y, Qi D, Wu H, Zhan X et al. 2013. Genetic consequences of historical anthropogenic and ecological events on giant pandas. Ecology 94:102346–57
    [Google Scholar]
  66. 66.
    Hu Y, Nie Y, Wei W, Ma T, Van Horn R et al. 2017. Inbreeding and inbreeding avoidance in wild giant pandas. Mol. Ecol. 26:205793–806
    [Google Scholar]
  67. 67.
    Hu Y, Zhan X, Qi D, Wei F. 2010. Spatial genetic structure and dispersal of giant pandas on a mountain-range scale. Conserv. Genet. 11:62145–55
    [Google Scholar]
  68. 68.
    Zhu L, Zhan X, Meng T, Zhang S, Wei F. 2010. Landscape features influence gene flow as measured by cost-distance and genetic analyses: a case study for giant pandas in the Daxiangling and Xiaoxiangling Mountains. BMC Genet. 11:72
    [Google Scholar]
  69. 69.
    Ma T, Hu Y, Russo I-RM, Nie Y, Yang T et al. 2018. Walking in a heterogeneous landscape: dispersal, gene flow and conservation implications for the giant panda in the Qinling Mountains. Evol. Appl. 11:101859–72
    [Google Scholar]
  70. 70.
    Zhu L, Zhang S, Gu X, Wei F. 2011. Significant genetic boundaries and spatial dynamics of giant pandas occupying fragmented habitat across southwest China. Mol. Ecol. 20:61122–32
    [Google Scholar]
  71. 71.
    Thapa A, Hu Y, Wei F. 2018. The endangered red panda (Ailurus fulgens): ecology and conservation approaches across the entire range. Biol. Conserv. 220:112–21
    [Google Scholar]
  72. 72.
    Karki S, Maraseni T, Mackey B, Bista D, Lama ST et al. 2021. Reaching over the gap: a review of trends in and status of red panda research over 193 years (1827–2020). Sci. Total Environ. 781:146659
    [Google Scholar]
  73. 73.
    Dalui S, Khatri H, Singh SK, Basu S, Ghosh A et al. 2020. Fine-scale landscape genetics unveiling contemporary asymmetric movement of red panda (Ailurus fulgens) in Kangchenjunga landscape, India. Sci. Rep. 10:15446
    [Google Scholar]
  74. 74.
    Zhan XJ, Zhang ZJ, Wu H, Goossens B, Li M et al. 2007. Molecular analysis of dispersal in giant pandas. Mol. Ecol. 16:183792–800
    [Google Scholar]
  75. 75.
    Lawson Handley LJ, Perrin N 2007. Advances in our understanding of mammalian sex-biased dispersal. Mol. Ecol. 16:81559–78
    [Google Scholar]
  76. 76.
    Schaller GB, Hu J, Pan W, Zhu J. 1985. The Giant Pandas of Wolong Chicago: Univ. Chicago Press
    [Google Scholar]
  77. 77.
    Yonzon PB, Hunter ML. 1991. Conservation of the red panda Ailurus fulgens. Biol. Conserv. 57:11–11
    [Google Scholar]
  78. 78.
    Wei F, Feng Z, Wang Z, Zhou A, Hu J. 1999. Use of the nutrients in bamboo by the red panda (Ailurus fulgens). J. Zool. 248:4535–41
    [Google Scholar]
  79. 79.
    Wei F, Zhang Z. 2011. Red panda ecology. Red Panda AR Glatston pp. 193–212 Oxford, UK: William Andrew Publ.
    [Google Scholar]
  80. 80.
    Pan W, Lu Z, Zhu X, Wang D. 2014. A Chance for Lasting Survival Washington, DC: Smithson. Inst. Sch. Press
    [Google Scholar]
  81. 81.
    Salesa MJ, Antón M, Peigné S, Morales J. 2006. Evidence of a false thumb in a fossil carnivore clarifies the evolution of pandas. PNAS 103:2379–82
    [Google Scholar]
  82. 82.
