1932

Abstract

Unique, functional, homodimeric heavy chain–only antibodies, devoid of light chains, are circulating in the blood of Camelidae. These antibodies recognize their cognate antigen via one single domain, known as VHH or Nanobody. This serendipitous discovery made three decades ago has stimulated a growing number of researchers to generate highly specific Nanobodies against a myriad of targets. The small size, strict monomeric state, robustness, and easy tailoring of these Nanobodies have inspired many groups to design innovative Nanobody-based multi-domain constructs to explore novel applications. As such, Nanobodies have been employed as an exquisite research tool in structural, cell, and developmental biology. Furthermore, Nanobodies have demonstrated their benefit for more sensitive diagnostic tests. Finally, several Nanobody-based constructs have been designed to develop new therapeutic products.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-021419-083831
2021-02-15
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/animal/9/1/annurev-animal-021419-083831.html?itemId=/content/journals/10.1146/annurev-animal-021419-083831&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Padlan EA. 1994. Anatomy of the antibody molecule. Mol. Immunol. 31:3169–217
    [Google Scholar]
  2. 2. 
    Sun Y, Huang T, Hammarström L, Zhao Y 2020. The immunoglobulins: new insights, implications, and applications. Annu. Rev. Anim. Biosci. 8:145–69
    [Google Scholar]
  3. 3. 
    Liang Z, Wang T, Sun Y, Yang W, Liu Z et al. 2015. A comprehensive analysis of immunoglobulin heavy chain genes in the Bactrian camel (Camelus bactrianus). Front. Agric. Sci. Eng. 2:3249–59
    [Google Scholar]
  4. 4. 
    Muyldermans S, Smider VV. 2016. Distinct antibody species: structural differences creating therapeutic opportunities. Curr. Opin. Immunol. 40:7–13
    [Google Scholar]
  5. 5. 
    Haakenson JK, Huang R, Smider VV 2018. Diversity in the cow ultralong CDR H3 antibody repertoire. Front. Immunol. 9:1262
    [Google Scholar]
  6. 6. 
    Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C et al. 1993. Naturally occurring antibodies devoid of light chains. Nature 363:446–48
    [Google Scholar]
  7. 7. 
    Feige MJ, Groscurth S, Marcinowski M, Shimizu Y, Kessler H et al. 2009. An unfolded CH1 domain controls the assembly and secretion of IgG antibodies. Mol. Cell 34:5569–79
    [Google Scholar]
  8. 8. 
    Alexander A, Steinmetz M, Barritault D, Frangione B, Franklin EC et al. 1982. γ Heavy chain disease in man: cDNA sequence supports partial gene deletion model. PNAS 79:3260–64
    [Google Scholar]
  9. 9. 
    Cogné M, Silvain C, Khamlichi AA, Preud'homme J-L 1992. Structurally abnormal immunoglobulins in human immunoproliferative disorders. Blood 79:92181–95
    [Google Scholar]
  10. 10. 
    Nguyen VK, Desmyter A, Muyldermans S 2001. Functional heavy-chain antibodies in Camelidae. Adv. Immunol. 79:261–96
    [Google Scholar]
  11. 11. 
    Nguyen VK, Su C, Muyldermans S, van der Loo W 2002. Heavy-chain antibodies in Camelidae; a case of evolutionary innovation. Immunogenetics 54:39–47
    [Google Scholar]
  12. 12. 
    Nguyen VK, Hamers R, Wyns L, Muyldermans S 1999. Loss of splice consensus signal is responsible for the removal of the entire CH1 domain of the functional camel IGG2A heavy-chain antibodies. Mol. Immunol. 36:8515–24
    [Google Scholar]
  13. 13. 
    Nguyen VK, Muyldermans S, Hamers R 1998. The specific variable domain of camel heavy-chain antibodies is encoded in the germline. J. Mol. Biol. 275:413–18
    [Google Scholar]
  14. 14. 
