1932

Abstract

Though narwhal have survived multiple ice ages, including 2.5 Ma and the last interglacial period with warming temperatures, Arctic climate change during the Anthropocene introduces new challenges. Despite their evolutionary connection to Arctic Pleistocene fossils, narwhal archeocete ancestors from the Pliocene () and Miocene ( and Odobenocetopsidae) inhabited warm waters. Narwhal Arctic adaptation holds valuable insights into unique traits, including thin skin; extreme diving capacity; and a unique straight, spiraled, and sensory tooth organ system. Inaccessible weather, ice conditions, and darkness limit scientific studies, though Inuit knowledge adds valuable observations of narwhal ecology, biology, and behavior. Existing and future studies in myriad fields of physical, chemical, biological, and genetic science, combined and integrated with remote sensing and imaging technologies, will help elucidate narwhal evolution, biology, and adaptation. When integrated with , “the Inuit way of knowing,” these studies help describe interesting biologic expressions of the narwhal.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-021122-112307
2024-02-15
2024-06-12
Loading full text...

Full text loading...

/deliver/fulltext/animal/12/1/annurev-animal-021122-112307.html?itemId=/content/journals/10.1146/annurev-animal-021122-112307&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Pedersen C, Otokiak M, Koonoo I, Milton J, Maktar E et al. 2020. ScIQ: an invitation and recommendations to combine science and Inuit Qaujimajatuqangit for meaningful engagement of Inuit communities in research. Arct. Sci. 6:3326–39
    [Google Scholar]
  2. 2.
    Karetak J, Tester F, Tagalik S, eds. 2017. Inuit Qaujimajatuqangit: What Inuit Have Always Known to Be True Nova Scotia, Can.: Fernwood Publ.
    [Google Scholar]
  3. 3.
    Roche G. 2019. Articulating language oppression: colonialism, coloniality and the erasure of Tibet's minority languages. Patterns Prejudice 53:5487–514
    [Google Scholar]
  4. 4.
    Hoover C, Ostertag S, Hornby C, Parker C, Hansen-Craik K et al. 2016. The continued importance of hunting for future Inuit food security. Solutions 7:440–50
    [Google Scholar]
  5. 5.
    Nweeia MT, Nutarak C, Eichmiller FC, Eidelman N, Giuseppetti AA et al. 2009. Considerations of anatomy, morphology, evolution, and function for narwhal dentition. Smithsonian at the Poles: Contributions to International Polar Year Science I Krupnik, MA Lang, SE Miller 223–40. Washington, DC: Smithsonian Inst. Sch. Press
    [Google Scholar]
  6. 6.
    Nweeia MT. 2020. Inuit knowledge and the science of narwhal population dynamics, behaviour, and biology. Arctic Crashes: Peoples and Animal Relations in the Changing Arctic: Climate, Human or Habitat Agency in the Anthropocene, ed. I Krupnik 216–34. Washington, DC: Smithsonian Inst. Sch. Press
    [Google Scholar]
  7. 7.
    Nweeia MT, Peeters P, Giguère N. 2021. Isumaqatigingniq: building a transformational science education model to engage the next generation of Inuit and Western scientific investigators. Arctic 74:15–22
    [Google Scholar]
  8. 8.
    Doniol-Valcroze T, Hammill MO, Gosselin JF. 2013. Population modeling and harvest advice under the precautionary approach for eastern Hudson Bay beluga (Delphinapterus leucas) Res. Doc. 2012/168 Can. Sci. Adv. Secr., Ott. Ont., Can.:
    [Google Scholar]
  9. 9.
    Asselin NC, Ferguson SH, Richard PR, Barber DG. 2012. Results of narwhal (Monodon monoceros) aerial surveys in northern Hudson Bay, August 2011 Res. Doc. 372012:23 Dep. Fish. Oceans Can., Can. Sci. Adv. Secr., Ott. Ont., Can.:
    [Google Scholar]
  10. 10.
    Heide-Jørgensen MP, Laidre KL, Borchers D, Marques TA, Stern H, Simon M. 2010. The effect of sea-ice loss on beluga whales (Delphinapterus leucas) in West Greenland. Polar Res. 29:2198–208
    [Google Scholar]
  11. 11.
    Richard PR, Laake JL, Hobbs RC, Heide-Jørgensen MP, Asselin NC, Cleator H. 2010. Baffin Bay narwhal population distribution and numbers: aerial surveys in the Canadian High Arctic. Arctic 63:85–99
    [Google Scholar]
  12. 12.