    Pocock RI. 1939. The prehensile paw of the giant panda. Nature 143:3614206
    [Google Scholar]
  83. 83.
    Zhang S, Pan R, Li M, Oxnard C, Wei F. 2007. Mandible of the giant panda (Ailuropoda melanoleuca) compared with other Chinese carnivores: functional adaptation. Bot. J. Linn. Soc. 92:3449–56
    [Google Scholar]
  84. 84.
    Zhao H, Yang J-R, Xu H, Zhang J. 2010. Pseudogenization of the umami taste receptor gene Tas1r1 in the giant panda coincided with its dietary switch to bamboo. Mol. Biol. Evol. 27:122669–73
    [Google Scholar]
  85. 85.
    Shan L, Wu Q, Wang L, Zhang L, Wei F. 2018. Lineage-specific evolution of bitter taste receptor genes in the giant and red pandas implies dietary adaptation. Integr. Zool. 13:2152–59
    [Google Scholar]
  86. 86.
    Ma J, Zhang L, Shen F, Geng Y, Huang Y et al. 2023. Gene expressions between obligate bamboo-eating pandas and non-herbivorous mammals reveal converged specialized bamboo diet adaptation. BMC Genom. 24:23
    [Google Scholar]
  87. 87.
    Li L, Shen F, Jie X, Zhang L, Yan G et al. 2022. Comparative transcriptomics and methylomics reveal adaptive responses of digestive and metabolic genes to dietary shift in giant and red pandas. Genes 13:81446
    [Google Scholar]
  88. 88.
    Dierenfeld ES, Hintz HF, Robertson JB, Van Soest PJ, Oftedal OT. 1982. Utilization of bamboo by the giant panda. J. Nutr. 112:4636–41
    [Google Scholar]
  89. 89.
    Zhu L, Wu Q, Dai J, Zhang S, Wei F. 2011. Evidence of cellulose metabolism by the giant panda gut microbiome. PNAS 108:4317714–19
    [Google Scholar]
  90. 90.
    Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR et al. 2008. Evolution of mammals and their gut microbes. Science 320:58831647–51
    [Google Scholar]
  91. 91.
    Xue Z, Zhang W, Wang L, Hou R, Zhang M et al. 2015. The bamboo-eating giant panda harbors a carnivore-like gut microbiota, with excessive seasonal variations. mBio 6:3e00022-15
    [Google Scholar]
  92. 92.
    Wei F, Wang X, Wu Q. 2015. The giant panda gut microbiome. Trends Microbiol. 23:8450–52
    [Google Scholar]
  93. 93.
    Huang G, Wang X, Hu Y, Wu Q, Nie Y et al. 2021. Diet drives convergent evolution of gut microbiomes in bamboo-eating species. Sci. China Life Sci. 64:188–95
    [Google Scholar]
  94. 94.
    Zhu L, Yang Z, Yao R, Xu L, Chen H et al. 2018. Potential mechanism of detoxification of cyanide compounds by gut microbiomes of bamboo-eating pandas. mSphere 3:3e00229-18
    [Google Scholar]
  95. 95.
    Wu Q, Wang X, Ding Y, Hu Y, Nie Y et al. 2017. Seasonal variation in nutrient utilization shapes gut microbiome structure and function in wild giant pandas. Proc. Biol. Sci. 284:186220170955
    [Google Scholar]
  96. 96.
    Nie Y, Zhang Z, Raubenheimer D, Elser JJ, Wei W, Wei F. 2015. Obligate herbivory in an ancestrally carnivorous lineage: the giant panda and bamboo from the perspective of nutritional geometry. Funct. Ecol. 29:126–34
    [Google Scholar]
  97. 97.
    Kong F, Zhao J, Han S, Zeng B, Yang J et al. 2014. Characterization of the gut microbiota in the red panda (Ailurus fulgens). PLOS ONE 9:2e87885
    [Google Scholar]
  98. 98.