    Flajnik MF, Deschacht N, Muyldermans S 2011. A case of convergence: Why did a simple alternative to canonical antibodies arise in sharks and camels. PLOS Biol 9:8e1001120
    [Google Scholar]
  15. 15. 
    Brooks CL, Rossotti MA, Henry KA 2018. Immunological functions and evolutionary emergence of heavy-chain antibodies. Trends Immunol 39:12956–60
    [Google Scholar]
  16. 16. 
    Hoogenboom HR. 2005. Selecting and screening recombinant antibody libraries. Nat. Biotechnol. 23:91105–16
    [Google Scholar]
  17. 17. 
    Marks JD, Hoogenboom HR, Bonnert TP, McCafferty J, Griffiths AD, Winter G 1991. By-passing immunization. Human antibodies from V-gene libraries displayed on phage. J. Mol. Biol. 222:3581–97
    [Google Scholar]
  18. 18. 
    Arbabi Ghahroudi M, Desmyter A, Wyns L, Hamers R, Muyldermans S 1997. Selection and identification of single domain antibody fragments from camel heavy-chain antibodies. FEBS Lett 414:3521–26
    [Google Scholar]
  19. 19. 
    Ahmad MI, Issa HS, Yousef SH, Shihab PA, Al-Qaoud KM 2018. The role of adjuvant on safety and antibody modulation of dromedary camel. J. Camel Pract. Res. 23:165–72
    [Google Scholar]
  20. 20. 
    Janssens R, Dekker S, Hendriks RW, Panayotou G, van Remoortere A et al. 2006. Generation of heavy-chain-only antibodies in mice. PNAS 103:4115130–35
    [Google Scholar]
  21. 21. 
    Drabek D, Janssens R, de Boer E, Rademaker R, Kloess J et al. 2016. Expression cloning and production of human heavy-chain-only antibodies from murine transgenic plasma cells. Front. Immunol. 7:619
    [Google Scholar]
  22. 22. 
    Zhang T, Cheng X, Yu D, Lin F, Hou N et al. 2018. Genetic removal of the CH1 exon enables the production of heavy chain-only IgG in mice. Front. Immunol. 9:2202
    [Google Scholar]
  23. 23. 
    Ma B, Osborn MJ, Avis S, Ouisse L-H, Ménoret S et al. 2013. Human antibody expression in transgenic rats: comparison of chimeric IgH loci with human VH, D and JH but bearing different rat C-gene regions. J. Immunol. Methods 400–401:78–86
    [Google Scholar]
  24. 24. 
    Pardon E, Laeremans T, Triest S, Rasmussen SGF, Wohlkönig A et al. 2014. A general protocol for the generation of Nanobodies for structural biology. Nat. Protoc. 9:3674–93
    [Google Scholar]
  25. 25. 
    Rothbauer U. 2018. Speed up to find the right ones: rapid discovery of functional nanobodies. Nat. Struct. Mol. Biol. 25:3199–201
    [Google Scholar]
  26. 26. 
    Muyldermans S, Baral TN, Retamozzo VC, De Baetselier P, De Genst E et al. 2009. Camelid immunoglobulins and nanobody technology. Vet. Immunol. Immunopathol. 128:178–83
    [Google Scholar]
  27. 27. 
    Romao E, Morales-Yanez F, Hu Y, Crauwels M, Pauw P et al. 2016. Identification of useful Nanobodies by phage display of immune single domain libraries derived from camelid heavy chain antibodies. Curr. Pharm. Des. 22:436500–18
    [Google Scholar]
  28. 28. 
    Koch-Nolte F, Reyelt J, Schöβow B, Schwarz N, Scheuplein F et al. 2007. Single domain antibodies from llama effectively and specifically block T cell ecto-ADP-ribosyltransferase ART2.2 in vivo. FASEB J 21:133490–98
    [Google Scholar]
  29. 29. 