    Biddlecombe BA, Watt CA. 2022. Modeling population trajectory and probability of decline in northern Hudson Bay narwhals (Monodon monoceros). Mar. Mammal Sci. 38:41357–70
    [Google Scholar]
  13. 13.
    Lefort KJ, Garroway CJ, Ferguson SH. 2020. Killer whale abundance and predicted narwhal consumption in the Canadian Arctic. Glob. Change Biol. 26:84276–83
    [Google Scholar]
  14. 14.
    Laidre KL, Stirling I, Lowry LF, Wiig Ø, Heide-Jørgensen MP, Ferguson SH. 2008. Quantifying the sensitivity of Arctic marine mammals to climate-induced habitat change. Ecol. Appl. 18:sp2S97–125
    [Google Scholar]
  15. 15.
    Asselin NC, Richard PR. 2011. Results of narwhal (Monodon monoceros) aerial surveys in Admiralty Inlet, August 2010 Res. Rep. Dep. Fish. Oceans Can., Cent. Arct. Reg., Winn. Manit., Can.:
    [Google Scholar]
  16. 16.
    Doniol-Valcroze T, Gosselin JF, Pike D, Lawson J, Asselin N et al. 2015. Abundance estimates of narwhal stocks in the Canadian High Arctic in 2013 Sci. Adv. Rep. 2015/046 Can. Sci. Adv. Secr., Nov., Ott. Ont., Can.:
    [Google Scholar]
  17. 17.
    Richards P. 1998. Baffin Bay narwhal Sci. Stock Status Rep. E5–43 Dep. Fish. Oceans Can., Cent. Arct. Region, Winn. Manit., Can:.
    [Google Scholar]
  18. 18.
    Innes S, Heide-Jørgensen MP, Laake JL, Laidre KL, Cleator HJ et al. 2002. Surveys of belugas and narwhals in the Canadian High Arctic in 1996. NAMMCO Sci. Publ. 4:169–90
    [Google Scholar]
  19. 19.
    Hrynyshyn J. 2004. Canada's narwhal whale: a species on the edge Rep. Can. Mar. Environ. Prot. Soc. Nova Scotia, Can.:
    [Google Scholar]
  20. 20.
    Heide-Jørgensen MP. 1994. Distribution, exploitation and population status of white whales (Delphinapterus leucas) and narwhals (Monodon monoceros) in West Greenland. Medd. Grønland Biosci. 39:135–49
    [Google Scholar]
  21. 21.
    Heide-Jørgensen MP, Acquarone M. 2002. Size and trends of the bowhead whale, beluga and narwhal stocks wintering off West Greenland. NAMMCO Sci. Publ. 4:191–210
    [Google Scholar]
  22. 22.
    Laidre KL, Heide-Jørgensen MP. 2005. Arctic sea ice trends and narwhal vulnerability. Biol. Conserv. 121:4509–17
    [Google Scholar]
  23. 23.
    Heide-Jørgensen MP, Laidre KL, Burt ML, Borchers DL, Marques TA et al. 2010. Abundance of narwhals (Monodon monoceros) on the hunting grounds in Greenland. J. Mammal. 91:51135–51
    [Google Scholar]
  24. 24.
    Watt CA, Hall P. 2018. Catch statistics for narwhal (Monodon monoceros) in Canada from 1970–2015 (p. 209) Tech. Rep. 3270 Fish. Aquat. Sci., Cent. Arct. Region, Fish. Oceans Can., Winn. Manit., Can.:
    [Google Scholar]
  25. 25.
    Greenl. Inst. Nat. Resour 2015. Progress report on marine mammals Summ. Rep., Greenl. Inst. Nat. Resour. Nuuk, Greenl.: https://nammco.no/wp-content/uploads/2019/04/2015-npr-greenland.pdf
    [Google Scholar]
  26. 26.
    Fitzhugh W, Nweeia MT, eds. 2017. Narwhal: Revealing an Arctic Legend Montr., Can.: Int. Polar Inst. Press
    [Google Scholar]
  27. 27.
    Nadasdy P. 1999. The politics of TEK: power and the “integration” of knowledge. Arct. Anthropol. 36:1–21–18
    [Google Scholar]
  28. 28.
