1932

Abstract

Extensive knowledge gains from research worldwide over the 25 years since the discovery of chytridiomycosis can be used for improved management. Strategies that have saved populations in the short term and/or enabled recovery include captive breeding, translocation into disease refugia, translocation from resistant populations, disease-free exclosures, and preservation of disease refuges with connectivity to previous habitat, while antifungal treatments have reduced mortality rates in the wild. Increasing host resistance is the goal of many strategies under development, including vaccination and targeted genetic interventions. Pathogen-directed strategies may be more challenging but would have broad applicability. While the search for the silver bullet solution continues, we should value targeted local interventions that stop extinction and buy time for evolution of resistance or development of novel solutions. As for most invasive species and infectious diseases, we need to accept that ongoing management is necessary. For species continuing to decline, proactive deployment and assessment of promising interventions are more valid than a hands-off, do-no-harm approach that will likely allow further extinctions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-021122-100823
2024-02-15
2024-05-04
Loading full text...

Full text loading...

/deliver/fulltext/animal/12/1/annurev-animal-021122-100823.html?itemId=/content/journals/10.1146/annurev-animal-021122-100823&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Scheele BC, Pasmans F, Skerratt LF, Berger L, Martel A et al. 2019. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363:1459–63
    [Google Scholar]
  2. 2.
    Skerratt LF, Berger L, Speare R, Cashins S, McDonald KR et al. 2007. Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. EcoHealth 4:125–34
    [Google Scholar]
  3. 3.
    Berger L, Speare R, Daszak P, Green DE, Cunningham AA et al. 1998. Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. PNAS 95:9031–36
    [Google Scholar]
  4. 4.
    Berger L, Roberts AA, Voyles J, Longcore JE, Murray KA, Skerratt LF. 2016. History and recent progress on chytridiomycosis in amphibians. Fung. Ecol. 19:89–99
    [Google Scholar]
  5. 5.
    Fisher MC, Pasmans F, Martel A. 2021. Virulence and pathogenicity of chytrid fungi causing amphibian extinctions. Annu. Rev. Microbiol. 75:673–93
    [Google Scholar]
  6. 6.
    Wu KJ. 2022. We're giving up on the (frog) pandemic. Atlantic Novemb. 1. https://www.theatlantic.com/science/archive/2022/11/frog-pandemic-bd-fungus-amphibian-extinction/671956/
    [Google Scholar]
  7. 7.
    Voyles J, Woodhams DC, Saenz V, Byrne AQ, Perez R et al. 2018. Shifts in disease dynamics in a tropical amphibian assemblage are not due to pathogen attenuation. Science 359:1517–19
    [Google Scholar]
  8. 8.
    Bell SC, Heard GW, Berger L, Skerratt LF. 2020. Connectivity over a disease risk gradient enables recovery of rainforest frogs. Ecol. Appl. 30:e02152
    [Google Scholar]
  9. 9.
    Heard GW, Thomas CD, Hodgson JA, Scroggie MP, Ramsey DSL, Clemann N. 2015. Refugia and connectivity sustain amphibian metapopulations afflicted by disease. Ecol. Lett. 18:853–63
    [Google Scholar]
  10. 10.
    Scheele BC, Hunter DA, Grogan LF, Berger L, Kolby JE et al. 2014. Interventions for reducing extinction risk in chytridiomycosis-threatened amphibians. Conserv. Biol. 28:1195–205
    [Google Scholar]
  11. 11.
    Garner TWJ, Schmidt BR, Martel A, Pasmans F, Muths E et al. 2016. Mitigating amphibian chytridiomycoses in nature. Philos. Trans. R. Soc. B 371:20160207
    [Google Scholar]
  12. 12.
    Skerratt LF, Berger L, Clemann N, Hunter DA, Marantelli G et al. 2016. Priorities for management of chytridiomycosis in Australia: saving frogs from extinction. Wildl. Res. 43:105–20
    [Google Scholar]
  13. 13.
    Scheele BC, Foster CN, Hunter DA, Lindenmayer DB, Schmidt BR, Heard GW. 2019. Living with the enemy: facilitating amphibian coexistence with disease. Biol. Conserv. 236:52–59
    [Google Scholar]
  14. 14.
    Berger L, Hyatt AD, Speare R, Longcore JE. 2005. Life cycle stages of the amphibian chytrid Batrachochytrium dendrobatidis. Dis. Aquat. Org. 68:51–63
    [Google Scholar]
  15. 15.
    Grogan LF, Humphries JE, Robert J, Lanctot CM, Nock CJ et al. 2020. Immunological aspects of chytridiomycosis. J. Fungi 6:234
    [Google Scholar]
  16. 16.
    Voyles J, Young S, Berger L, Campbell C, Voyles WF et al. 2009. Pathogenesis of chytridiomycosis, a cause of catastrophic amphibian declines. Science 326:582–85
    [Google Scholar]
  17. 17.