    Peyrassol X, Laeremans T, Gouwy M, Lahura V, Debulpaep M et al. 2016. Development by genetic immunization of monovalent antibodies (nanobodies) behaving as antagonists of the human ChemR23 receptor. J. Immunol. 196:62893–901
    [Google Scholar]
  30. 30. 
    Ladenson RC, Crimmins DL, Landt Y, Ladenson JH 2006. Isolation and characterization of a thermally stable recombinant anti-caffeine heavy-chain antibody fragment. Anal. Chem. 78:134501–8
    [Google Scholar]
  31. 31. 
    Spinelli S, Frenken LGJ, Hermans P, Verrips T, Brown K et al. 2000. Camelid heavy-chain variable domains provide efficient combining sites to haptens. Biochemistry 39:61217–22
    [Google Scholar]
  32. 32. 
    De Genst E, Silence K, Ghahroudi MA, Decanniere K, Loris R et al. 2005. Strong in vivo maturation compensates for structurally restricted H3 loops in antibody repertoires. J. Biol. Chem. 280:14114–21
    [Google Scholar]
  33. 33. 
    Moutel S, Bery N, Bernard V, Keller L, Lemesre E et al. 2016. NaLi-H1: a universal synthetic library of humanized nanobodies providing highly functional antibodies and intrabodies. eLife 5:e16228
    [Google Scholar]
  34. 34. 
    Zimmermann I, Egloff P, Hutter CA, Arnold FM, Stohler P et al. 2018. Synthetic single domain antibodies for the conformational trapping of membrane proteins. eLife 7:e34317
    [Google Scholar]
  35. 35. 
    Olichon A, Marco A. 2012. Preparation of a naive library of camelid single domain antibodies. Meth. Mol. Biol. 911:65–78
    [Google Scholar]
  36. 36. 
    Yan J, Li G, Hu Y, Ou W, Wan Y 2014. Construction of a synthetic phage-displayed Nanobody library with CDR3 regions randomized by trinucleotide cassettes for diagnostic applications. J. Transl. Med. 12:343
    [Google Scholar]
  37. 37. 
    Fleetwood F, Devoogdt N, Pellis M, Wernery U, Muyldermans S et al. 2013. Surface display of a single-domain antibody library on Gram-positive bacteria. Cell. Mol. Life Sci. 70:61081–93
    [Google Scholar]
  38. 38. 
    Ryckaert S, Pardon E, Steyaert J, Callewaert N 2010. Isolation of antigen-binding camelid heavy chain antibody fragments (nanobodies) from an immune library displayed on the surface of Pichia pastoris.. J. Biotechnol 145:293–98
    [Google Scholar]
  39. 39. 
    Uchański T, Zögg T, Yin J, Yuan D, Wohlkönig A et al. 2019. An improved yeast surface display platform for the screening of nanobody immune libraries. Sci. Rep. 9:382
    [Google Scholar]
  40. 40. 
    Yau KYF, Groves MAT, Li S, Sheedy C, Lee H et al. 2003. Selection of hapten-specific single-domain antibodies from a non-immunized llama ribosome display library. J. Immunol. Methods 281:1–2161–75
    [Google Scholar]
  41. 41. 
    Pellis M, Pardon E, Zolghadr K, Rothbauer U, Vincke C et al. 2012. A bacterial-two-hybrid selection system for one-step isolation of intracellularly functional Nanobodies. Arch. Biochem. Biophys. 526:114–23
    [Google Scholar]
  42. 42. 
    Zolghadr K, Mortusewicz O, Rothbauer U, Kleinhans R, Goehler H et al. 2008. A fluorescent two-hybrid assay for direct visualization of protein interactions in living cells. Mol. Cell. Proteom. 7:112279–87
    [Google Scholar]
  43. 43. 
    Fridy PC, Li Y, Keegan S, Thompson MK, Nudelman I et al. 2014. A robust pipeline for rapid production of versatile nanobody repertoires. Nat. Methods 11:121253–60
    [Google Scholar]
  44. 44. 