    Ford J, Martinez D, eds. 2000. Invited feature: traditional ecological knowledge, ecosystem science, and environmental management. Ecol. Adapt. 10:51249–50
    [Google Scholar]
  29. 29.
    Gérin-Lajoie LF, Cuerrier JA, Collier LS, eds. 2016. The Caribou Taste Different Now: Inuit Elders Observe Climate Change Iqaluit, Can.: Nunavut Arctic Coll. Media
    [Google Scholar]
  30. 30.
    Stuckenberger AN. 2016. Thin ice: Inuit traditions within a changing environment. Anthropology and Climate Change: From Encounters to Actions SA Crate, M Nuttall 380–93. Oxfordshire, UK: Routledge
    [Google Scholar]
  31. 31.
    Huntington HP. 1992. Wildlife Management and Subsistence Hunting in Alaska London: Belhaven
    [Google Scholar]
  32. 32.
    Huntington HP. 1998. Observations on the utility of the semi-directive interview for documenting traditional ecological knowledge. Arctic 51:237–42
    [Google Scholar]
  33. 33.
    Huntington HP. 2005. We dance around in a ring and suppose: academic engagement with traditional knowledge. Arct. Anthropol. 42:129–32
    [Google Scholar]
  34. 34.
    Berkes F. 1999. Sacred Ecology: Traditional Ecological Knowledge and Resource Management Philadelphia: Taylor & Francis
    [Google Scholar]
  35. 35.
    Dowlsey M, Wenzel G. 2008. The time of the most polar bears: a co-management conflict in Nunavut. Arctic 61:2177–89
    [Google Scholar]
  36. 36.
    Moore SE, Huntington HP. 2008. Arctic marine mammals and climate change: impacts and resilience. Ecol. Appl. 18:sp2S157–65
    [Google Scholar]
  37. 37.
    Huntington HP, Gearheard S, Mahoney AR, Salomon AK. 2011. Integrating traditional and scientific knowledge through collaborative natural science field research: identifying elements for success. Arctic 64:437–45
    [Google Scholar]
  38. 38.
    Higdon JW, Westdal KH, Ferguson SH. 2014. Distribution and abundance of killer whales (Orcinus orca) in Nunavut, Canada—an Inuit knowledge survey. J. Mar. Biol. Assoc. UK 94:61293–304
    [Google Scholar]
  39. 39.
    Bogoslavskaya L. 2003. The bowhead whale off Chukotka: integration and scientific and traditional knowledge. Indigenous Way to the Present: Native Whaling in the Western Arctic ed. AP McCartney 209–53. Stud. Whal. 6 Edmonton: Can. Circumpolar Inst.
    [Google Scholar]
  40. 40.
    Noongwook G, Native Village Savoonga, Native Village Gambell, Huntington HP, George JC. 2007. Traditional knowledge of the bowhead whale (Balaena mysticetus) around St. Lawrence Island, Alaska. Arctic 60:47–54
    [Google Scholar]
  41. 41.
    Clark DA, Lee DS, Freeman MM, Clark SG. 2008. Polar bear conservation in Canada: defining the policy problems. Arctic 61:347–60
    [Google Scholar]
  42. 42.
    Finlay KJ, Davis RA, Silverman H. 1979. Aspects of the narwhal hunt in the eastern Canadian High Arctic. Rep. Int. Whal. Comm. 30:459–64
    [Google Scholar]
  43. 43.
    Silverman HB 1979. Social organization and behavior of the narwhal: Monodon monoceros L in Lancaster Sound, Pond Inlet and Tremblay Sound, Northwest Territories. Masters Thesis McGill Univ., Montr. Quebec, Can.:
    [Google Scholar]
  44. 44.
    Remnant RA, Thomas ML. 1992. Inuit traditional knowledge of the distribution and biology of High Arctic narwhal and beluga Unpubl. Rep. North/South Consult. Inc. Winnipeg, Can.:
    [Google Scholar]
  45. 45.
    Stewart DB, Akeeagok A, Amarualik R, Panipakutsuk S, Taqtu A. 1995. Local knowledge of beluga and narwhal from four communities in the Arctic. Tech. Rep. 2065 Fish. Aquat. Sci., Winn. Manit., Can.:
    [Google Scholar]
  46. 46.
    Gonzalez N. 2001. Inuit traditional ecological knowledge of the Hudson Bay narwhal (Tuugaalik) population. Rep. Fish. Oceans Can., Iqaluit Nunavut, Can.:
    [Google Scholar]
  47. 47.
