1932

Abstract

Cultured meat is an emerging biotechnology that aims to produce meat from animal cell culture, rather than from the raising and slaughtering of livestock, on environmental and animal welfare grounds. The detailed understanding and accurate manipulation of cell biology are critical to the design of cultured meat bioprocesses. Recent years have seen significant interest in this field, with numerous scientific and commercial breakthroughs. Nevertheless, these technologies remain at a nascent stage, and myriad challenges remain, spanning the entire bioprocess. From a cell biological perspective, these include the identification of suitable starting cell types, tuning of proliferation and differentiation conditions, and optimization of cell–biomaterial interactions to create nutritious, enticing foods. Here, we discuss the key advances and outstanding challenges in cultured meat, with a particular focus on cell biology, and argue that solving the remaining bottlenecks in a cost-effective, scalable fashion will require coordinated, concerted scientific efforts. Success will also require solutions to nonscientific challenges, including regulatory approval, consumer acceptance, and market feasibility. However, if these can be overcome, cultured meat technologies can revolutionize our approach to food.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-021022-055132
2024-02-15
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/animal/12/1/annurev-animal-021022-055132.html?itemId=/content/journals/10.1146/annurev-animal-021022-055132&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Post MJ, Levenberg S, Kaplan DL, Genovese N, Fu J et al. 2020. Scientific, sustainability and regulatory challenges of cultured meat. Nat. Food 1:7403–15
    [Google Scholar]
  2. 2.
    Post MJ. 2012. Cultured meat from stem cells: challenges and prospects. Meat Sci. 92:3297–301
    [Google Scholar]
  3. 3.
    Kupferschmidt K. 2013. Here it comes…the $375,000 lab-grown beef burger. Science Aug. 2. https://www.science.org/content/article/here-it-comes-375000-lab-grown-beef-burger
    [Google Scholar]
  4. 4.
    de Almeida Fuzeta M, de Matos Branco AD, Fernandes-Platzgummer A, da Silva CL, Cabral JMS. 2020. Addressing the manufacturing challenges of cell-based therapies. Adv. Biochem. Eng. Biotechnol. 171:225–78
    [Google Scholar]
  5. 5.
    Reiss J, Robertson S, Suzuki M. 2021. Cell sources for cultivated meat: applications and considerations throughout the production workflow. Int. J. Mol. Sci. 22:147513
    [Google Scholar]
  6. 6.
    Hackett CH, Fortier LA. 2011. Embryonic stem cells and iPS cells: sources and characteristics. Vet. Clin. N. Am. Equine Pract. 27:2233–42
    [Google Scholar]
  7. 7.
    Zagury Y, Ianovici I, Landau S, Lavon N, Levenberg S. 2022. Engineered marble-like bovine fat tissue for cultured meat. Commun. Biol. 5:927
    [Google Scholar]
  8. 8.
    Bosnakovski D, Mizuno M, Kim G, Takagi S, Okumura M, Fujinaga T. 2005. Isolation and multilineage differentiation of bovine bone marrow mesenchymal stem cells. Cell Tissue Res. 319:2243–53
    [Google Scholar]
  9. 9.
    Wei S, Du M, Jiang Z, Duarte MS, Fernyhough-Culver M et al. 2013. Bovine dedifferentiated adipose tissue (DFAT) cells. Adipocyte 2:3148–59
    [Google Scholar]
  10. 10.
    Aguiari P, Leo S, Zavan B, Vindigni V, Rimessi A et al. 2008. High glucose induces adipogenic differentiation of muscle-derived stem cells. PNAS 105:41226–31
    [Google Scholar]
  11. 11.
    Uezumi A, Fukada S, Yamamoto N, Takeda S, Tsuchida K. 2010. Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nat. Cell Biol. 12:2143–52
    [Google Scholar]
  12. 12.
    Dohmen RGJ, Hubalek S, Melke J, Messmer T, Cantoni F et al. 2022. Muscle-derived fibro-adipogenic progenitor cells for production of cultured bovine adipose tissue. npj Sci. Food 6:6
    [Google Scholar]
  13. 13.
    Choudhury D, Tseng TW, Swartz E. 2020. The business of cultured meat. Trends Biotechnol. 38:6573–77
    [Google Scholar]
  14. 14.
    Burton NM, Vierck J, Krabbenhoft L, Bryne K, Dodson MV. 2000. Methods for animal satellite cell culture under a variety of conditions. Methods Cell Sci. 22:151–61
    [Google Scholar]
  15. 15.
    Melzener L, Ding S, Hueber R, Messmer T, Zhou G et al. 2022. Comparative analysis of cattle breeds as satellite cell donors for cultured beef. bioRxiv 2022.01.14.476358. https://doi.org/10.1101/2022.01.14.476358
    [Crossref]
  16. 16.
    Coles CA, Wadeson J, Leyton CP, Siddell JP, Greenwood PL et al. 2015. Proliferation rates of bovine primary muscle cells relate to liveweight and carcase weight in cattle. PLOS ONE 10:4e0124468
    [Google Scholar]
  17. 17.
