1932

Abstract

Maintenance of genetic diversity in marine fishes targeted by commercial fishing is a grand challenge for the future. Most of these species are abundant and therefore important for marine ecosystems and food security. Here, we present a road map of how population genomics can promote sustainable fisheries. In these species, the development of reference genomes and whole genome sequencing is key, because genetic differentiation at neutral loci is usually low due to large population sizes and gene flow. First, baseline allele frequencies representing genetically differentiated populations within species must be established. These can then be used to accurately determine the composition of mixed samples, forming the basis for population demographic analysis to inform sustainably set fish quotas. SNP-chip analysis is a cost-effective method for determining baseline allele frequencies and for population identification in mixed samples. Finally, we describe how genetic marker analysis can transform stock identification and management.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-021122-102933
2024-02-15
2024-06-15
Loading full text...

Full text loading...

/deliver/fulltext/animal/12/1/annurev-animal-021122-102933.html?itemId=/content/journals/10.1146/annurev-animal-021122-102933&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    UN Dep. Econ. Soc. Aff. Popul. Div 2019. World population prospects: highlights Rep., ST/ESA/SER.A/423 United Nat., New York: https://population.un.org/wpp/publications/files/wpp2019_highlights.pdf
    [Google Scholar]
  2. 2.
    Bianchi M, Hallström E, Parker RWR, Mifflin K, Tyedmers P, Ziegler F. 2022. Assessing seafood nutritional diversity together with climate impacts informs more comprehensive dietary advice. Commun. Earth Environ. 3:188
    [Google Scholar]
  3. 3.
    Costello C, Cao L, Gelcich S, Cisneros-Mata , Free CM et al. 2020. The future of food from the sea. Nature 588:95–100
    [Google Scholar]
  4. 4.
    Food Agric. Organ 2021. FAO Yearbook: Fishery and Aquaculture Statistics 2019 Rome: Food Agric. Organ.
    [Google Scholar]
  5. 5.
    Food Agric. Organ 2022. The State of World Fisheries and Aquaculture 2022: Towards Blue Transformation Rome: Food Agric. Organ.
    [Google Scholar]
  6. 6.
    Worm B, Hilborn R, Baum JK, Branch TA, Collie JS et al. 2009. Rebuilding global fisheries. Science 325:578–85
    [Google Scholar]
  7. 7.
    Pinsky ML, Jensen OP, Ricard D, Palumbi SR 2011. Unexpected patterns of fisheries collapse in the world's oceans. PNAS 108:8317–22
    [Google Scholar]
  8. 8.
    Doney SC. 2010. The growing human footprint on coastal and open-ocean biogeochemistry. Science 328:1512–16
    [Google Scholar]
  9. 9.
    Breitburg D, Levin LA, Oschlies A, Grégoire M, Chavez FP et al. 2018. Declining oxygen in the global ocean and coastal waters. Science 359:eaam7240
    [Google Scholar]
  10. 10.
    Hilborn R, Amoroso RO, Anderson CM, Baum JK, Branch TA et al. 2020. Effective fisheries management instrumental in improving fish stock status. PNAS 117:2218–24
    [Google Scholar]
  11. 11.
    ICES (Int. Counc. Explor. Sea) 2012. Report of the ICES Advisory Committee 2012, Book 1 Rep. ICES Copenhagen:
    [Google Scholar]
  12. 12.
    Berryman AA. 2002. Population: A central concept for ecology?. Oikos 97:439–42
    [Google Scholar]
  13. 13.
    Spies I, Spencer PD, Punt AE. 2015. Where do we draw the line? A simulation approach for evaluating management of marine fish stocks with isolation-by-distance stock structure. Can. J. Fish. Aquat. Sci. 72:968–82
    [Google Scholar]
  14. 14.
    Kerr LA, Hintzen NT, Cadrin SX, Clausen LAW, Dickey-Collas M et al. 2017. Lessons learned from practical approaches to reconcile mismatches between biological population structure and stock units of marine fish. ICES J. Mar. Sci. 74:1708–22
    [Google Scholar]
  15. 15.
    Cadrin SX. 2020. Defining spatial structure for fishery stock assessment. Fish. Res. 221:105397
    [Google Scholar]
  16. 16.
    Andrews KR, Good JM, Miller MR, Luikart G, Hohenlohe PA. 2016. Harnessing the power of RADseq for ecological and evolutionary genomics. Nat. Rev. Genet. 17:81–92
    [Google Scholar]
  17. 17.