    Stewart DB. 2001. Inuit knowledge of belugas and narwhals in the Canadian Eastern Arctic Rep. Dep. Fish. Oceans, Iqaluit Nunavut, Can.:
    [Google Scholar]
  48. 48.
    Lee DS. 2004. Narwhal hunting by Pond Inlet Inuit: An analysis of search and pursuit of narwhals in the open-water environment PhD Thesis Fac. Grad. Stud. Res., McGill Univ. Montr., Quebec, Can.:
    [Google Scholar]
  49. 49.
    Lee D, Wenzel GW. 2004. Narwhal hunting by Pond Island Inuit: an analysis of mode of foraging in the floe-edge environment. Etudes Inuit Stud. 28:2133–57
    [Google Scholar]
  50. 50.
    Westdal K. 2008. Movement and diving of northern Hudson Bay narwhals (Monodon monoceros): relevance to stock assessment and hunt co-management Masters Thesis Dep. Environ. Geogr., Univ. Manit. Manit., Can.:
    [Google Scholar]
  51. 51.
    Dale A. 2009. Inuit Qaujimajatuqangit and adaptive co-management: a case study of narwhal co-management in Arctic Bay, Nunavut Masters Thesis Wilfrid Laurier Univ., Waterloo Ont., Can.:
    [Google Scholar]
  52. 52.
    Rosing J. 1999. The Unicorn of the Arctic Sea: The Narwhal and Its Habitat Manotick, Can: Penumbra
    [Google Scholar]
  53. 53.
    Auger-Méthé M, Marcoux M, Whitehead H. 2010. Nicks and notches of the dorsal ridge: promising mark types for the photo-identification of narwhals. Mar. Mammal Sci. 26:3663–78
    [Google Scholar]
  54. 54.
    Heide-Jørgensen MP, Hansen RG, Westdal K, Reeves RR, Mosbech A. 2013. Narwhals and seismic exploration: Is seismic noise increasing the risk of ice entrapments?. Biol. Conserv. 158:50–54
    [Google Scholar]
  55. 55.
    Watt CA, Orr J, Ferguson SH. 2016. A shift in foraging behaviour of beluga whales Delphinapterus leucas from the threatened Cumberland Sound population may reflect a changing Arctic food web. Endanger. Species Res. 31:259–70
    [Google Scholar]
  56. 56.
    Genov T, Centrih T, Wright AJ, Wu GM. 2018. Novel method for identifying individual cetaceans using facial features and symmetry: a test case using dolphins. Mar. Mammal Sci. 34:2514–28
    [Google Scholar]
  57. 57.
    Nielsen MR. 2009. Is climate change causing the increasing narwhal (Monodon monoceros) catches in Smith Sound, Greenland?. Polar Res 28:2238–45
    [Google Scholar]
  58. 58.
    PlasticsEurope 2020. Plastics—the facts 2020: an analysis of European plastics production, demand and waste data Rep. PlasticsEurope Brussels, Belg.:
    [Google Scholar]
  59. 59.
    Lebreton LC, Van Der Zwet J, Damsteeg JW, Slat B, Andrady A, Reisser J. 2017. River plastic emissions to the world's oceans. Nat. Commun. 8:15611
    [Google Scholar]
  60. 60.
    Lima AR, Ferreira GV, Barrows AP, Christiansen KS, Treinish G, Toshack MC. 2021. Global patterns for the spatial distribution of floating microfibers: Arctic Ocean as a potential accumulation zone. J. Hazard. Mater. 403:123796
    [Google Scholar]
  61. 61.
    Desforges JP, Sonne C, Levin M, Siebert U, De Guise S, Dietz R. 2016. Immunotoxic effects of environmental pollutants in marine mammals. Environ. Int. 86:126–39
    [Google Scholar]
  62. 62.
    Dietz R, Sonne C, Basu N, Braune B, O'Hara T et al. 2013. What are the toxicological effects of mercury in Arctic biota?. Sci. Total Environ. 443:775–90
    [Google Scholar]
  63. 63.
    Hreinsson H. 2020. The increase in Arctic Shipping 2013–2019 Arct. Shipp. Status Rep. 1, PAME Arct. Counc. Akureyri, Iceland: https://oaarchive.arctic-council.org/bitstream/handle/11374/2733/ASSR%201_final_.pdf
    [Google Scholar]
  64. 64.