    Melzener L, Verzijden KE, Buijs AJ, Post MJ, Flack JE. 2021. Cultured beef: from small biopsy to substantial quantity. J. Sci. Food Agric. 101:17–14
    [Google Scholar]
  18. 18.
    Oberbauer E, Steffenhagen C, Wurzer C, Gabriel C, Redl H, Wolbank S. 2015. Enzymatic and non-enzymatic isolation systems for adipose tissue-derived cells: current state of the art. Cell Regen. 4:7
    [Google Scholar]
  19. 19.
    Ding S, Swennen GNM, Messmer T, Gagliardi M, Molin DGM et al. 2018. Maintaining bovine satellite cells stemness through p38 pathway. Sci. Rep. 8:110808
    [Google Scholar]
  20. 20.
    Messmer T, Dohmen RGJ, Schaeken L, Melzener L, Hueber R et al. 2023. Single-cell analysis of bovine muscle-derived cell types for cultured meat production. Front. Nutr. 101212196
    [Google Scholar]
  21. 21.
    Choi K-H, Yoon JW, Kim M, Lee HJ, Jeong J et al. 2021. Muscle stem cell isolation and in vitro culture for meat production: a methodological review. Compr. Rev. Food Sci. Food Saf. 20:1429–57
    [Google Scholar]
  22. 22.
    Bogliotti YS, Wu J, Vilarino M, Okamura D, Soto DA et al. 2018. Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts. PNAS 115:92090–95
    [Google Scholar]
  23. 23.
    Gao X, Nowak-Imialek M, Chen X, Chen D, Herrmann D et al. 2019. Establishment of porcine and human expanded potential stem cells. Nat. Cell Biol. 21:6687–99
    [Google Scholar]
  24. 24.
    Woods EJ, Thirumala S, Badhe-Buchanan SS, Clarke D, Mathew AJ 2016. Off the shelf cellular therapeutics: factors to consider during cryopreservation and storage of human cells for clinical use. Cytotherapy 18:6697–711
    [Google Scholar]
  25. 25.
    Sun C, Yue J, He N, Liu Y, Zhang X, Zhang Y. 2016. Fundamental principles of stem cell banking. Biobanking and Cryopreservation of Stem Cells F Karimi-Busheri, M Weinfeld 31–45 Cham, Switz.: Springer Int. Publ
    [Google Scholar]
  26. 26.
    Richards B, Cao S, Plavsic M, Pomponio R, Davies C et al. 2014. Detection of adventitious agents using next-generation sequencing. PDA J. Pharm. Sci. Technol. 68:6651–60
    [Google Scholar]
  27. 27.
    Nguyen QH, Lukowski SW, Chiu HS, Senabouth A, Bruxner TJC et al. 2018. Single-cell RNA-seq of human induced pluripotent stem cells reveals cellular heterogeneity and cell state transitions between subpopulations. Genome Res. 28:71053–66
    [Google Scholar]
  28. 28.
    Bar-Nur O, Gerli MFM, Di Stefano B, Almada AE, Galvin A et al. 2018. Direct reprogramming of mouse fibroblasts into functional skeletal muscle progenitors. Stem Cell Rep. 10:51505–21
    [Google Scholar]
  29. 29.
    Kolkmann AM, van Essen A, Post MJ, Moutsatsou P. 2022. Development of a chemically defined medium for in vitro expansion of primary bovine satellite cells. Front. Bioeng. Biotechnol. 10:895289
    [Google Scholar]
  30. 30.
    Stout AJ, Mirliani AB, Rittenberg ML, Shub M, White EC et al. 2022. Simple and effective serum-free medium for sustained expansion of bovine satellite cells for cell cultured meat. Commun. Biol. 5:466
    [Google Scholar]
  31. 31.
    Frank S, Zhang M, Schöler HR, Greber B. 2012. Small molecule-assisted, line-independent maintenance of human pluripotent stem cells in defined conditions. PLOS ONE 7:7e41958
    [Google Scholar]
  32. 32.
    Moutsatsou P, Cruz H, Klevernic I, Kolkmann A, van Essen A, Post M. 2021. Serum-free medium for culturing a bovine progenitor cell. WO Patent 2021/158103A1
    [Google Scholar]
  33. 33.
    Messmer T, Klevernic I, Furquim C, Ovchinnikova E, Dogan A et al. 2022. A serum-free media formulation for cultured meat production supports bovine satellite cell differentiation in the absence of serum starvation. Nat. Food 3:174–85
    [Google Scholar]
  34. 34.
    Stout AJ, Rittenberg ML, Shub M, Saad MK, Mirliani AB et al. 2022. A Beefy-R culture medium: replacing albumin with rapeseed protein isolates. Biomaterials 296:120092
    [Google Scholar]
  35. 35.