    Huang G, Wang L, Li J, Hou R, Wang M et al. 2022. Seasonal shift of the gut microbiome synchronizes host peripheral circadian rhythm for physiological adaptation to a low-fat diet in the giant panda. Cell Rep. 38:3110203
    [Google Scholar]
  99. 99.
    Wang L, Huang G, Hou R, Qi D, Wu Q et al. 2021. Multi-omics reveals the positive leverage of plant secondary metabolites on the gut microbiota in a non-model mammal. Microbiome 9:192
    [Google Scholar]
  100. 100.
    Nie Y, Speakman JR, Wu Q, Zhang C, Hu Y et al. 2015. Exceptionally low daily energy expenditure in the bamboo-eating giant panda. Science 349:6244171–74
    [Google Scholar]
  101. 101.
    Wei W, Nie Y, Zhang Z, Hu Y, Yan L et al. 2015. Hunting bamboo: foraging patch selection and utilization by giant pandas and implications for conservation. Biol. Conserv. 186:260–67
    [Google Scholar]
  102. 102.
    Rudolf AM, Wu Q, Li L, Wang J, Huang Y et al. 2022. A single nucleotide mutation in the dual-oxidase 2 (DUOX2) gene causes some of the panda's unique metabolic phenotypes. Natl. Sci. Rev. 9:2nwab125
    [Google Scholar]
  103. 103.
    Weir BS, Cockerham CC. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38:61358–70
    [Google Scholar]
  104. 104.
    Hu X, Wang G, Shan L, Sun S, Hu Y, Wei F. 2020. TAS2R20 variants confer dietary adaptation to high-quercitrin bamboo leaves in Qinling giant pandas. Ecol. Evol. 10:125913–21
    [Google Scholar]
  105. 105.
    Hu T, Dai Q, Chen H, Zhang Z, Dai Q et al. 2021. Geographic pattern of antibiotic resistance genes in the metagenomes of the giant panda. Microb. Biotechnol. 14:1186–97
    [Google Scholar]
  106. 106.
    Cui X, Zhang Q, Zhang Q, Chen H, Liu G, Zhu L. 2023. The putative maintaining mechanism of gut bacterial ecosystem in giant pandas and its potential application in conservation. Evol. Appl. 16:136–47
    [Google Scholar]
  107. 107.
    Tajima F. 1983. Evolutionary relationship of DNA sequences in finite populations. Genetics 105:2437–60
    [Google Scholar]
  108. 108.
    Jensen EL, Díez-del-Molino D, Gilbert MTP, Bertola LD, Borges F et al. 2022. Ancient and historical DNA in conservation policy. Trends Ecol. Evol. 37:5420–29
    [Google Scholar]
  109. 109.
    Schenkman L. 2010. Hope for wild pandas. Science 328:5978553
    [Google Scholar]
  110. 110.
    Dai QL, Li JW, Yang Y, Li M, Zhang K et al. 2020. Genetic diversity and prediction analysis of small isolated giant panda populations after release of individuals. Evol. Bioinform. Online 16:1176934320939945
    [Google Scholar]
  111. 111.
    Yang Z, Gu X, Nie Y, Huang F, Huang Y et al. 2018. Reintroduction of the giant panda into the wild: A good start suggests a bright future. Biol. Conserv. 217:181–86
    [Google Scholar]
  112. 112.
    Shan L, Hu Y, Zhu L, Yan L, Wang C et al. 2014. Large-scale genetic survey provides insights into the captive management and reintroduction of giant pandas. Mol. Biol. Evol. 31:102663–71
    [Google Scholar]
  113. 113.
    Yin K, Xie Y, Wu N. 2006. Corridor connecting giant panda habitats from north to south in the Min Mountains, Sichuan, China. Integr. Zool. 1:4170–78
    [Google Scholar]
  114. 114.
    Shen G, Feng C, Xie Z, Ouyang Z, Li J, Pascal M. 2008. Proposed conservation landscape for giant pandas in the Minshan Mountains, China. Conserv. Biol. 22:51144–53
    [Google Scholar]
  115. 115.