    Grogan LF, Robert J, Berger L, Skerratt LF, Scheele BC et al. 2018. Review of the amphibian immune response to chytridiomycosis, and future directions. Front. Immunol. 9:2536
    [Google Scholar]
  18. 18.
    Waddle AW, Rivera R, Rice H, Keenan EC, Rezaei G et al. 2021. Amphibian resistance to chytridiomycosis increases following low-virulence chytrid fungal infection or drug-mediated clearance. J. Appl. Ecol. 58:2053–64
    [Google Scholar]
  19. 19.
    Berger L, Hyatt A, Olsen V, Hengstberger S, Boyle D et al. 2002. Production of polyclonal antibodies to Batrachochytrium dendrobatidis and their use in an immunoperoxidase test for chytridiomycosis in amphibians. Dis. Aquat. Org. 48:213–20
    [Google Scholar]
  20. 20.
    Scheele BC, Skerratt LF, Grogan LF, Hunter DA, Clemann N et al. 2017. After the epidemic: ongoing declines, stabilizations and recoveries in amphibians afflicted by chytridiomycosis. Biol. Conserv. 206:37–46
    [Google Scholar]
  21. 21.
    Gillespie GR, Roberts JD, Hunter D, Hoskin CJ, Alford RA et al. 2020. Status and priority conservation actions for Australian frog species. Biol. Conserv. 247:108543
    [Google Scholar]
  22. 22.
    Hunter D, Clemann N, Coote D, Gillespie GR, Hollis G et al. 2018. Frog declines and associated management response in south-eastern mainland Australia and Tasmania. Status of Conservation and Decline of Amphibians: Australia, New Zealand and Pacific Islands H Heatwole, J Rowley 40–58. Australia: CSIRO Publ.
    [Google Scholar]
  23. 23.
    Commonw. Aust 2006. Threat abatement plan: infection of amphibians with chytrid fungus resulting in chytridiomycosis Rep. Dep. Environ. Energy, Commonw. Aust. Canberra: https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb5423370.pdf
  24. 24.
    Commonw. Aust 2016. Threat abatement plan for infection of amphibians with chytrid fungus resulting in chytridiomycosis Rep. Dep. Environ. Energy, Commonw. Aust. Canberra: https://www.dcceew.gov.au/sites/default/files/documents/tap-chytrid-fungus-2016.pdf
  25. 25.
    McFadden M, Hobbs R, Marantelli G, Harlow P, Banks C, Hunter D. 2011. Captive management and breeding of the critically endangered southern corroboree frog (Pseudophryne corroboree) (Moore 1953) at Taronga and Melbourne Zoos. Amphib. Reptile Conserv. 5:70–87
    [Google Scholar]
  26. 26.
    Geyle HM, Hoskin CJ, Bower DS, Catullo R, Clulow S et al. 2022. Red hot frogs: identifying the Australian frogs most at risk of extinction. Pac. Conserv. Biol. 28:211–23
    [Google Scholar]
  27. 27.
    O'Hanlon SJ, Rieux A, Farrer RA, Rosa GM, Waldman B et al. 2018. Recent Asian origin of chytrid fungi causing global amphibian declines. Science 360:621–27
    [Google Scholar]
  28. 28.
    Byrne AQ, Vredenburg VT, Martel A, Pasmans F, Bell RC et al. 2019. Cryptic diversity of a widespread global pathogen reveals expanded threats to amphibian conservation. PNAS 116:20382–87
    [Google Scholar]
  29. 29.
    Byrne AQ, Waddle AW, Saenz V, Ohmer M, Jaeger JR et al. 2022. Host species is linked to pathogen genotype for the amphibian chytrid fungus (Batrachochytrium dendrobatidis). PLOS ONE 17:e0261047
    [Google Scholar]
  30. 30.
    Murray KA, Retallick RWR, Puschendorf R, Skerratt LF, Rosauer D et al. 2011. Assessing spatial patterns of disease risk to biodiversity: implications for the management of the amphibian pathogen, Batrachochytrium dendrobatidis. J. Appl. Ecol. 48:163–73
    [Google Scholar]
  31. 31.
    Murray K, Retallick R, McDonald KR, Mendez D, Aplin K et al. 2010. The distribution and host range of the pandemic disease chytridiomycosis in Australia, spanning surveys from 1956–2007. Ecology 91:1557–58
    [Google Scholar]
  32. 32.
    Clemons R, Yacoub M, Faust E, Toledo LF, Jenkinson TS et al. 2023. DNA virus BdDV-1 of the amphibian pathogen Batrachochytrium dendrobatidis is associated with hypervirulence. bioRxiv 532857. https://doi.org/10.1101/2023.03.16.532857
    [Crossref]
  33. 33.