    Penton CM, Badarinarayana V, Prisco J, Powers E, Pincus M et al. 2016. Laminin 521 maintains differentiation potential of mouse and human satellite cell-derived myoblasts during long-term culture expansion. Skelet. Muscle 6:44
    [Google Scholar]
  36. 36.
    Hayflick L, Moorhead PS. 1961. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25:3585–621
    [Google Scholar]
  37. 37.
    Di Micco R, Krizhanovsky V, Baker D, d'Adda di Fagagna F. 2021. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat. Rev. Mol. Cell Biol. 22:275–95
    [Google Scholar]
  38. 38.
    Ogrodnik M. 2021. Cellular aging beyond cellular senescence: markers of senescence prior to cell cycle arrest in vitro and in vivo. Aging Cell 20:4e13338
    [Google Scholar]
  39. 39.
    Yi S, Lin K, Jiang T, Shao W, Huang C et al. 2020. NMR-based metabonomic analysis of HUVEC cells during replicative senescence. Aging 12:43626–46
    [Google Scholar]
  40. 40.
    Hewitt G, Jurk D, Marques FDM, Correia-Melo C, Hardy T et al. 2012. Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence. Nat. Commun. 3:708
    [Google Scholar]
  41. 41.
    Franzen J, Georgomanolis T, Selich A, Kuo C-C, Stöger R et al. 2021. DNA methylation changes during long-term in vitro cell culture are caused by epigenetic drift. Commun. Biol. 4:598
    [Google Scholar]
  42. 42.
    Park S, Gagliardi M, Swennen G, Dogan A, Kim Y et al. 2022. Effects of hypoxia on proliferation and differentiation in Belgian Blue and Hanwoo muscle satellite cells for the development of cultured meat. Biomolecules 12:6838
    [Google Scholar]
  43. 43.
    Urbani L, Piccoli M, Franzin C, Pozzobon M, Coppi PD. 2012. Hypoxia increases mouse satellite cell clone proliferation maintaining both in vitro and in vivo heterogeneity and myogenic potential. PLOS ONE 7:11e49860
    [Google Scholar]
  44. 44.
    García-Prat L, Martínez-Vicente M, Perdiguero E, Ortet L, Rodríguez-Ubreva J et al. 2016. Autophagy maintains stemness by preventing senescence. Nature 529:758437–42
    [Google Scholar]
  45. 45.
    Turner DC, Gorski PP, Maasar MF, Seaborne RA, Baumert P et al. 2020. DNA methylation across the genome in aged human skeletal muscle tissue and muscle-derived cells: the role of HOX genes and physical activity. Sci. Rep. 10:15360
    [Google Scholar]
  46. 46.
    Hernando-Herraez I, Evano B, Stubbs T, Commere P-H, Jan Bonder M et al. 2019. Ageing affects DNA methylation drift and transcriptional cell-to-cell variability in mouse muscle stem cells. Nat. Commun. 10:4361
    [Google Scholar]
  47. 47.
    Le Grand F, Jones AE, Seale V, Scimè A, Rudnicki MA. 2009. Wnt7a activates the planar cell polarity pathway to drive the symmetric expansion of satellite stem cells. Cell Stem Cell 4:6535–47
    [Google Scholar]
  48. 48.
    Bernet JD, Doles JD, Hall JK, Tanaka KK, Carter TA, Olwin BB. 2014. p38 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice. Nat. Med. 20:3265–71
    [Google Scholar]
  49. 49.
    Conboy IM, Conboy MJ, Smythe GM, Rando TA. 2003. Notch-mediated restoration of regenerative potential to aged muscle. Science 302:56501575–77
    [Google Scholar]
  50. 50.
    Giuliani G, Vumbaca S, Fuoco C, Gargioli C, Giorda E et al. 2021. SCA-1 micro-heterogeneity in the fate decision of dystrophic fibro/adipogenic progenitors. Cell Death Dis. 12:122
    [Google Scholar]
  51. 51.
    Chakravarthy MV, Davis BS, Booth FW. 2000. IGF-I restores satellite cell proliferative potential in immobilized old skeletal muscle. J. Appl. Physiol. 89:41365–79
    [Google Scholar]
  52. 52.
    Eliazer S, Muncie JM, Christensen J, Sun X, D'Urso RS et al. 2019. Wnt4 from the niche controls the mechano-properties and quiescent state of muscle stem cells. Cell Stem Cell 25:5654–65
    [Google Scholar]
  53. 53.
    Begue G, Douillard A, Galbes O, Rossano B, Vernus B et al. 2013. Early activation of rat skeletal muscle IL-6/STAT1/STAT3 dependent gene expression in resistance exercise linked to hypertrophy. PLOS ONE 8:2e57141
    [Google Scholar]
  54. 54.
    Chen W-J, Lin I-H, Lee C-W, Chen Y-F. 2021. Aged skeletal muscle retains the ability to remodel extracellular matrix for degradation of collagen deposition after muscle injury. Int. J. Mol. Sci. 22:42123
    [Google Scholar]
  55. 55.