    Liu W, Song H, Chen Q, Yu J, Xian M et al. 2018. Recent advances in the selection and identification of antigen-specific nanobodies. Mol. Immunol. 96:37–47
    [Google Scholar]
  45. 45. 
    Deckers N, Saerens D, Kanobana K, Conrath K, Victor B et al. 2009. Nanobodies, a promising tool for species-specific diagnosis of Taenia solium cysticercosis. Int. J. Parasitol. 39:625–33
    [Google Scholar]
  46. 46. 
    Jovčevska I, Zupanec N, Kočevar N, Cesselli D, Podergajs N et al. 2014. TRIM28 and β-actin identified via nanobody-based reverse proteomics approach as possible human glioblastoma biomarkers. PLOS ONE 9:11e113688
    [Google Scholar]
  47. 47. 
    Jovčevska I, Zupanec N, Urlep Ž, Vranic A, Matos B et al. 2017. Differentially expressed proteins in glioblastoma multiforme identified with a nanobody-based anti-proteome approach and confirmed by OncoFinder as possible tumor-class predictive biomarker candidates. Oncotarget 8:44141–58
    [Google Scholar]
  48. 48. 
    Samec N, Jovčevska I, Stojan J, Zottel A, Liovic M et al. 2018. Glioblastoma-specific anti-TUFM nanobody for in-vitro immunoimaging and cancer stem cell targeting. Oncotarget 9:17282–99
    [Google Scholar]
  49. 49. 
    De Groeve K, Deschacht N, De Koninck C, Caveliers V, Lahoutte T et al. 2010. Nanobodies as tools for in vivo imaging of specific immune cell types. J. Nucl. Med. 51:5782–89
    [Google Scholar]
  50. 50. 
    Saerens D, Stijlemans B, Baral TN, Nguyen Thi GT, Wernery U et al. 2008. Parallel selection of multiple anti-infectome Nanobodies without access to purified antigens. J. Immunol. Methods 329:138–50
    [Google Scholar]
  51. 51. 
    Baral TN, Murad Y, Thanh-Dung N, Iqbal U, Zhang J 2011. Isolation of functional single domain antibody by whole cell immunization: implications for cancer treatment. J. Immunol. Methods 371:1–270–80
    [Google Scholar]
  52. 52. 
    Abo Assali L, Al-Mariri A, Hamad E, Abbady AQ 2012. Immunodetection of the recombinant GroEL by the Nanobody NbBruc02. World J. Microbiol. Biotechnol. 28:2987–95
    [Google Scholar]
  53. 53. 
    Odongo S, Sterckx YGJ, Stijlemans B, Pillay D, Baltz T et al. 2016. An anti-proteome Nanobody library approach yields a specific immunoassay for Trypanosoma congolense diagnosis targeting glycosomal aldolase. PLOS Negl. Trop. Dis. 10:2e0004420
    [Google Scholar]
  54. 54. 
    Abbady AQ, Al-Daoude A, Al-Mariri A, Zarkawi M, Muyldermans S 2012. Chaperonin GroEL a Brucella immunodominant antigen identified using Nanobody and MALDI-TOF-MS technologies. Vet. Immunol. Immunopathol. 146:3–4254–63
    [Google Scholar]
  55. 55. 
    Schmidt FI, Hanke L, Morin B, Brewer R, Brusic V et al. 2016. Phenotypic lentivirus screens to identify functional single domain antibodies. Nat. Microbiol. 1:816080
    [Google Scholar]
  56. 56. 
    Ashour J, Schmidt FI, Hanke L, Cragnolini J, Cavallari M et al. 2015. Intracellular expression of camelid single-domain antibodies specific for influenza virus nucleoprotein uncovers distinct features of its nuclear localization. J. Virol. 89:52792–800
    [Google Scholar]
  57. 57. 
    Hanke L, Schmidt FI, Knockenhauer KE, Morin B, Whelan SP et al. 2017. Vesicular stomatitis virus N protein‐specific single‐domain antibody fragments inhibit replication. EMBO Rep 18:61027–37
    [Google Scholar]
  58. 58. 