    Bodil BA, Ambrose WG, Bergmann M, Clough LM, Gebruk AV et al. 2011. Diversity of the arctic deep-sea benthos. Mar. Biodivers. 41:87–107
    [Google Scholar]
  65. 65.
    Christensen KD. 2003. The biodiversity of Greenland: a country study Tech. Rep. 55 Pinngortitaleriffik, Grønlands Naturinstitut Nuuk, Greenl.:
    [Google Scholar]
  66. 66.
    Lepage D, Warnier J. 2014. The Peters' check-list of the birds of the world (1931–1987) database. Avibase, the World Database https://avibase.bsc-eoc.org/checklist.jsp?country=gl&list=clements
    [Google Scholar]
  67. 67.
    Aguilar de Soto N, Kight C 2016. Physiological effects of noise on aquatic animals. Stressors in the Marine Environment M Solan, NM Whiteley 135–58. Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  68. 68.
    Duarte CM, Chapuis L, Collin SP, Costa DP, Devassy RP et al. 2021. The soundscape of the Anthropocene ocean. Science 371:6529eaba4658
    [Google Scholar]
  69. 69.
    Olsen IH. 2012. Opening remarks. Environmental Security in the Arctic Ocean (Published in Cooperation with NATO Emerging Security Challenges Division) PA Berkman, AN Vylegzhanin, 29:2 Dordrecht, Neth.: Springer
    [Google Scholar]
  70. 70.
    Wulff S. 2005. The legal bases for the Inughuit claim to their homelands. Int. J. Minor. Group Rights 12:163–92
    [Google Scholar]
  71. 71.
    Stepien A, Kauppila L, Kopra S, Käpylä J, Lanteigne M et al. 2020. China's economic presence in the Arctic: realities, expectations and concerns. Chinese Policy and Presence in the Arctic T Koivurova, S Kopra 90–136. Leiden, Neth.: Brill Nijhoff
    [Google Scholar]
  72. 72.
    Nweeia MT, Eichmiller FC, Hauschka PV, Donahue GA, Orr JR et al. 2014. Sensory ability in the narwhal tooth organ system. Anat. Rec. 297:4599–617
    [Google Scholar]
  73. 73.
    Caviedes-Bucheli J, Lombana N, Azuero-Holguín MM, Munoz HR. 2006. Quantification of neuropeptides (calcitonin gene-related peptide, substance P, neurokinin A, neuropeptide Y and vasoactive intestinal polypeptide) expressed in healthy and inflamed human dental pulp. Int. Endod. J. 39:5394–400
    [Google Scholar]
  74. 74.
    Thewissen JG, Williams EM. 2002. The early radiations of Cetacea (Mammalia): evolutionary pattern and developmental correlations. Annu. Rev. Ecol. Syst. 33:73–90
    [Google Scholar]
  75. 75.
    Gatesy J, O'Leary MA 2001. Deciphering whale origins with molecules and fossils. Trends Ecol. Evol. 16:10562–70
    [Google Scholar]
  76. 76.
    Berta A, Ekdale EG, Zellmer NT, Deméré TA, Kienle SS, Smallcomb M. 2015. Eye, nose, hair, and throat: external anatomy of the head of a neonate gray whale (Cetacea, Mysticeti, Eschrichtiidae). Anat. Rec. 298:4648–59
    [Google Scholar]
  77. 77.
    Marx FG, Lambert O, Uhen MD. 2016. Cetacean Paleobiology Chichester, UK: Wiley Blackwell
    [Google Scholar]
  78. 78.
    Ursing BM, Arnason U. 1998. Analyses of mitochondrial genomes strongly support a hippopotamus-whale clade. Proc. R. Soc. Lond. B 265:14122251–55
    [Google Scholar]
  79. 79.
    Waddell VG, Milinkovitch MC, Bérubé M, Stanhope MJ. 2000. Molecular phylogenetic examination of the Delphinoidea trichotomy: congruent evidence from three nuclear loci indicates that porpoises (Phocoenidae) share a more recent common ancestry with white whales (Monodontidae) than they do with true dolphins (Delphinidae). Mol. Phylogenet. Evol. 15:2314–18
    [Google Scholar]
  80. 80.
    Cassens I, Vicario S, Waddell VG, Balchowsky H, Van Belle D et al. 2000. Independent adaptation to riverine habitats allowed survival of ancient cetacean lineages. PNAS 97:2111343–47
    [Google Scholar]
  81. 81.