    Lukjanenko L, Karaz S, Stuelsatz P, Gurriaran-Rodriguez U, Michaud J et al. 2019. Aging disrupts muscle stem cell function by impairing matricellular WISP1 secretion from fibro-adipogenic progenitors. Cell Stem Cell 24:3433–46
    [Google Scholar]
  56. 56.
    Ansari S, Chen C, Xu X, Annabi N, Zadeh HH et al. 2016. Muscle tissue engineering using gingival mesenchymal stem cells encapsulated in alginate hydrogels containing multiple growth factors. Ann. Biomed. Eng. 44:61908–20
    [Google Scholar]
  57. 57.
    McKellar DW, Walter LD, Song LT, Mantri M, Wang MFZ et al. 2021. Large-scale integration of single-cell transcriptomic data captures transitional progenitor states in mouse skeletal muscle regeneration. Commun. Biol. 4:1280
    [Google Scholar]
  58. 58.
    Ono Y, Masuda S, Nam H-S, Benezra R, Miyagoe-Suzuki Y, Takeda S. 2012. Slow-dividing satellite cells retain long-term self-renewal ability in adult muscle. J. Cell Sci. 125:Pt. 51309–17
    [Google Scholar]
  59. 59.
    Jang Y-N, Baik EJ. 2013. JAK-STAT pathway and myogenic differentiation. JAK-STAT 2:2e23282
    [Google Scholar]
  60. 60.
    Schmidt M, Schüler SC, Hüttner SS, von Eyss B, von Maltzahn J. 2019. Adult stem cells at work: regenerating skeletal muscle. Cell. Mol. Life Sci. 76:132559–70
    [Google Scholar]
  61. 61.
    Pirkmajer S, Chibalin AV. 2011. Serum starvation: caveat emptor. Am. J. Physiol. Cell Physiol. 301:2C272–79
    [Google Scholar]
  62. 62.
    Luque E, Peña J, Martin P, Jimena I, Vaamonde R. 1995. Capillary supply during development of individual regenerating muscle fibers. Anat. Histol. Embryol. 24:287–89
    [Google Scholar]
  63. 63.
    Powell DJ, McFarland DC, Cowieson AJ, Muir WI, Velleman SG. 2013. The effect of nutritional status on myogenic satellite cell proliferation and differentiation. Poult. Sci. 92:82163–73
    [Google Scholar]
  64. 64.
    Eigler T, Zarfati G, Amzallag E, Sinha S, Segev N et al. 2021. ERK1/2 inhibition promotes robust myotube growth via CaMKII activation resulting in myoblast-to-myotube fusion. Dev. Cell 56:243349–63
    [Google Scholar]
  65. 65.
    Jiwlawat N, Lynch E, Jeffrey J, Van Dyke JM, Suzuki M. 2018. Current progress and challenges for skeletal muscle differentiation from human pluripotent stem cells using transgene-free approaches. Stem Cells Int. 2018:e6241681
    [Google Scholar]
  66. 66.
    Yoshida N, Yoshida S, Koishi K, Masuda K, Nabeshima Y. 1998. Cell heterogeneity upon myogenic differentiation: down-regulation of MyoD and Myf-5 generates ‘reserve cells. J. Cell Sci. 111:6769–79
    [Google Scholar]
  67. 67.
    Péault B, Rudnicki M, Torrente Y, Cossu G, Tremblay JP et al. 2007. Stem and progenitor cells in skeletal muscle development, maintenance, and therapy. Mol. Ther. J. Am. Soc. Gene Ther. 15:5867–77
    [Google Scholar]
  68. 68.
    Kitzmann M, Bonnieu A, Duret C, Vernus B, Barro M et al. 2006. Inhibition of Notch signaling induces myotube hypertrophy by recruiting a subpopulation of reserve cells. J. Cell. Physiol. 208:3538–48
    [Google Scholar]
  69. 69.
    Flucher BE, Andrews SB, Daniels MP. 1994. Molecular organization of transverse tubule/sarcoplasmic reticulum junctions during development of excitation-contraction coupling in skeletal muscle. Mol. Biol. Cell 5:101105–18
    [Google Scholar]
  70. 70.
    Yamamoto DL, Csikasz RI, Li Y, Sharma G, Hjort K et al. 2008. Myotube formation on micro-patterned glass: intracellular organization and protein distribution in C2C12 skeletal muscle cells. J. Histochem. Cytochem. 56:10881–92
    [Google Scholar]
  71. 71.
    Selvaraj S, Mondragon-Gonzalez R, Xu B, Magli A, Kim H et al. 2019. Screening identifies small molecules that enhance the maturation of human pluripotent stem cell-derived myotubes. eLife 8:e47970
    [Google Scholar]
  72. 72.
    Font-i-Furnols M, Guerrero L. 2014. Consumer preference, behavior and perception about meat and meat products: an overview. Meat Sci. 98:3361–71
    [Google Scholar]
  73. 73.