    Greenspan SE, Lambertini C, Carvalho T, James TY, Toledo LF et al. 2018. Hybrids of amphibian chytrid show high virulence in native hosts. Sci. Rep. 8:9600
    [Google Scholar]
  34. 34.
    Hoskin CJ, Hines HB, Webb RJ, Skerratt LF, Berger L. 2018. Naïve rainforest frogs on Cape York, Australia, are at risk of the introduction of amphibian chytridiomycosis disease. Aust. J. Zool. 66:174–78
    [Google Scholar]
  35. 35.
    Allan K, Gartenstein S. 2010. Keeping it clean: a Tasmanian field hygiene manual to prevent the spread of freshwater pests and pathogens Rep. NRM South Hobart, Tasman: http://dpipwe.tas.gov.au/Documents/15130802_52keepingitcleanspreadswe.pdf
  36. 36.
    Phillott AD, Speare R, Hines HB, Skerratt LF, Meyer E et al. 2010. Minimising exposure of amphibians to pathogens during field studies. Dis. Aquat. Org. 92:175–85
    [Google Scholar]
  37. 37.
    Savage AE, Sredl MJ, Zamudio KR. 2011. Disease dynamics vary spatially and temporally in a North American amphibian. Biol. Conserv. 144:1910–15
    [Google Scholar]
  38. 38.
    Jaeger JR, Waddle AW, Rivera R, Harrison DT, Ellison S et al. 2017. Batrachochytrium dendrobatidis and the decline and survival of the relict leopard frog. EcoHealth 14:285–95
    [Google Scholar]
  39. 39.
    Brannelly LA, Webb RJ, Hunter DA, Clemann N, Howard K et al. 2018. Non-declining amphibians can be important reservoir hosts for amphibian chytrid fungus. Anim. Conserv. 21:91–101
    [Google Scholar]
  40. 40.
    Scheele BC, Hunter DA, Brannelly LA, Skerratt LF, Driscoll DA. 2017. Reservoir-host amplification of disease impact in an endangered amphibian. Conserv. Biol. 31:592–600
    [Google Scholar]
  41. 41.
    Scheele BC, Brawata RL, Hoffmann EP, Loneragan R, May S et al. 2022. Identifying and assessing assisted colonisation sites for a frog species threatened by chytrid fungus. Ecol. Manag. Rest. 23:194–98
    [Google Scholar]
  42. 42.
    McMahon TA, Brannelly LA, Chatfield MWH, Johnson PTJ, Joseph MB et al. 2013. Chytrid fungus Batrachochytrium dendrobatidis has nonamphibian hosts and releases chemicals that cause pathology in the absence of infection. PNAS 110:210–15
    [Google Scholar]
  43. 43.
    Brannelly LA, Hunter DA, Lenger D, Scheele BC, Skerratt LF, Berger L. 2015. Dynamics of chytridiomycosis during the breeding season in an Australian alpine amphibian. PLOS ONE 10:e0143629
    [Google Scholar]
  44. 44.
    Whinfield J, Tingley R, Tweedie A, Hufschmid J, Hick P. 2022. Alien smooth newts (Lissotriton vulgaris) in Australia are infected with Batrachochytrium dendrobatidis but test negative for ranaviruses. J. Wildl. Dis. 58:248–50
    [Google Scholar]
  45. 45.
    Brannelly LA, Martin G, Llewelyn J, Skerratt LF, Berger L. 2018. Age- and size-dependent resistance to chytridiomycosis in the invasive cane toad Rhinella marina. Dis. Aquat. Org. 131:107–20
    [Google Scholar]
  46. 46.
    Bower DS, Jennings CK, Webb RJ, Amepou Y, Schwarzkopf L et al. 2020. Disease surveillance of the amphibian chytrid fungus Batrachochytrium dendrobatidis in Papua New Guinea. Conserv. Sci. Pract. 2:e256
    [Google Scholar]
  47. 47.
    Towe AE, Gray MJ, Carter ED, Wilber MQ, Ossiboff RJ et al. 2021. Batrachochytrium salamandrivorans can devour more than salamanders. J. Wildl. Dis. 57:942–48
    [Google Scholar]
  48. 48.
    Hoskin CJ, Puschendorf R. 2014. The importance of peripheral areas for biodiversity conservation: with particular focus on endangered rainforest frogs of the Wet Tropics and Eungella. Rep. Reef Rainfor. Res. Cent. Ltd. Aust.:
  49. 49.
    Villacorta-Rath C, Hoskin CJ, Strugnell JM, Burrows D. 2021. Long distance (>20 km) downstream detection of endangered stream frogs suggests an important role for eDNA in surveying for remnant amphibian populations. PeerJ 9:e12013
    [Google Scholar]
  50. 50.