    Fuentes-Pardo AP, Ruzzante DE. 2017. Whole-genome sequencing approaches for conservation biology: advantages, limitations, and practical recommendations. Mol. Ecol. 26:5369–406
    [Google Scholar]
  18. 18.
    Ryman N, Lagercrantz U, Andersson L, Chakraborty R, Rosenberg R. 1984. Lack of correspondence between genetic and morphological variability patterns in Atlantic herring (Clupea harengus). Heredity 53:687–704
    [Google Scholar]
  19. 19.
    Han F, Jamsandekar M, Pettersson ME, Su L, Fuentes-Pardo AP et al. 2020. Ecological adaptation in Atlantic herring is associated with large shifts in allele frequencies at hundreds of loci. eLife 9:e61076
    [Google Scholar]
  20. 20.
    Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML. 2011. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat. Rev. Genet. 12:499–510
    [Google Scholar]
  21. 21.
    Rao SS, Huntley MH, Durand NC, Stamenova EK, Bochkov ID et al. 2014. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159:1665–80
    [Google Scholar]
  22. 22.
    Nurk S, Koren S, Rhie A, Rautiainen M, Bzikadze AV et al. 2022. The complete sequence of a human genome. Science 376:44–53
    [Google Scholar]
  23. 23.
    Matschiner M, Barth JMI, Tørresen OK, Star B, Baalsrud HT et al. 2022. Supergene origin and maintenance in Atlantic cod. Nat. Ecol. Evol. 6:469–81
    [Google Scholar]
  24. 24.
    Fuentes-Pardo AP, Farrell ED, Pettersson ME, Sprehn CG, Andersson L. 2023. The genomic basis and environmental correlates of local adaptation in the Atlantic horse mackerel (Trachurus trachurus). Evol. Appl. 16:1201–19
    [Google Scholar]
  25. 25.
    Pettersson ME, Rochus CM, Han F, Chen J, Hill J et al. 2019. A chromosome-level assembly of the Atlantic herring genome—detection of a supergene and other signals of selection. Genome Res. 29:1919–28
    [Google Scholar]
  26. 26.
    Lou RN, Jacobs A, Wilder AP, Therkildsen NO. 2021. A beginner's guide to low-coverage whole genome sequencing for population genomics. Mol. Ecol. 30:5966–93
    [Google Scholar]
  27. 27.
    Olson C, Walther Y 2007. Neolithic cod (Gadus morhua) and herring (Clupea harengus) fisheries in the Baltic Sea, in the light of fine-mesh sieving: a comparative study of subfossil fishbone from the late Stone Age sites at Ajvide, Gotland, Sweden and Jettböle, Åland, Finland. Environ. Archaeol. 12:175–85
    [Google Scholar]
  28. 28.
    Andersson L, Ryman N, Rosenberg R, Ståhl G. 1981. Genetic variability in Atlantic herring (Clupea harengus harengus): description of protein loci and population data. Hereditas 95:69–78
    [Google Scholar]
  29. 29.
    Limborg MT, Helyar SJ, De Bruyn M, Taylor MI, Nielsen EE et al. 2012. Environmental selection on transcriptome-derived SNPs in a high gene flow marine fish, the Atlantic herring (Clupea harengus). Mol. Ecol. 21:3686–703
    [Google Scholar]
  30. 30.
    Lamichhaney S, Barrio AM, Rafati N, Sundström G, Rubin C-J et al. 2012. Population-scale sequencing reveals genetic differentiation due to local adaptation in Atlantic herring. PNAS 109:19345–50
    [Google Scholar]
  31. 31.
    Martinez Barrio A, Lamichhaney S, Fan G, Rafati N, Pettersson M et al. 2016. The genetic basis for ecological adaptation of the Atlantic herring revealed by genome sequencing. eLife 5:e12081
    [Google Scholar]
  32. 32.
    Lamichhaney S, Fuentes-Pardo AP, Rafati N, Ryman N, McCracken GR et al. 2017. Parallel adaptive evolution of geographically distant herring populations on both sides of the North Atlantic Ocean. PNAS 114:E3452–E61
    [Google Scholar]
  33. 33.
    Hill J, Enbody ED, Pettersson ME, Sprehn CG, Bekkevold D et al. 2019. Recurrent convergent evolution at amino acid residue 261 in fish rhodopsin. PNAS 116:18473–78
    [Google Scholar]
  34. 34.