    Sarjeant K, Stephens JM. 2012. Adipogenesis. Cold Spring Harb. Perspect. Biol. 4:9a008417
    [Google Scholar]
  74. 74.
    Ghaben AL, Scherer PE. 2019. Adipogenesis and metabolic health. Nat. Rev. Mol. Cell Biol. 20:4242–58
    [Google Scholar]
  75. 75.
    Sakers A, De Siqueira MK, Seale P, Villanueva CJ. 2022. Adipose-tissue plasticity in health and disease. Cell 185:3419–46
    [Google Scholar]
  76. 76.
    Dufau J, Shen JX, Couchet M, De Castro Barbosa T, Mejhert N et al. 2021. In vitro and ex vivo models of adipocytes. Am. J. Physiol. Cell Physiol. 320:5C822–41
    [Google Scholar]
  77. 77.
    Mitić R, Cantoni F, Börlin CS, Post MJ, Jackisch L. 2023. A simplified and defined serum-free medium for cultivating fat across species. iScience 26:1105822
    [Google Scholar]
  78. 78.
    Vernon RG. 1981. Lipid metabolism in the adipose tissue of ruminant animals. Lipid Metabolism in Ruminant Animals WW Christie 279–362 Oxford, UK: Pergamon
    [Google Scholar]
  79. 79.
    Bou M, Todorčević M, Torgersen J, Škugor S, Navarro I, Ruyter B. 2016. De novo lipogenesis in Atlantic salmon adipocytes. Biochim. Biophys. Acta 1860:1 Part A 86–96
    [Google Scholar]
  80. 80.
    Cheng B, Wu M, Xu S, Zhang X, Wang Y et al. 2016. Cocktail supplement with rosiglitazone: a novel inducer for chicken preadipocyte differentiation in vitro. Biosci. Rep. 36:6e00401
    [Google Scholar]
  81. 81.
    Guo W, Pirtskhalava T, Tchkonia T, Xie W, Thomou T et al. 2007. Aging results in paradoxical susceptibility of fat cell progenitors to lipotoxicity. Am. J. Physiol. Endocrinol. Metab. 292:4E1041–51
    [Google Scholar]
  82. 82.
    Ma YN, Wang B, Wang ZX, Gomez NA, Zhu MJ, Du M. 2018. Three-dimensional spheroid culture of adipose stromal vascular cells for studying adipogenesis in beef cattle. Animal 12:102123–29
    [Google Scholar]
  83. 83.
    Wu B, Wei F, Xu S, Xie Y, Lv X et al. 2021. Mass spectrometry-based lipidomics as a powerful platform in foodomics research. Trends Food Sci. Technol. 107:358–76
    [Google Scholar]
  84. 84.
    Wells-Cembrano K, Sala-Jarque J, del Rio JA. 2022. Development of a simple and versatile in vitro method for production, stimulation, and analysis of bioengineered muscle. PLOS ONE 17:8e0272610
    [Google Scholar]
  85. 85.
    Ben-Arye T, Levenberg S. 2019. Tissue engineering for clean meat production. Front. Sustain. Food Syst. 3:46
    [Google Scholar]
  86. 86.
    Bomkamp C, Skaalure SC, Fernando GF, Ben-Arye T, Swartz EW, Specht EA. 2022. Scaffolding biomaterials for 3D cultivated meat: prospects and challenges. Adv. Sci. 9:32102908
    [Google Scholar]
  87. 87.
    Ben-Arye T, Shandalov Y, Ben-Shaul S, Landau S, Zagury Y et al. 2020. Textured soy protein scaffolds enable the generation of three-dimensional bovine skeletal muscle tissue for cell-based meat. Nat. Food 1:4210–20
    [Google Scholar]
  88. 88.
    Chaudhuri O, Gu L, Klumpers D, Darnell M, Bencherif SA et al. 2016. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mater. 15:3326–34
    [Google Scholar]
  89. 89.
    Sahoo DR, Biswal T. 2021. Alginate and its application to tissue engineering. SN Appl. Sci. 3:30
    [Google Scholar]
  90. 90.
    Sandvig I, Karstensen K, Rokstad AM, Aachmann FL, Formo K et al. 2015. RGD-peptide modified alginate by a chemoenzymatic strategy for tissue engineering applications. J. Biomed. Mater. Res. A 103:3896–906
    [Google Scholar]
  91. 91.
    Bidarra SJ, Barrias CC, Fonseca KB, Barbosa MA, Soares RA, Granja PL. 2011. Injectable in situ crosslinkable RGD-modified alginate matrix for endothelial cells delivery. Biomaterials 32:317897–904
    [Google Scholar]
  92. 92.
    Pasitka L, Cohen M, Ehrlich A, Gildor B, Reuveni E et al. 2022. Spontaneous immortalization of chicken fibroblasts generates stable, high-yield cell lines for serum-free production of cultured meat. Nat. Food 4:135–50
    [Google Scholar]
  93. 93.