    Wei F, Swaisgood R, Hu Y, Nie Y, Yan L et al. 2015. Progress in the ecology and conservation of giant pandas. Conserv. Biol. 29:61497–507
    [Google Scholar]
  116. 116.
    Wei W, Swaisgood RR, Pilfold NW, Owen MA, Dai Q et al. 2020. Assessing the effectiveness of China's panda protection system. Curr. Biol. 30:71280–86.e2
    [Google Scholar]
  117. 117.
    Huang Q, Fei Y, Yang H, Gu X, Songer M. 2020. Giant Panda National Park, a step towards streamlining protected areas and cohesive conservation management in China. Glob. Ecol. Conserv. 22:e00947
    [Google Scholar]
  118. 118.
    Xu Y, Yang B, Dai Q, Pan H, Zhong X et al. 2022. Landscape-scale giant panda conservation based on metapopulations within China's national park system. Sci. Adv. 8:30eabl8637
    [Google Scholar]
  119. 119.
    Zhao W. 2022. Beginning: China's national park system. Natl. Sci. Rev. 9:10nwac150
    [Google Scholar]
  120. 120.
    Thapa A, Wu R, Hu Y, Nie Y, Singh PB et al. 2018. Predicting the potential distribution of the endangered red panda across its entire range using MaxEnt modeling. Ecol. Evol. 8:2110542–54
    [Google Scholar]
  121. 121.
    Fan L, Xia Y, Wang Y, Han D, Liu Y et al. 2023. Gut microbiota bridges dietary nutrients and host immunity. Sci. China Life Sci. 66:2466–514
    [Google Scholar]
  122. 122.
    Deng L, Yao J-X, Liu H-F, Zhou Z-Y, Chai Y-J et al. 2019. First report of Blastocystis in giant pandas, red pandas, and various bird species in Sichuan province, southwestern China. Int. J. Parasitol. Parasites Wildl. 9:298–304
    [Google Scholar]
  123. 123.
    Alex CE, Kubiski SV, Li L, Sadeghi M, Wack RF et al. 2018. Amdoparvovirus infection in red pandas (Ailurus fulgens). Vet. Pathol. 55:4552–61
    [Google Scholar]
  124. 124.
    Zhao M, Yue C, Yang Z, Li Y, Zhang D et al. 2022. Viral metagenomics unveiled extensive communications of viruses within giant pandas and their associated organisms in the same ecosystem. Sci. Total Environ. 820:153317
    [Google Scholar]
  125. 125.
    Zhou W, Qi D, Swaisgood RR, Wang L, Jin Y et al. 2021. Symbiotic bacteria mediate volatile chemical signal synthesis in a large solitary mammal species. ISME J. 15:72070–80
    [Google Scholar]
  126. 126.
    Wei F. 2020. A new era for evolutionary developmental biology in non-model organisms. Sci. China Life Sci. 63:81251–53
    [Google Scholar]
  127. 127.
    Hu Y, Wang X, Xu Y, Yang H, Tong Z et al. 2023. Molecular mechanisms of adaptive evolution in wild animals and plants. Sci. China Life Sci. 66:3453–95
    [Google Scholar]
  128. 128.
    Hu Y, Yuan S, Du X, Liu J, Zhou W, Wei F. 2023. Comparative analysis reveals epigenomic evolution related to species traits and genomic imprinting in mammals. Innovation 4:3100434
    [Google Scholar]
  129. 129.
    Wei F, Huang G, Guan D, Fan H, Zhou W et al. 2022. Digital Noah's Ark: last chance to save the endangered species. Sci. China Life Sci. 65:112325–27
    [Google Scholar]
  130. 130.
    Kumar S, Suleski M, Craig JM, Kasprowicz AE, Sanderford M et al. 2022. TimeTree 5: an expanded resource for species divergence times. Mol. Biol. Evol. 39:8msac174
    [Google Scholar]
/content/journals/10.1146/annurev-animal-021022-054730
Loading
/content/journals/10.1146/annurev-animal-021022-054730
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error