    Arbabi-Ghahroudi M, Tanha J, MacKenzie R 2005. Prokaryotic expression of antibodies. Cancer Metastasis Rev 24:4501–19
    [Google Scholar]
  59. 59. 
    Djender S, Schneider A, Beugnet A, Crepin R, Desrumeaux K et al. 2014. Bacterial cytoplasm as an effective cell compartment for producing functional VHH-based affinity reagents and Camelidae IgG-like recombinant antibodies. Microb. Cell Fact. 13:140
    [Google Scholar]
  60. 60. 
    Zarschler K, Witecy S, Kapplusch F, Foerster C, Holger S 2013. High-yield production of functional soluble single-domain antibodies in the cytoplasm of Escherichia coli. Microb. Cell Fact 12:97
    [Google Scholar]
  61. 61. 
    Frenken LGJ, van der Linden RHJ, Hermans PWJJ, Bos JW, Ruuls RC et al. 2000. Isolation of antigen specific llama VHH antibody fragments and their high level secretion by Saccharomyces cerevisiae. J. Biotechnol 78:11–21
    [Google Scholar]
  62. 62. 
    Frenken LGJ, Hessing JGM, Van den Hondel C, Verrips CT 1998. Recent advances in the large-scale production of antibody fragments using lower eukaryotic microorganisms. Res. Immunol. 149:6589–99
    [Google Scholar]
  63. 63. 
    Peeters K, De Wilde C, De Jaeger G, Angenon G, Depicker A 2001. Production of antibodies and antibody fragments in plants. Vaccine 19:17–192756–61
    [Google Scholar]
  64. 64. 
    De Meyer T, Muyldermans S, Depicker A 2014. Nanobody-based products as research and diagnostic tools. Trends Biotechnol 32:5263–70
    [Google Scholar]
  65. 65. 
    Braun MB, Traenkle B, Koch PA, Emele F, Weiss F et al. 2016. Peptides in headlock—a novel high-affinity and versatile peptide-binding nanobody for proteomics and microscopy. Sci. Rep. 6:e19211
    [Google Scholar]
  66. 66. 
    Crauwels M, Van Vaerenbergh N, Kulaya NB, Vincke C, D'Huyvetter M et al. 2020. Reshaping nanobodies for affinity purification on protein a. New Biotechnol 57:20–28
    [Google Scholar]
  67. 67. 
    van der Linden RHJ, Frenken LGJ, de Geus B, Harmsen MM, Ruuls RC et al. 1999. Comparison of physical chemical properties of llama VHH antibody fragments and mouse monoclonal antibodies. Biochim. Biophys. Acta 1431:137–46
    [Google Scholar]
  68. 68. 
    Pérez JM, Renisio JG, Prompers JJ, van Platerink CJ, Cambillau C et al. 2001. Thermal unfolding of a llama antibody fragment: a two-state reversible process. Biochemistry 40:174–83
    [Google Scholar]
  69. 69. 
    Kunz P, Zinner K, Mücke N, Bartoschik T, Muyldermans S, Hoheisel JD 2018. The structural basis of nanobody unfolding reversibility and thermoresistance. Sci. Rep. 8:7934
    [Google Scholar]
  70. 70. 
    Rothbauer U, Zolghadr K, Muyldermans S, Schepers A, Cardoso MC, Leonhardt H 2008. A versatile nanotrap for biochemical and functional studies with fluorescent fusion proteins. Mol. Cell. Proteom. 7:2282–89
    [Google Scholar]
  71. 71. 
    Muyldermans S. 2013. Nanobodies: natural single-domain antibodies. Annu. Rev. Biochem. 82:775–97
    [Google Scholar]
  72. 72. 
    Debie P, Lafont C, Defrise M, Hansen I, van Willigen DM et al. 2020. Size and affinity kinetics of nanobodies influence targeting and penetration of solid tumours. J. Control. Release 317:34–42
    [Google Scholar]
  73. 73. 