    Kasapidis P, Silva A, Zampicinini G, Magoulas A. 2012. Evidence for microsatellite hitchhiking selection in European sardine (Sardina pilchardus) and implications in inferring stock structure. Sci. Mar. 76:123–32
    [Google Scholar]
  35. 35.
    da Fonseca R, Campos P, de la Iglesia AR, Barroso G, Bergeron L et al. 2022. Population genomics reveals the underlying structure of the small pelagic European sardine and suggests low connectivity within Macaronesia. Authorea https://doi.org/10.22541/au.161628445.52373083/v3
    [Google Scholar]
  36. 36.
    Froese R, Pauly D. 2021. Atlantic horse mackerel. FishBase https://www.fishbase.se
    [Google Scholar]
  37. 37.
    Abaunza P, Gordo L, Karlou-Riga C, Murta A, Eltink ATGW et al. 2003. Growth and reproduction of horse mackerel, Trachurus trachurus (Carangidae). Rev. Fish Biol. Fish. 13:27–61
    [Google Scholar]
  38. 38.
    Healey AJE, Farthing MW, Nunoo FKE, Potts WM, Sauer WHH et al. 2020. Genetic analysis provides insights into species distribution and population structure in East Atlantic horse mackerel (Trachurus trachurus and T. capensis). J. Fish Biol. 96:795–805
    [Google Scholar]
  39. 39.
    Santos AMP, Chícharo A, Dos Santos A, Moita T, Oliveira PB et al. 2007. Physical–biological interactions in the life history of small pelagic fish in the Western Iberia Upwelling Ecosystem. Prog. Oceanogr. 74:192–209
    [Google Scholar]
  40. 40.
    Berg PR, Jentoft S, Star B, Ring KH, Knutsen H et al. 2015. Adaptation to low salinity promotes genomic divergence in Atlantic cod (Gadus morhua L.). Genome Biol. Evol. 7:1644–63
    [Google Scholar]
  41. 41.
    Berg PR, Star B, Pampoulie C, Bradbury IR, Bentzen P et al. 2017. Trans-oceanic genomic divergence of Atlantic cod ecotypes is associated with large inversions. Heredity 119:418–28
    [Google Scholar]
  42. 42.
    Berg PR, Star B, Pampoulie C, Sodeland M, Barth JMI et al. 2016. Three chromosomal rearrangements promote genomic divergence between migratory and stationary ecotypes of Atlantic cod. Sci. Rep. 6:23246
    [Google Scholar]
  43. 43.
    Kirubakaran TG, Grove H, Kent MP, Sandve SR, Baranski M et al. 2016. Two adjacent inversions maintain genomic differentiation between migratory and stationary ecotypes of Atlantic cod. Mol. Ecol. 25:2130–43
    [Google Scholar]
  44. 44.
    Sodeland M, Jorde PE, Lien S, Jentoft S, Berg PR et al. 2016. Islands of divergence” in the Atlantic cod genome represent polymorphic chromosomal rearrangements. Genome Biol. Evol. 8:1012–22
    [Google Scholar]
  45. 45.
    Therkildsen NO, Hemmer-Hansen J, Hedeholm RB, Wisz MS, Pampoulie C et al. 2013. Spatiotemporal SNP analysis reveals pronounced biocomplexity at the northern range margin of Atlantic cod Gadus morhua. Evol. Appl. 6:690–705
    [Google Scholar]
  46. 46.
    Moen T, Hayes B, Nilsen F, Delghandi M, Fjalestad KT et al. 2008. Identification and characterisation of novel SNP markers in Atlantic cod: evidence for directional selection. BMC Genet. 9:18
    [Google Scholar]
  47. 47.
    Bradbury IR, Hubert S, Higgins B, Bowman S, Borza T et al. 2013. Genomic islands of divergence and their consequences for the resolution of spatial structure in an exploited marine fish. Evol. Appl. 6:450–61
    [Google Scholar]
  48. 48.
    Hemmer-Hansen J, Nielsen EE, Therkildsen NO, Taylor MI, Ogden R et al. 2013. A genomic island linked to ecotype divergence in Atlantic cod. Mol. Ecol. 22:2653–67
    [Google Scholar]
  49. 49.