    Agnarsson I, May-Collado LJ. 2008. The phylogeny of Cetartiodactyla: the importance of dense taxon sampling, missing data, and the remarkable promise of cytochrome b to provide reliable species-level phylogenies. Mol. Phylogenet. Evol. 48:3964–85
    [Google Scholar]
  82. 82.
    McGowen MR, Spaulding M, Gatesy J. 2009. Divergence date estimation and a comprehensive molecular tree of extant cetaceans. Mol. Phylogenet. Evol. 53:3891–906
    [Google Scholar]
  83. 83.
    Steeman ME, Hebsgaard MB, Fordyce RE, Ho SYW, Rabosky DL et al. 2009. Radiation of extant cetaceans driven by restructuring of the oceans. Syst. Biol. 58:6573–85
    [Google Scholar]
  84. 84.
    Geisler JH, McGowen MR, Yang G, Gatesy J. 2011. A supermatrix analysis of genomic, morphological, and paleontological data from crown Cetacea. BMC Evol. Biol. 11:112
    [Google Scholar]
  85. 85.
    Zhou X, Xu S, Yang Y, Zhou K, Yang G. 2011. Phylogenomic analyses and improved resolution of Cetartiodactyla. Mol. Phylogenet. Evol. 61:2255–64
    [Google Scholar]
  86. 86.
    Hassanin A, Delsuc F, Ropiquet A, Hammer C, Van Vuuren BJ et al. 2012. Pattern and timing of diversification of Cetartiodactyla (Mammalia, Laurasiatheria), as revealed by a comprehensive analysis of mitochondrial genomes. C. R. Biol. 335:132–50
    [Google Scholar]
  87. 87.
    McGowen MR, Tsagkogeorga G, Álvarez-Carretero S, Dos Reis M, Struebig M et al. 2020. Phylogenomic resolution of the cetacean tree of life using target sequence capture. Syst. Biol. 69:3479–501
    [Google Scholar]
  88. 88.
    Murakami M, Shimada C, Hikida Y, Soeda Y, Hirano H. 2014. Eodelphis kabatensis, a new name for the oldest true dolphin Stenella kabatensis Horikawa, 1977 (Cetacea, Odontoceti, Delphinidae), from the upper Miocene of Japan, and the phylogeny and paleobiogeography of Delphinoidea. J. Vertebr. Paleontol. 34:3491–511
    [Google Scholar]
  89. 89.
    Peredo CM, Uhen MD, Nelson MD. 2018. A new kentriodontid (Cetacea: Odontoceti) from the early Miocene Astoria Formation and a revision of the stem delphinidan family Kentriodontidae. J. Vertebr. Paleontol. 38:2e1411357
    [Google Scholar]
  90. 90.
    Louis M, Skovrind M, Samaniego Castruita JA, Garilao C, Kaschner K et al. 2020. Influence of past climate change on phylogeography and demographic history of narwhals, Monodon monoceros. Proc. R. Soc. B 2871925:20192964
    [Google Scholar]
  91. 91.
    Rybczynski N, Gosse JC, Harington CR, Wogelius RA, Hidy AJ, Buckley M. 2013. Mid-Pliocene warm-period deposits in the High Arctic yield insight into camel evolution. Nat. Commun. 4:1550
    [Google Scholar]
  92. 92.
    Buckley M, Lawless C, Rybczynski N. 2019. Collagen sequence analysis of fossil camels, Camelops and cf Paracamelus, from the Arctic and sub-Arctic of Plio-Pleistocene North America. J. Proteom. 194:218–25
    [Google Scholar]
  93. 93.
    Watt CA, Orr JR, Heide-Jørgensen MP, Nielsen NH, Ferguson SH. 2015. Differences in dive behaviour among the world's three narwhal Monodon monoceros populations correspond with dietary differences. Mar. Ecol. 525:273–85
    [Google Scholar]
  94. 94.
    Fontanella JE, Fish FE, Rybczynski N, Nweeia MT, Ketten DR. 2011. Three-dimensional geometry of the narwhal (Monodon monoceros) flukes in relation to hydrodynamics. Mar. Mammal Sci. 27:4889–98
    [Google Scholar]
  95. 95.
    Nweeia MT, Eichmiller FC, Hauschka PV, Tyler E, Mead JG et al. 2012. Vestigial tooth anatomy and tusk nomenclature for Monodon monoceros. Anat. Rec. 295:61006–16
    [Google Scholar]
  96. 96.