    Iberite F, Gruppioni E, Ricotti L. 2022. Skeletal muscle differentiation of human iPSCs meets bioengineering strategies: perspectives and challenges. npj Regen. Med. 7:23
    [Google Scholar]
  94. 94.
    Pedrotty DM, Koh J, Davis BH, Taylor DA, Wolf P, Niklason LE. 2005. Engineering skeletal myoblasts: roles of three-dimensional culture and electrical stimulation. Am. J. Physiol. Heart Circ. Physiol. 288:4H1620–26
    [Google Scholar]
  95. 95.
    Afshar Bakooshli M, Lippmann ES, Mulcahy B, Iyer N, Nguyen CT et al. 2019. A 3D culture model of innervated human skeletal muscle enables studies of the adult neuromuscular junction. eLife 8:e44530
    [Google Scholar]
  96. 96.
    Fish KD, Rubio NR, Stout AJ, Yuen JSK, Kaplan DL. 2020. Prospects and challenges for cell-cultured fat as a novel food ingredient. Trends Food Sci. Technol. 98:53–67
    [Google Scholar]
  97. 97.
    Yuen JSK Jr., Stout AJ, Kawecki NS, Letcher SM, Theodossiou SK et al. 2022. Perspectives on scaling production of adipose tissue for food applications. Biomaterials 280:121273
    [Google Scholar]
  98. 98.
    Klingelhutz AJ, Gourronc FA, Chaly A, Wadkins DA, Burand AJ et al. 2018. Scaffold-free generation of uniform adipose spheroids for metabolism research and drug discovery. Sci. Rep. 8:523
    [Google Scholar]
  99. 99.
    Yuen JSK Jr., Saad MK, Xiang N, Barrick BM, DiCindio H et al. 2023. Aggregating in vitro-grown adipocytes to produce macroscale cell-cultured fat tissue with tunable lipid compositions for food applications. eLife 12:e82120
    [Google Scholar]
  100. 100.
    Hasturk O, Kaplan DL. 2019. Cell armor for protection against environmental stress: advances, challenges and applications in micro- and nanoencapsulation of mammalian cells. Acta Biomater. 95:3–31
    [Google Scholar]
  101. 101.
    Chandler EM, Berglund CM, Lee JS, Polacheck WJ, Gleghorn JP et al. 2011. Stiffness of photocrosslinked RGD-alginate gels regulates adipose progenitor cell behavior. Biotechnol. Bioeng. 108:71683–92
    [Google Scholar]
  102. 102.
    Giordani L, He GJ, Negroni E, Sakai H, Law JYC et al. 2019. High-dimensional single-cell cartography reveals novel skeletal muscle-resident cell populations. Mol. Cell 74:3609–21.e6
    [Google Scholar]
  103. 103.
    Joe AWB, Yi L, Natarajan A, Le Grand F, So L et al. 2010. Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat. Cell Biol. 12:2153–63
    [Google Scholar]
  104. 104.
    Pellegata AF, Tedeschi AM, De Coppi P. 2018. Whole organ tissue vascularization: engineering the tree to develop the fruits. Front. Bioeng. Biotechnol. 6:56
    [Google Scholar]
  105. 105.
    Li CH, Yang IH, Ke CJ, Chi CY, Matahum J et al. 2022. The production of fat-containing cultured meat by stacking aligned muscle layers and adipose layers formed from gelatin-soymilk scaffold. Front. Bioeng. Biotechnol. 10:875069
    [Google Scholar]
  106. 106.
    Kang DH, Louis F, Liu H, Shimoda H, Nishiyama Y et al. 2021. Engineered whole cut meat-like tissue by the assembly of cell fibers using tendon-gel integrated bioprinting. Nat. Commun. 12:5059
    [Google Scholar]
  107. 107.
    Shyh-Chang N, Ng HH. 2017. The metabolic programming of stem cells. Genes Dev. 31:4336–46
    [Google Scholar]
  108. 108.
    Furuichi Y, Kawabata Y, Aoki M, Mita Y, Fujii NL, Manabe Y. 2021. Excess glucose impedes the proliferation of skeletal muscle satellite cells under adherent culture conditions. Front. Cell Dev. Biol. 9:640399
    [Google Scholar]
  109. 109.
    Leprivier G, Rotblat B. 2020. How does mTOR sense glucose starvation? AMPK is the usual suspect. Cell Death Discov. 6:27
    [Google Scholar]
  110. 110.
    Dreesen IAJ, Fussenegger M. 2011. Ectopic expression of human mTOR increases viability, robustness, cell size, proliferation, and antibody production of Chinese hamster ovary cells. Biotechnol. Bioeng. 108:4853–66
    [Google Scholar]
  111. 111.
    Brüggenthies JB, Fiore A, Russier M, Bitsina C, Brötzmann J et al. 2022. A cell-based chemical-genetic screen for amino acid stress response inhibitors reveals torins reverse stress kinase GCN2 signaling. J. Biol. Chem. 298:12102629
    [Google Scholar]
  112. 112.