    Sodeland M, Jentoft S, Jorde PE, Mattingsdal M, Albretsen J et al. 2022. Stabilizing selection on Atlantic cod supergenes through a millennium of extensive exploitation. PNAS 119:e2114904119
    [Google Scholar]
  50. 50.
    Olsen EM, Heino M, Lilly GR, Morgan MJ, Brattey J et al. 2004. Maturation trends indicative of rapid evolution preceded the collapse of northern cod. Nature 428:932–35
    [Google Scholar]
  51. 51.
    Therkildsen NO, Nielsen EE, Swain DP, Pedersen JS. 2010. Large effective population size and temporal genetic stability in Atlantic cod (Gadus morhua) in the southern Gulf of St. Lawrence. Can. J. Fish. Aquat. Sci. 67:1585–95
    [Google Scholar]
  52. 52.
    Pinsky ML, Eikeset AM, Helmerson C, Bradbury IR, Bentzen P et al. 2021. Genomic stability through time despite decades of exploitation in cod on both sides of the Atlantic. PNAS 118:e2025453118
    [Google Scholar]
  53. 53.
    Therkildsen NO, Wilder AP, Conover DO, Munch SB, Baumann H, Palumbi SR. 2019. Contrasting genomic shifts underlie parallel phenotypic evolution in response to fishing. Science 365:487–90
    [Google Scholar]
  54. 54.
    Hutchings JA, Kuparinen A. 2020. Implications of fisheries-induced evolution for population recovery: refocusing the science and refining its communication. Fish Fish. 21:453–64
    [Google Scholar]
  55. 55.
    Dahle G, Johansen T, Westgaard J-I, Aglen A, Glover KA. 2018. Genetic management of mixed-stock fisheries “real-time”: the case of the largest remaining cod fishery operating in the Atlantic in 2007–2017. Fish. Res. 205:77–85
    [Google Scholar]
  56. 56.
    Hemmer-Hansen J, Hüssy K, Baktoft H, Huwer B, Bekkevold D et al. 2019. Genetic analyses reveal complex dynamics within a marine fish management area. Evol. Appl. 12:830–44
    [Google Scholar]
  57. 57.
    Christensen HT, Rigét F, Retzel A, Nielsen EH, Nielsen EE, Hedeholm RB. 2022. Year-round genetic monitoring of mixed-stock fishery of Atlantic cod (Gadus morhua); implications for management. ICES J. Mar. Sci. 79:1515–29
    [Google Scholar]
  58. 58.
    Wright PJ, Doyle A, Taggart JB, Davie A 2021. Linking scales of life-history variation with population structure in Atlantic cod. Front. Mar. Sci. 8:630515
    [Google Scholar]
  59. 59.
    Schmidt J. 1923. The breeding places of the eel. Philos. Trans. R. Soc. B 211:179–208
    [Google Scholar]
  60. 60.
    Wright RM, Piper AT, Aarestrup K, Azevedo JMN, Cowan G et al. 2022. First direct evidence of adult European eels migrating to their breeding place in the Sargasso Sea. Sci. Rep. 12:15362
    [Google Scholar]
  61. 61.
    Aarestrup K, Okland F, Hansen MM, Righton D, Gargan P et al. 2009. Oceanic spawning migration of the European eel (Anguilla anguilla). Science 325:1660
    [Google Scholar]
  62. 62.
    Amilhat E, Aarestrup K, Faliex E, Simon G, Westerberg H, Righton D. 2016. First evidence of European eels exiting the Mediterranean Sea during their spawning migration. Sci. Rep. 6:21817
    [Google Scholar]
  63. 63.
    Miller MJ, Westerberg H, Sparholt H, Wysujack K, Sørensen SR et al. 2019. Spawning by the European eel across 2000 km of the Sargasso Sea. Biol. Lett. 15:20180835
    [Google Scholar]
  64. 64.
    Int. Union Conserv. Nat 2020. European eel. IUCN Red List accessed April 13, 2023. https://www.iucnredlist.org/species/60344/152845178
    [Google Scholar]
  65. 65.
    Als TD, Hansen MM, Maes GE, Castonguay M, Riemann L et al. 2011. All roads lead to home: panmixia of European eel in the Sargasso Sea. Mol. Ecol. 20:1333–46
    [Google Scholar]
  66. 66.
    Palm S, Dannewitz J, Prestegaard T, Wickström H. 2009. Panmixia in European eel revisited: no genetic difference between maturing adults from southern and northern Europe. Heredity 103:82–89
    [Google Scholar]
  67. 67.