    Knapp RA, Wilber MQ, Byrne AQ, Joseph MB, Smith TC et al. 2023. Evolutionary rescue and reintroduction of resistant frogs allows recovery in the presence of a lethal fungal disease. bioRxiv 541534. https://doi.org/10.1101/2023.05.22.541534
    [Crossref]
  51. 51.
    Scheele BC, Hollanders M, Hoffmann EP, Newell DA, Lindenmayer DB et al. 2021. Conservation translocations for amphibian species threatened by chytrid fungus: a review, conceptual framework, and recommendations. Conserv. Sci. Pract. 3:e524
    [Google Scholar]
  52. 52.
    Murphy JB, Gratwicke B. 2017. History of captive management and conservation amphibian programs mostly in zoos and aquariums. Part I—Anurans. Herpetol. Rev. 48:241–60
    [Google Scholar]
  53. 53.
    Silla AJ, Byrne PG. 2019. The role of reproductive technologies in amphibian conservation breeding programs. Annu. Rev. Anim. Biosci. 7:499–519
    [Google Scholar]
  54. 54.
    Silla AJ, Kouba AJ, Heatwole H 2022. Reproductive Technologies and Biobanking for the Conservation of Amphibians Canberra, Aust: CSIRO Publ.
  55. 55.
    Upton R, Clulow S, Calatayud NE, Colyvas K, Seeto RGY et al. 2021. Generation of reproductively mature offspring from the endangered green and golden bell frog Litoria aurea using cryopreserved spermatozoa. Reprod. Fertil. Dev. 33:562–72
    [Google Scholar]
  56. 56.
    Taronga Conserv. Soc. Aust 2023. Frog conservation biobanking: frog recovery https://taronga.org.au/conservation-and-science/current-research/frog-conservation-biobanking
  57. 57.
    Bolton RL, Mooney A, Pettit MT, Bolton AE, Morgan L et al. 2022. Resurrecting biodiversity: advanced assisted reproductive technologies and biobanking. Reprod. Fertil. 3:R121–R46
    [Google Scholar]
  58. 58.
    Univ. N.S.W 2013. Scientists produce cloned embryos of extinct frog. ScienceDaily March 15. https://www.sciencedaily.com/releases/2013/03/130315151044.htm
    [Google Scholar]
  59. 59.
    Palomar G, Bosch J, Cano JM. 2016. Heritability of Batrachochytrium dendrobatidis burden and its genetic correlation with development time in a population of Common toad (Bufo spinosus). Evolution 70:2346–56
    [Google Scholar]
  60. 60.
    Knapp RA, Fellers GM, Kleeman PM, Miller DA, Vredenburg VT et al. 2016. Large-scale recovery of an endangered amphibian despite ongoing exposure to multiple stressors. PNAS 113:11889–94
    [Google Scholar]
  61. 61.
    Brannelly LA, McCallum HI, Grogan LF, Briggs CJ, Ribas MP et al. 2021. Mechanisms underlying host persistence following amphibian disease emergence determine appropriate management strategies. Ecol. Lett. 24:130–48
    [Google Scholar]
  62. 62.
    Kosch TA, Silva CNS, Brannelly LA, Roberts AA, Lau Q et al. 2019. Genetic potential for disease resistance in critically endangered amphibians decimated by chytridiomycosis. Anim. Conserv. 22:238–50
    [Google Scholar]
  63. 63.
    Bataille A, Cashins SD, Grogan L, Skerratt LF, Hunter D et al. 2015. Susceptibility of amphibians to chytridiomycosis is associated with MHC class II conformation. Proc. Biol. Sci. 282:20143127
    [Google Scholar]
  64. 64.
    Newell DA, Goldingay RL, Brooks LO. 2013. Population recovery following decline in an endangered stream-breeding frog (Mixophyes fleayi) from subtropical Australia. PLOS ONE 8:e58559
    [Google Scholar]
  65. 65.
    Hollanders M, Grogan LF, Nock CJ, McCallum HI, Newell DA. 2022. Recovered frog populations coexist with endemic Batrachochytrium dendrobatidis despite load-dependent mortality. Ecol. Appl. 33:e2724
    [Google Scholar]
  66. 66.
    Whiteley AR, Fitzpatrick SW, Funk WC, Tallmon DA. 2015. Genetic rescue to the rescue. Trends Ecol. Evol. 30:42–49
    [Google Scholar]
  67. 67.
    Weeks AR, Heinze D, Perrin L, Stoklosa J, Hoffmann AA et al. 2017. Genetic rescue increases fitness and aids rapid recovery of an endangered marsupial population. Nat. Commun. 8:1071
    [Google Scholar]
  68. 68.
    Madsen T, Loman J, Anderberg L, Anderberg H, Georges A, Ujvari B. 2020. Genetic rescue restores long-term viability of an isolated population of adders (Vipera berus). Curr. Biol. 30:R1297–R99
    [Google Scholar]
  69. 69.