    Zagari F, Jordan M, Stettler M, Broly H, Wurm FM. 2013. Lactate metabolism shift in CHO cell culture: the role of mitochondrial oxidative activity. New Biotechnol. 30:2238–45
    [Google Scholar]
  113. 113.
    Schneider M. 1996. The importance of ammonia in mammalian cell culture. J. Biotechnol. 46:3161–85
    [Google Scholar]
  114. 114.
    Lao MS, Toth D. 1997. Effects of ammonium and lactate on growth and metabolism of a recombinant Chinese hamster ovary cell culture. Biotechnol. Prog. 13:5688–91
    [Google Scholar]
  115. 115.
    Schop D, Janssen FW, van Rijn LDS, Fernandes H, Bloem RM et al. 2009. Growth, metabolism, and growth inhibitors of mesenchymal stem cells. Tissue Eng. A 15:81877–86
    [Google Scholar]
  116. 116.
    Pereira S, Kildegaard HF, Andersen MR. 2018. Impact of CHO metabolism on cell growth and protein production: an overview of toxic and inhibiting metabolites and nutrients. Biotechnol. J. 13:31700499
    [Google Scholar]
  117. 117.
    Hubalek S, Post MJ, Moutsatsou P. 2022. Towards resource-efficient and cost-efficient cultured meat. Curr. Opin. Food Sci. 47:100885
    [Google Scholar]
  118. 118.
    Hassell T, Butler M. 1990. Adaptation to non-ammoniagenic medium and selective substrate feeding lead to enhanced yields in animal cell cultures. J. Cell Sci. 96:3501–8
    [Google Scholar]
  119. 119.
    Chang RS, Geyer RP. 1957. Propagation of conjunctival and HeLa cells in various carbohydrate media. Exp. Biol. Med. 96:2336–40
    [Google Scholar]
  120. 120.
    Ha TK, Lee GM. 2014. Effect of glutamine substitution by TCA cycle intermediates on the production and sialylation of Fc-fusion protein in Chinese hamster ovary cell culture. J. Biotechnol. 180:23–29
    [Google Scholar]
  121. 121.
    Riese U, Lütkemeyer D, Heidemann R, Büntemeyer H, Lehmann J. 1994. Re-use of spent cell culture medium in pilot scale and rapid preparative purification with membrane chromatography. J. Biotechnol. 34:3247–57
    [Google Scholar]
  122. 122.
    Nath SC, Nagamori E, Horie M, Kino-oka M. 2017. Culture medium refinement by dialysis for the expansion of human induced pluripotent stem cells in suspension culture. Bioprocess Biosyst. Eng. 40:123–31
    [Google Scholar]
  123. 123.
    Kempken R, Büntemeyer H, Lehmann J. 1991. The medium cycle bioreactor (MCB): monoclonal antibody production in a new economic production system. Cytotechnology 7:263–74
    [Google Scholar]
  124. 124.
    Cherry RS, Papoutsakis ET. 1986. Hydrodynamic effects on cells in agitated tissue culture reactors. Bioprocess Eng. 1:129–41
    [Google Scholar]
  125. 125.
    Chisti Y. 2001. Hydrodynamic damage to animal cells. Crit. Rev. Biotechnol. 21:267–110
    [Google Scholar]
  126. 126.
    Mollet M, Ma N, Zhao Y, Brodkey R, Taticek R, Chalmers JJ. 2004. Bioprocess equipment: characterization of energy dissipation rate and its potential to damage cells. Biotechnol. Prog. 20:51437–48
    [Google Scholar]
  127. 127.
    Dimmeler S, Hermann C, Galle J, Zeiher AM. 1999. Upregulation of superoxide dismutase and nitric oxide synthase mediates the apoptosis-suppressive effects of shear stress on endothelial cells. Arterioscler. Thromb. Vasc. Biol. 19:3656–64
    [Google Scholar]
  128. 128.
    Juffer P, Bakker AD, Klein-Nulend J, Jaspers RT. 2014. Mechanical loading by fluid shear stress of myo-tube glycocalyx stimulates growth factor expression and nitric oxide production. Cell Biochem. Biophys. 69:3411–19
    [Google Scholar]
  129. 129.
    Reichenbach M, Mendez P-L, da Silva Madaleno C, Ugorets V, Rikeit P et al. 2021. Differential impact of fluid shear stress and YAP/TAZ on BMP/TGF-β induced osteogenic target genes. Adv. Biol. 5:22000051
    [Google Scholar]
  130. 130.
    Panciera T, Azzolin L, Fujimura A, Di Biagio D, Frasson C et al. 2016. Induction of expandable tissue-specific stem/progenitor cells through transient expression of YAP/TAZ. Cell Stem Cell 19:6725–37
    [Google Scholar]
  131. 131.
    Aihara A, Iwawaki T, Abe-Fukasawa N, Otsuka K, Saruhashi K et al. 2022. Small molecule LATS kinase inhibitors block the Hippo signaling pathway and promote cell growth under 3D culture conditions. J. Biol. Chem. 298:4101779
    [Google Scholar]
  132. 132.