    Enbody ED, Pettersson ME, Sprehn CG, Palm S, Wickström H, Andersson L. 2021. Ecological adaptation in European eels is based on phenotypic plasticity. PNAS 118:e2022620118
    [Google Scholar]
  68. 68.
    Dahlke FT, Wohlrab S, Butzin M, Pörtner HO. 2020. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 369:65–70
    [Google Scholar]
  69. 69.
    ICES (Int. Counc. Explor. Sea). 2022 European eel (Anguilla anguilla) throughout its natural range Rep. ICES Copenhagen:
    [Google Scholar]
  70. 70.
    Anderson G, Macdonald JI, Potts J, Feutry P, Grewe PM et al. 2023. Evaluating DNA cross-contamination risk using different tissue sampling procedures on board fishing and research vessels. ICES J. Mar. Sci. 80:728–38
    [Google Scholar]
  71. 71.
    Bradford RW, Hill P, Davies C, Grewe P. 2016. A new tool in the toolbox for large-scale, high-throughput fisheries mark-recapture studies using genetic identification. Mar. Freshw. Res. 67:1081–89
    [Google Scholar]
  72. 72.
    Biomark 2023. Tissue sampling system. Biomark. https://www.biomark.com/tissue-sampling-system/
    [Google Scholar]
  73. 73.
    LVL Technol 2023. SAFE(R) 96 tissue collection. LVL Technologies. https://www.lvl-technologies.com/en/sample-storage/safe-2d-tubes-engl/safe-96-tissue-collection-951
    [Google Scholar]
  74. 74.
    Bekkevold D, Berg F, Polte P, Bartolino V, Ojaveer H et al. 2023. Mixed-stock analysis of Atlantic herring (Clupea harengus): a tool for identifying management units and complex migration dynamics. ICES J. Mar. Sci. 80:173–84
    [Google Scholar]
  75. 75.
    Farrell ED, Andersson L, Bekkevold D, Campbell N, Carlsson J et al. 2022. A baseline for the genetic stock identification of Atlantic herring, Clupea harengus, in ICES Divisions 6.a, 7.b-c. R. Soc. Open Sci. 9:220453
    [Google Scholar]
  76. 76.
    Cope JM, Punt AE. 2011. Reconciling stock assessment and management scales under conditions of spatially varying catch histories. Fish. Res. 107:22–38
    [Google Scholar]
  77. 77.
    Nielsen EE, Cariani A, Aoidh EM, Maes GE, Milano I et al. 2012. Gene-associated markers provide tools for tackling illegal fishing and false eco-certification. Nat. Commun. 3:851
    [Google Scholar]
  78. 78.
    Anderson EC, Waples RS, Kalinowski ST. 2008. An improved method for predicting the accuracy of genetic stock identification. Can. J. Fish. Aquat. Sci. 65:1475–86
    [Google Scholar]
  79. 79.
    Chen K-Y, Marschall EA, Sovic MG, Fries AC, Gibbs HL, Ludsin SA. 2018. assignPOP: an r package for population assignment using genetic, non-genetic, or integrated data in a machine-learning framework. Methods Ecol. Evol. 9:439–46
    [Google Scholar]
  80. 80.
    Anderson EC. 2010. Assessing the power of informative subsets of loci for population assignment: standard methods are upwardly biased. Mol. Ecol. Resour. 10:701–10
    [Google Scholar]
  81. 81.
    Jorde PE, Synnes AE, Espeland SH, Sodeland M, Knutsen H. 2018. Can we rely on selected genetic markers for population identification? Evidence from coastal Atlantic cod. Ecol. Evol. 8:12547–58
    [Google Scholar]
  82. 82.
    Leder EH, André C, Le Moan A, Töpel M, Blomberg A et al. 2021. Post-glacial establishment of locally adapted fish populations over a steep salinity gradient. J. Evol. Biol. 34:138–56
    [Google Scholar]
  83. 83.
    Kerr Q, Fuentes-Pardo AP, Kho J, McDermid JL, Ruzzante DE. 2019. Temporal stability and assignment power of adaptively divergent genomic regions between herring (Clupea harengus) seasonal spawning aggregations. Ecol. Evol. 9:500–10
    [Google Scholar]
  84. 84.