    Johnson WE, Onorato DP, Roelke ME, Land ED, Cunningham M et al. 2010. Genetic restoration of the Florida panther. Science 329:1641–45
    [Google Scholar]
  70. 70.
    Byrne PG, Silla AJ. 2020. An experimental test of the genetic consequences of population augmentation in an amphibian. Conserv. Sci. Pract. 2:e194
    [Google Scholar]
  71. 71.
    Ralls K, Sunnucks P, Lacy RC, Frankham R. 2020. Genetic rescue: A critique of the evidence supports maximizing genetic diversity rather than minimizing the introduction of putatively harmful genetic variation. Biol. Conserv. 251:108784
    [Google Scholar]
  72. 72.
    Bell DA, Robinson ZL, Funk WC, Fitzpatrick SW, Allendorf FW et al. 2019. The exciting potential and remaining uncertainties of genetic rescue. Trends Ecol. Evol. 34:1070–79
    [Google Scholar]
  73. 73.
    Kelly E, Phillips BL. 2016. Targeted gene flow for conservation. Conserv. Biol. 30:259–67
    [Google Scholar]
  74. 74.
    Searle CL, Christie MR. 2021. Evolutionary rescue in host-pathogen systems. Evolution 75:2948–58
    [Google Scholar]
  75. 75.
    Mendelson JR, Whitfield SM, Sredl MJ. 2019. A recovery engine strategy for amphibian conservation in the context of disease. Biol. Conserv. 236:188–91
    [Google Scholar]
  76. 76.
    Savage AE, Zamudio KR. 2011. MHC genotypes associate with resistance to a frog-killing fungus. PNAS 108:16705–10
    [Google Scholar]
  77. 77.
    O'Donnell RP, Drost CA, Mock KE. 2017. Cryptic invasion of northern leopard frogs (Rana pipiens) across phylogeographic boundaries and a dilemma for conservation of a declining amphibian. Biol. Invasions 19:1039–52
    [Google Scholar]
  78. 78.
    Kosch TA, Waddle AW, Cooper CA, Zenger KR, Garrick DJ et al. 2022. Genetic approaches for increasing fitness in endangered species. Trends Ecol. Evol. 37:332–45
    [Google Scholar]
  79. 79.
    Fuji K, Hasegawa O, Honda K, Kumasaka K, Sakamoto T, Okamoto N. 2007. Marker-assisted breeding of a lymphocystis disease-resistant Japanese flounder (Paralichthys olivaceus). Aquaculture 272:291–95
    [Google Scholar]
  80. 80.
    Burkard C, Lillico SG, Reid E, Jackson B, Mileham AJ et al. 2017. Precision engineering for PRRSV resistance in pigs: Macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function. PLOS Pathog. 13:e1006206
    [Google Scholar]
  81. 81.
    Bush WS, Moore JH. 2012. Genome-wide association studies. PLOS Comput. Biol. 8:e1002822
    [Google Scholar]
  82. 82.
    Uffelmann E, Huang QQ, Munung NS, de Vries J, Okada Y et al. 2021. Genome-wide association studies. Nat. Rev. Methods Primers 1:59
    [Google Scholar]
  83. 83.
    Novak B. 2018. Advancing a new toolkit for conservation: from science to policy. CRISPR J. 1:11–15
    [Google Scholar]
  84. 84.
    Natl. Cent. Biotechnol. Inf., Natl. Libr. Med 2023. Genome. https://www.ncbi.nlm.nih.gov/data-hub/genome/?taxon=495146
  85. 85.
    Allendorf F, Luikart G, Aitken S. 2013. Conservation and the Genetics of Populations Hoboken, NJ: Wiley Blackwell. , 2nd ed..
  86. 86.
    Liddell E, Sunnucks P, Cook CN. 2021. To mix or not to mix gene pools for threatened species management? Few studies use genetic data to examine the risks of both actions, but failing to do so leads disproportionately to recommendations for separate management. Biol. Conserv. 256:109072
    [Google Scholar]
  87. 87.
    Nordheim CL, Detmering SE, Civitello DJ, Johnson PTJ, Rohr JR, McMahon TA. 2022. Metabolites from the fungal pathogen Batrachochytrium dendrobatidis (Bd) reduce Bd load in Cuban treefrog tadpoles. J. Appl. Ecol. 59:2398–403
    [Google Scholar]
  88. 88.
    Adams AJ, Bushell J, Grasso RL. 2022. To treat or not to treat? Experimental pathogen exposure, treatment, and release of a threatened amphibian. Ecosphere 13:e4294
    [Google Scholar]
  89. 89.
    Waddle AW. 2022. Boosting amphibian resilience to the pandemic fungal disease chytridiomycosis using vaccines and artificial environmental refugia PhD Thesis Univ. Melb. Aust.:
  90. 90.