    Koblitz JC, Stilz P, Rasmussen MH, Laidre KL. 2016. Highly directional sonar beam of narwhals (Monodon monoceros) measured with a vertical 16 hydrophone array. PLOS ONE 11:11e0162069
    [Google Scholar]
  97. 97.
    Nweeia MT, Thackeray JF, Eichmiller F, Richards P, Leclerc LM et al. 2008. A note on isotopic analysis of sectioned tusks of the narwhal (Monodon monoceros) and tusk growth rates. Ann. Transvaal Mus. 45:1138–42
    [Google Scholar]
  98. 98.
    Graham ZA, Garde E, Heide-Jørgensen MP, Palaoro AV. 2020. The longer the better: evidence that narwhal tusks are sexually selected. Biol. Lett. 16:320190950
    [Google Scholar]
  99. 99.
    Scoresby W. 1820. An Account of the Arctic Regions with a History and Description of the Northern Whale Fishery, Vol. 1 The Arctic. Edinburgh, UK: Archibald Constable & Co.
    [Google Scholar]
  100. 100.
    Mansfield AW, Smith TG, Beck B. 1975. The narwhal, Monodon monoceros, in eastern Canadian waters. J. Fish. Board Can. 32:71041–46
    [Google Scholar]
  101. 101.
    Silverman HB, Dunbar MJ. 1980. Aggressive tusk use by the narwhal (Monodon monoceros L.). Nature 284:575157–58
    [Google Scholar]
  102. 102.
    Gerson HB, Hickie JP. 1985. Head scarring on male narwhals (Monodon monoceros): evidence for aggressive tusk use. Can. J. Zool. 63:92083–87
    [Google Scholar]
  103. 103.
    Eidelman N, Eichmiller FC, Zhang Y, Jung Y, Giuseppetti AA, Nweeia MT. 2005. Position-resolved structural and mechanical properties of narwhal tusk dental tissues Presented at a Meeting of the International Association for Dental Research Baltimore, MD: https://iadr.abstractarchives.com/abstract/2005Balt-63995/position-resolved-structural-and-mechanical-properties-of-narwhal-tusk-dental-tissues
    [Google Scholar]
  104. 104.
    Mossman HW. 1937. Comparative morphogenesis of the fetal membranes and accessory uterine structures. Contrib. Embryol. Carnegie Inst. 26:129–246
    [Google Scholar]
  105. 105.
    Osmanski AB, Paulat NS, Korstian J, Grimshaw JR, Halsey M et al. 2023. Insights into mammalian TE diversity through the curation of 248 genome assemblies. Science 380:6643eabn1430
    [Google Scholar]
  106. 106.
    Damas J, Corbo M, Kim J, Turner-Maier J, Farré M et al. 2022. Evolution of the ancestral mammalian karyotype and syntenic regions. PNAS 119:40e2209139119
    [Google Scholar]
  107. 107.
    Gingerich PD, Haq MU, Zalmout IS, Khan IH, Malkani MS. 2001. Origin of whales from early artiodactyls: hands and feet of Eocene Protocetidae from Pakistan. Science 293:55382239–42
    [Google Scholar]
  108. 108.
    Damas J, Hughes GM, Keough KC, Painter CA, Persky NS et al. 2020. Broad host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebrates. PNAS 117:3622311–22
    [Google Scholar]
  109. 109.
    Braun BA, Marcovitz A, Camp JG, Jia R, Bejerano G. 2012. Mx1 and Mx2 key antiviral proteins are surprisingly lost in toothed whales. PNAS 112:268036–40
    [Google Scholar]
  110. 110.
    Leroy EM, Ar Gouilh M, Brugère-Picoux J. 2020. The risk of SARS-CoV-2 transmission to pets and other wild and domestic animals strongly mandates a one-health strategy to control the COVID-19 pandemic. One Health 10:100133
    [Google Scholar]
  111. 111.
    Mihindukulasuriya KA, Wu G, St. Leger J, Nordhausen RW, Wang D 2008. Identification of a novel coronavirus from a beluga whale by using a panviral microarray. J. Virol. 82:105084–88
    [Google Scholar]
  112. 112.
    Woo PC, Lau SK, Lam CS, Tsang AK, Hui SW et al. 2014. Discovery of a novel bottlenose dolphin coronavirus reveals a distinct species of marine mammal coronavirus in Gammacoronavirus. J. Virol. 88:21318–31
    [Google Scholar]
  113. 113.