    Matthews HK, Bertoli C, de Bruin RAM. 2022. Cell cycle control in cancer. Nat. Rev. Mol. Cell Biol. 23:174–88
    [Google Scholar]
  133. 133.
    d'Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P et al. 2003. A DNA damage checkpoint response in telomere-initiated senescence. Nature 426:6963194–98
    [Google Scholar]
  134. 134.
    Saad MK, Yuen JSK, Joyce CM, Li X, Lim T et al. 2023. Continuous fish muscle cell line with capacity for myogenic and adipogenic-like phenotypes. Sci. Rep. 13:5098
    [Google Scholar]
  135. 135.
    Zhu CH, Mouly V, Cooper RN, Mamchaoui K, Bigot A et al. 2007. Cellular senescence in human myoblasts is overcome by human telomerase reverse transcriptase and cyclin-dependent kinase 4: consequences in aging muscle and therapeutic strategies for muscular dystrophies. Aging Cell 6:4515–23
    [Google Scholar]
  136. 136.
    Di Donna S, Mamchaoui K, Cooper RN, Seigneurin-Venin S, Tremblay J et al. 2003. Telomerase can extend the proliferative capacity of human myoblasts, but does not lead to their immortalization. Mol. Cancer Res. 1:9643–53
    [Google Scholar]
  137. 137.
    Thorley M, Duguez S, Mazza EMC, Valsoni S, Bigot A et al. 2016. Skeletal muscle characteristics are preserved in hTERT/cdk4 human myogenic cell lines. Skelet. Muscle 6:43
    [Google Scholar]
  138. 138.
    Shiomi K, Kiyono T, Okamura K, Uezumi M, Goto Y et al. 2011. CDK4 and cyclin D1 allow human myogenic cells to recapture growth property without compromising differentiation potential. Gene Ther. 18:9857–66
    [Google Scholar]
  139. 139.
    Stadler G, Chen JCJ, Wagner K, Robin JD, Shay JW et al. 2011. Establishment of clonal myogenic cell lines from severely affected dystrophic muscles—CDK4 maintains the myogenic population. Skelet. Muscle 1:12
    [Google Scholar]
  140. 140.
    Stout AJ, Arnett MJ, Chai KM, Guo T, Liao L et al. 2022. Immortalized bovine satellite cells for cultured meat applications. ACS Synth. Biol. 12:51567–73
    [Google Scholar]
  141. 141.
    Hingston ST, Noseworthy TJ. 2018. Why consumers don't see the benefits of genetically modified foods, and what marketers can do about it. J. Mark. 82:5125–40
    [Google Scholar]
  142. 142.
    Ben-David U, Siranosian B, Ha G, Tang H, Oren Y et al. 2018. Genetic and transcriptional evolution alters cancer cell line drug response. Nature 560:7718325–30
    [Google Scholar]
  143. 143.
    Anzalone AV, Koblan LW, Liu DR. 2020. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38:7824–44
    [Google Scholar]
  144. 144.
    Bell RJA, Rube HT, Xavier-Magalhães A, Costa BM, Mancini A et al. 2016. Understanding TERT promoter mutations: a common path to immortality. Mol. Cancer Res. 14:4315–23
    [Google Scholar]
  145. 145.
    Takahashi K, Yamanaka S. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:4663–76
    [Google Scholar]
  146. 146.
    Xu B, Siehr A, Shen W. 2020. Functional skeletal muscle constructs from transdifferentiated human fibroblasts. Sci. Rep. 10:122047
    [Google Scholar]
  147. 147.
    Sengsayadeth S, Savani BN, Oluwole O, Dholaria B. 2022. Overview of approved CAR-T therapies, ongoing clinical trials, and its impact on clinical practice. eJHaem 3:Suppl. 16–10
    [Google Scholar]
  148. 148.
    Nawaz MA, Mesnage R, Tsatsakis AM, Gfolokhvast KS, Yang SH et al. 2019. Addressing concerns over the fate of DNA derived from genetically modified food in the human body: a review. Food Chem. Toxicol. 124:423–30
    [Google Scholar]
  149. 149.
    Nakamura M, Gao Y, Dominguez AA, Qi LS. 2021. CRISPR technologies for precise epigenome editing. Nat. Cell Biol. 23:111–22
    [Google Scholar]
  150. 150.
    US Food Drug Adm 2022. Cell Culture Consultation 000002, cultured Gallus gallus cell material Sci. Memo, Cent. Food Saf. Appl. Nutr. College Park, MD: https://www.fda.gov/media/163261/download
    [Google Scholar]
  151. 151.
    Stout AJ, Kaplan DL, Flack JE. 2023. Cultured meat: creative solutions for a cell biological problem. Trends Cell Biol. 33:11–4
    [Google Scholar]
/content/journals/10.1146/annurev-animal-021022-055132
Loading
/content/journals/10.1146/annurev-animal-021022-055132
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error