    Nuismer SL, Basinski A, Bull JJ. 2019. Evolution and containment of transmissible recombinant vector vaccines. Evol. Appl. 12:1595–609
    [Google Scholar]
  91. 91.
    Greener MS, Verbrugghe E, Kelly M, Blooi M, Beukema W et al. 2020. Presence of low virulence chytrid fungi could protect European amphibians from more deadly strains. Nat. Commun. 11:5393
    [Google Scholar]
  92. 92.
    Brannelly LA, Webb RJ, Jiang Z, Berger L, Skerratt LF, Grogan LF. 2021. Declining amphibians might be evolving increased reproductive effort in the face of devastating disease. Evolution 75:2555–67
    [Google Scholar]
  93. 93.
    Aldana M, Pulgar JM, Orellana N, Ojeda FP, García-Huidobro MR. 2014. Increased parasitism of limpets by a trematode metacercaria in fisheries management areas of central Chile: effects on host growth and reproduction. EcoHealth 11:215–26
    [Google Scholar]
  94. 94.
    Bonneaud C, Mazuc J, Chastel O, Westerdahl H, Sorci G. 2004. Terminal investment induced by immune challenge and fitness traits associated with major histocompatibility complex in the house sparrow. Evolution 58:2823–30
    [Google Scholar]
  95. 95.
    Brannelly LA, Hunter DA, Skerratt LF, Scheele BC, Lenger D et al. 2016. Chytrid infection and post-release fitness in the reintroduction of an endangered alpine tree frog. Anim. Conserv. 19:153–62
    [Google Scholar]
  96. 96.
    Brannelly LA, Scheele BC, Grogan LF. 2023. Disease and the endangered alpine tree frog: bridging research, conservation and management. Strategies for Conservation Success in Herpetology, Vol. 4 SC Walls, KM O'Donnell. University Heights OH: Soc. Study Amphib. Reptil In press
    [Google Scholar]
  97. 97.
    Scheele BC, Hunter DA, Skerratt LF, Brannelly LA, Driscoll DA. 2015. Low impact of chytridiomycosis on frog recruitment enables persistence in refuges despite high adult mortality. Biol. Conserv. 182:36–43
    [Google Scholar]
  98. 98.
    Brannelly LA, Webb R, Skerratt LF, Berger L. 2016. Amphibians with infectious disease increase their reproductive effort: evidence for the terminal investment hypothesis. Open Biol. 6:150251
    [Google Scholar]
  99. 99.
    Grogan LF, Cashins SD, Skerratt LF, Berger L, McFadden MS et al. 2018. Evolution of resistance to chytridiomycosis is associated with a robust early immune response. Mol. Ecol. 27:919–34
    [Google Scholar]
  100. 100.
    Beranek CT, Maynard C, McHenry C, Clulow J, Mahony M. 2021. Rapid population increase of the threatened Australian amphibian Litoria aurea in response to wetlands constructed as a refuge from chytrid-induced disease and introduced fish. J. Environ. Manag. 291:112638
    [Google Scholar]
  101. 101.
    West M, Todd CR, Gillespie GR, McCarthy M. 2020. Recruitment is key to understanding amphibian's different population-level responses to chytrid fungus infection. Biol. Conserv. 241:108247
    [Google Scholar]
  102. 102.
    Puschendorf R, Hoskin CJ, Cashins SD, McDonald K, Skerratt LF et al. 2011. Environmental refuge from disease-driven amphibian extinction. Conserv. Biol. 25:956–64
    [Google Scholar]
  103. 103.
    McKnight DT, Lal MM, Bower DS, Schwarzkopf L, Alford RA, Zenger KR. 2019. The return of the frogs: the importance of habitat refugia in maintaining diversity during a disease outbreak. Mol. Ecol. 28:2731–45
    [Google Scholar]
  104. 104.
    Forrest MJ, Schlaepfer MA. 2011. Nothing a hot bath won't cure: Infection rates of amphibian chytrid fungus correlate negatively with water temperature under natural field settings. PLOS ONE 6:e28444
    [Google Scholar]
  105. 105.
    Greenspan SE, Bower DS, Webb RJ, Roznik EA, Stevenson LA et al. 2017. Realistic heat pulses protect frogs from disease under simulated rainforest frog thermal regimes. Funct. Ecol. 31:2274–86
    [Google Scholar]
  106. 106.
    Clulow S, Gould J, James H, Stockwell M, Clulow J, Mahony M. 2018. Elevated salinity blocks pathogen transmission and improves host survival from the global amphibian chytrid pandemic: implications for translocations. J. Appl. Ecol. 55:830–40
    [Google Scholar]
  107. 107.