    Bossart GD, Schwartz JC. 1990. Acute necrotizing enteritis associated with suspected coronavirus infection in three harbor seals (Phoca vitulina). J. Zoo Wildl. Med. 1:84–87
    [Google Scholar]
  114. 114.
    Müller G, Wohlsein P, Beineke A, Haas L, Greiser-Wilke I et al. 2002. Phocine distemper in German seals. Emerg. Infect. Dis. 10:4723–25
    [Google Scholar]
  115. 115.
    Kalhor D, Poirier M, Pusenkova A, Maldague X, Gauthier G, Galstian T. 2021. A camera trap to reveal the obscure world of the Arctic subnivean ecology. IEEE Sens. J. 21:2428025–36
    [Google Scholar]
  116. 116.
    Niven L, Steele TE, Finke H, Gernat T, Hublin JJ. 2009. Virtual skeletons: using a structured light scanner to create a 3D faunal comparative collection. J. Archaeol. Sci. 36:92018–23
    [Google Scholar]
  117. 117.
    Ruthkoski T, Greaves H. 2016. The impact of drone technology on Arctic remote sensing data Abstr. IN53A-1877 Presented at the Fall Meeting of the American Geophysical Union Washington, DC:
    [Google Scholar]
  118. 118.
    Hasan A, Kramar V, Hermansen J, Schultz UP. 2022. Development of resilient drones for harsh Arctic environment: challenges, opportunities, and enabling technologies. 2022 International Conference on Unmanned Aircraft Systems (ICUAS)1227–36. New York: IEEE
    [Google Scholar]
  119. 119.
    Int. Whal. Comm 2020. Report of the Joint US Office of Naval Research, International Whaling Commission and US National Oceanic and Atmospheric Administration workshop on cetacean tag development, tag follow-up and tagging best practice. J. Cetacean Res. Manag. 21:Suppl.349–72
    [Google Scholar]
  120. 120.
    Laidre KL, Heide-Jørgensen MP, Dietz R, Hobbs RC, Jørgensen OA. 2003. Deep-diving by narwhals Monodon monoceros: Differences in foraging behavior between wintering areas?. Mar. Ecol. 261:269–81
    [Google Scholar]
  121. 121.
    Fortune SM, Young BG, Ferguson SH. 2020. Age-and sex-specific movement, behaviour and habitat-use patterns of bowhead whales (Balaena mysticetus) in the Eastern Canadian Arctic. Polar Biol. 43:1725–44
    [Google Scholar]
  122. 122.
    Mate BR, Krutzikowsky GK, Winsor MH. 2000. Satellite-monitored movements of radio-tagged bowhead whales in the Beaufort and Chukchi seas during the late-summer feeding season and fall migration. Can. J. Zool. 78:71168–81
    [Google Scholar]
  123. 123.
    Teilmann J, Agersted MD, Heide-Jørgensen MP. 2020. A comparison of CTD satellite-linked tags for large cetaceans—bowhead whales as real-time autonomous sampling platforms. Deep Sea Res. I 157:103213
    [Google Scholar]
  124. 124.
    Harwood LA, Smith TG. 2002. Whales of the Inuvialuit settlement region in Canada's Western Arctic: an overview and outlook. Arctic 55:Suppl. 177–93
    [Google Scholar]
  125. 125.
    Williams TM, Blackwell SB, Richter B, Sinding MH, Heide-Jørgensen MP. 2017. Paradoxical escape responses by narwhals (Monodon monoceros). Science 358:63681328–31
    [Google Scholar]
  126. 126.
    Nweeia M, Nutarak C, Ootoova E, Sanguya P, Orr J et al. 2006. Inuit Qaujimajatuqangit of the narwhal: traditional knowledge integrated with tusk scientific research. Proceedings of the 15th Inuit Studies Conference, Paris, Oct. 26–28 Winn., Manit., Can.: Univ. Winn.
    [Google Scholar]
  127. 127.
    Groc I. 2013. Being there: Scientists enlist Inuit for long-term observations of Arctic wildlife. Scientific American Febr. 13. https://www.scientificamerican.com/article/science-and-traditional-knowledge-collaborate-to-understand-arctic-wildlife-slide-show/
    [Google Scholar]
/content/journals/10.1146/annurev-animal-021122-112307
Loading
/content/journals/10.1146/annurev-animal-021122-112307
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error