    Moran BM, Anderson EC. 2019. Bayesian inference from the conditional genetic stock identification model. Can. J. Fish. Aquat. Sci. 76:551–60
    [Google Scholar]
  85. 85.
    Moyano M, Illing B, Akimova A, Alter K, Bartolino V et al. 2023. Caught in the middle: bottom-up and top-down processes impacting recruitment in a small pelagic fish. Rev. Fish Biol. Fish. 33:55–84
    [Google Scholar]
  86. 86.
    Albertsen CM, Nielsen A, Thygesen UH. 2017. Connecting single-stock assessment models through correlated survival. ICES J. Mar. Sci. 75:235–44
    [Google Scholar]
  87. 87.
    ICES (Int. Counc. Explor. Sea) 2023. Workshop on raising data using the RDBES and TAF (WKRDBESRaiseTAF; outputs from 2022 meeting) Rep. ICES Copenhagen:
    [Google Scholar]
  88. 88.
    Capblancq T, Fitzpatrick M, Bay R, Exposito-Alonso M, Keller S. 2020. Genomic prediction of (mal)adaptation across current and future climatic landscapes. Annu. Rev. Ecol. Evol. Syst. 51:245–69
    [Google Scholar]
  89. 89.
    Rellstab C, Dauphin B, Exposito-Alonso M. 2021. Prospects and limitations of genomic offset in conservation management. Evol. Appl. 14:1202–12
    [Google Scholar]
  90. 90.
    Fitzpatrick MC, Keller SR. 2015. Ecological genomics meets community-level modelling of biodiversity: mapping the genomic landscape of current and future environmental adaptation. Ecol. Lett. 18:1–16
    [Google Scholar]
  91. 91.
    Rellstab C, Zoller S, Walthert L, Lesur I, Pluess AR et al. 2016. Signatures of local adaptation in candidate genes of oaks (Quercus spp.) with respect to present and future climatic conditions. Mol. Ecol. 25:5907–24
    [Google Scholar]
  92. 92.
    Ferreira MS, Thurman TJ, Jones MR, Farelo L, Kumar AV et al. 2023. The evolution of white-tailed jackrabbit camouflage in response to past and future seasonal climates. Science 379:1238–42
    [Google Scholar]
  93. 93.
    Kardos M, Shafer ABA. 2018. The peril of gene-targeted conservation. Trends Ecol. Evol. 33:827–39
    [Google Scholar]
  94. 94.
    Exposito-Alonso M, Vasseur F, Ding W, Wang G, Burbano HA, Weigel D. 2018. Genomic basis and evolutionary potential for extreme drought adaptation in Arabidopsis thaliana. Nat. Ecol. Evol. 2:352–58
    [Google Scholar]
  95. 95.
    Exposito-Alonso M, Gómez Rodríguez R, Barragán C, Capovilla G, Chae E et al. 2019. Natural selection on the Arabidopsis thaliana genome in present and future climates. Nature 573:126–29
    [Google Scholar]
  96. 96.
    Fitzpatrick MC, Chhatre VE, Soolanayakanahally RY, Keller SR. 2021. Experimental support for genomic prediction of climate maladaptation using the machine learning approach Gradient Forests. Mol. Ecol. Resour. 21:2749–65
    [Google Scholar]
  97. 97.
    Bay RA, Harrigan RJ, Underwood VL, Gibbs HL, Smith TB, Ruegg K. 2018. Genomic signals of selection predict climate-driven population declines in a migratory bird. Science 359:83–86
    [Google Scholar]
  98. 98.
    Ruegg K, Bay RA, Anderson EC, Saracco JF, Harrigan RJ et al. 2018. Ecological genomics predicts climate vulnerability in an endangered southwestern songbird. Ecol. Lett. 21:1085–96
    [Google Scholar]
  99. 99.
    Layton KKS, Snelgrove PVR, Dempson JB, Kess T, Lehnert SJ et al. 2021. Genomic evidence of past and future climate-linked loss in a migratory Arctic fish. Nat. Clim. Change 11:158–65
    [Google Scholar]
  100. 100.
    Prince DJ, O'Rourke SM, Thompson TQ, Ali OA, Lyman HS et al. 2017. The evolutionary basis of premature migration in Pacific salmon highlights the utility of genomics for informing conservation. Sci. Adv. 3:e1603198
    [Google Scholar]
/content/journals/10.1146/annurev-animal-021122-102933
Loading
/content/journals/10.1146/annurev-animal-021122-102933
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error