    Heard GW, Scroggie MP, Ramsey DSL, Clemann N, Hodgson JA, Thomas CD. 2018. Can habitat management mitigate disease impacts on threatened amphibians?. Conserv. Lett. 11:e12375
    [Google Scholar]
  108. 108.
    Stockwell MP, Clulow J, Mahony MJ. 2015. Evidence of a salt refuge: Chytrid infection loads are suppressed in hosts exposed to salt. Oecologia 177:901–10
    [Google Scholar]
  109. 109.
    Deknock A, Goethals P, Croubels S, Lens L, Martel A, Pasmans F. 2020. Towards a food web based control strategy to mitigate an amphibian panzootic in agricultural landscapes. Glob. Ecol. Conserv. 24:e01314
    [Google Scholar]
  110. 110.
    Canessa S, Spitzen–van der Sluijs A, Martel A, Pasmans F 2019. Mitigation of amphibian disease requires a stronger connection between research and management. Biol. Conserv. 236:236–42
    [Google Scholar]
  111. 111.
    Hettyey A, Ujszegi J, Herczeg D, Holly D, Vörös J et al. 2019. Mitigating disease impacts in amphibian populations: capitalizing on the thermal optimum mismatch between a pathogen and its host. Front. Ecol. Evol. 7:274
    [Google Scholar]
  112. 112.
    Stockwell MP, Storrie LJ, Pollard CJ, Clulow J, Mahony MJ. 2015. Effects of pond salinization on survival rate of amphibian hosts infected with the chytrid fungus. Conserv. Biol. 29:391–99
    [Google Scholar]
  113. 113.
    Callen A, Pizzatto L, Stockwell MP, Clulow S, Clulow J, Mahony MJ. 2023. The effect of salt dosing for chytrid mitigation on tadpoles of a threatened frog, Litoria aurea. J. Comp. Physiol. B 193:239–47
    [Google Scholar]
  114. 114.
    Cramp RL, Ohmer MEB, Franklin CE. 2022. UV exposure causes energy trade-offs leading to increased chytrid fungus susceptibility in green tree frog larvae. Conserv. Physiol. 10:coac038
    [Google Scholar]
  115. 115.
    Bosch J, Sanchez-Tomé E, Fernández-Loras A, Oliver JA, Fisher MC, Garner TWJ. 2015. Successful elimination of a lethal wildlife infectious disease in nature. Biol. Lett. 11:20150874
    [Google Scholar]
  116. 116.
    Lammens L, Martel A, Pasmans F. 2021. Application of disinfectants for environmental control of a lethal amphibian pathogen. J. Fungi 7:406
    [Google Scholar]
  117. 117.
    Fernández-Loras A, Boyero L, Bosch J. 2020. In-situ severe breeding habitat intervention only achieves temporary success in reducing Batrachochytrium dendrobatidis infection. Amphibia-Reptilia 41:261–67
    [Google Scholar]
  118. 118.
    Barbi A, Goessens T, Strubbe D, Deknock A, Van Leeuwenberg R et al. 2023. Widespread triazole pesticide use affects infection dynamics of a global amphibian pathogen. Ecol. Lett. 26:313–22
    [Google Scholar]
  119. 119.
    de Jong MS, van Dyk R, Weldon C. 2017. Antifungal efficacy of F10SC veterinary disinfectant against Batrachochytrium dendrobatidis. Med. Mycol. 56:60–68
    [Google Scholar]
  120. 120.
    Cook K, Pope K, Cummings A, Piovia-Scott J. 2022. In situ treatment of juvenile frogs for disease can reverse population declines. Conserv. Sci. Pract. 4:e12762
    [Google Scholar]
  121. 121.
    Hardy BM, Pope KL, Piovia-Scott J, Brown RN, Foley JE. 2015. Itraconazole treatment reduces Batrachochytrium dendrobatidis prevalence and increases overwinter field survival in juvenile Cascades frogs. Dis. Aquat. Organ. 112:243–50
    [Google Scholar]
  122. 122.
    Hudson MA, Young RP, Lopez J, Martin L, Fenton C et al. 2016. In-situ itraconazole treatment improves survival rate during an amphibian chytridiomycosis epidemic. Biol. Cons. 195:37–45
    [Google Scholar]
  123. 123.
    Knapp RA, Joseph MB, Smith TC, Hegeman EE, Vredenburg VT et al. 2022. Effectiveness of antifungal treatments during chytridiomycosis epizootics in populations of an endangered frog. PeerJ 10:e12712
    [Google Scholar]
  124. 124.
    Berger L, Marantelli G, Skerratt LF, Speare R. 2005. Virulence of the amphibian chytrid fungus Batrachochytium dendrobatidis varies with the strain. Dis. Aquat. Org. 68:47–50
    [Google Scholar]
  125. 125.
    Refsnider JM, Poorten TJ, Langhammer PF, Burrowes PA, Rosenblum EB. 2015. Genomic correlates of virulence attenuation in the deadly amphibian chytrid fungus, Batrachochytrium dendrobatidis. G3 5:2291–98
    [Google Scholar]
  126. 126.
    Webb RJ. 2022. Novel tools to reduce the virulence of Batrachochytrium dendrobatidis PhD Thesis James Cook Univ. Townsville, Aust:.
  127. 127.
    Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–11
    [Google Scholar]
  128. 128.
    Bernstein E, Caudy AA, Hammond SM, Hannon GJ. 2001. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–66
    [Google Scholar]
  129. 129.
    Hammond SM, Boettcher S, Caudy AA, Kobayashi R, Hannon GJ. 2001. Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293:1146–50
    [Google Scholar]
  130. 130.
    Nakayashiki H, Nguyen QB. 2008. RNA interference: roles in fungal biology. Curr. Opin. Microbiol. 11:494–502
    [Google Scholar]
  131. 131.
    Farrer RA, Martel A, Verbrugghe E, Abouelleil A, Ducatelle R et al. 2017. Genomic innovations linked to infection strategies across emerging pathogenic chytrid fungi. Nat. Commun. 8:14742
    [Google Scholar]
  132. 132.
    Torres-Sánchez M, Villate J, McGrath-Blaser S, Longo AV. 2022. Panzootic chytrid fungus exploits diverse amphibian host environments through plastic infection strategies. Mol. Ecol. 31:4558–70
    [Google Scholar]
  133. 133.
    Rosenblum EB, Poorten TJ, Joneson S, Settles M. 2012. Substrate-specific gene expression in Batrachochytrium dendrobatidis, the chytrid pathogen of amphibians. PLOS ONE 7:e49924
    [Google Scholar]
  134. 134.
    Jöchl C, Loh E, Ploner A, Haas H, Hüttenhofer A. 2009. Development-dependent scavenging of nucleic acids in the filamentous fungus Aspergillus fumigatus. RNA Biol 6:179–86
    [Google Scholar]
  135. 135.
    Wang M, Weiberg A, Lin FM, Thomma BP, Huang HD, Jin H. 2016. Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection. Nat. Plants 2:16151
    [Google Scholar]
  136. 136.
    Jiao Y, Gong X, Du J, Liu M, Guo X et al. 2013. Transgenically mediated shRNAs targeting conserved regions of foot-and-mouth disease virus provide heritable resistance in porcine cell lines and suckling mice. Vet. Res. 44:47
    [Google Scholar]
  137. 137.
    Chiba S, Salaipeth L, Lin YH, Sasaki A, Kanematsu S, Suzuki N. 2009. A novel bipartite double-stranded RNA Mycovirus from the white root rot fungus Rosellinia necatrix: molecular and biological characterization, taxonomic considerations, and potential for biological control. J. Virol. 83:12801–12
    [Google Scholar]
  138. 138.
    Heiniger U, Rigling D. 1994. Biological control of chestnut blight in Europe. Annu. Rev. Phytopathol. 32:581–99
    [Google Scholar]
  139. 139.
    Myers JM, Bonds AE, Clemons RA, Thapa NA, Simmons DR et al. 2020. Survey of early-diverging lineages of fungi reveals abundant and diverse mycoviruses. mBio 11: https://doi.org/10.1128/mbio.02027-20
    [Crossref] [Google Scholar]
  140. 140.
    Webb RJ, Roberts AA, Wylie S, Kosch T, Toledo LF et al. 2022. Non-detection of mycoviruses in amphibian chytrid fungus (Batrachochytrium dendrobatidis) from Australia. Fungal Biol. 126:75–81
    [Google Scholar]
  141. 141.
    Márquez LM, Redman RS, Rodriguez RJ, Roossinck MJ. 2007. A virus in a fungus in a plant: three-way symbiosis required for thermal tolerance. Science 315:513–15
    [Google Scholar]
  142. 142.
    Thomas V, Wang Y, Van Rooij P, Verbrugghe E, Baláž V et al. 2019. Mitigating Batrachochytrium salamandrivorans in Europe. Amphibia-Reptilia 40:3265–90
    [Google Scholar]
  143. 143.
    Beranek CT, Sanders S, Clulow J, Mahony M. 2022. Factors influencing persistence of a threatened amphibian in restored wetlands despite severe population decline during climate change driven weather extremes. Biodivers. Conserv. 31:1267–87
    [Google Scholar]
  144. 144.
    Sopniewski J, Scheele BC, Cardillo M. 2022. Predicting the distribution of Australian frogs and their overlap with Batrachochytrium dendrobatidis under climate change. Divers. Distrib. 28:1255–68
    [Google Scholar]
/content/journals/10.1146/annurev-animal-021122-100823
Loading
/content/journals/10.1146/annurev-animal-021122-100823
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error