    De Genst E, Silence K, Decanniere K, Conrath K, Loris R et al. 2006. Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies. PNAS 103:124586–91
    [Google Scholar]
  74. 74. 
    Kromann-Hansen T, Oldenburg E, Yung KWY, Ghassabeh GH, Muyldermans S et al. 2016. A camelid-derived antibody fragment targeting the active site of a serine protease balances between inhibitor and substrate behavior. J. Biol. Chem. 291:2915156–68
    [Google Scholar]
  75. 75. 
    Zavrtanik U, Lukan J, Loris R, Lah J, Hadži S 2018. Structural basis of epitope recognition by heavy-chain camelid antibodies. J. Mol. Biol. 430:214369–86
    [Google Scholar]
  76. 76. 
    Chaikuad A, Keates T, Vincke C, Kaufholz M, Zenn M et al. 2014. Structure of cyclin G-associated kinase (GAK) trapped in different conformations using nanobodies. Biochem. J. 459:159–69
    [Google Scholar]
  77. 77. 
    Desmyter A, Transue TR, Ghahroudi MA, Thi MH, Poortmans F et al. 1996. Crystal structure of a camel single-domain VH antibody fragment in complex with lysozyme. Nat. Struct. Biol. 3:803–11
    [Google Scholar]
  78. 78. 
    Brinkmann U, Kontermann RE. 2017. The making of bispecific antibodies. mAbs 9:2182–212
    [Google Scholar]
  79. 79. 
    Roovers RC, Vosjan MJWD, Laeremans T, el Khoulati R, de Bruin RCG et al. 2011. A biparatopic anti-EGFR nanobody efficiently inhibits solid tumour growth. Int. J. Cancer 129:82013–24
    [Google Scholar]
  80. 80. 
    Behdani M, Zeinali S, Karimipour M, Khanahmad H, Schoonooghe S et al. 2013. Development of VEGFR2-specific Nanobody Pseudomonas exotoxin A conjugated to provide efficient inhibition of tumor cell growth. New Biotechnol 30:2205–9
    [Google Scholar]
  81. 81. 
    Cortez-Retamozo V, Backmann N, Senter PD, Wernery U, De Baetselier P et al. 2004. Efficient cancer therapy with a nanobody-based conjugate. Cancer Res 64:2853–57
    [Google Scholar]
  82. 82. 
    Rothbauer U, Zolghadr K, Tillib S, Nowak D, Schermelleh L et al. 2006. Targeting and tracing antigens in live cells with fluorescent nanobodies. Nat. Methods 3:887–89
    [Google Scholar]
  83. 83. 
    Caussinus E, Kanca O, Affolter M 2012. Fluorescent fusion protein knockout mediated by anti-GFP nanobody. Nat. Struct. Mol. Biol. 19:117–21
    [Google Scholar]
  84. 84. 
    Saerens D, Frederix F, Reekmans G, Conrath K, Jans K et al. 2005. Engineering camel single-domain antibodies and immobilization chemistry for human prostate-specific antigen sensing. Anal. Chem. 77:237547–55
    [Google Scholar]
  85. 85. 
    Nguyen-Duc T, Peeters E, Muyldermans S, Charlier D, Hassanzadeh-Ghassabeh G 2013. Nanobody®-based chromatin immunoprecipitation/micro-array analysis for genome-wide identification of transcription factor DNA binding sites. Nucleic Acids Res 41:5e59
    [Google Scholar]
  86. 86. 
    Helma J, Cardoso MC, Muyldermans S, Leonhardt H 2015. Nanobodies and recombinant binders in cell biology. J. Cell Biol. 209:5633–44
    [Google Scholar]
  87. 87. 
    Dmitriev OY, Lutsenko S, Muyldermans S 2016. Nanobodies as probes for protein dynamics in vitro and in cells. J. Biol. Chem. 291:83767–75
    [Google Scholar]
  88. 88. 
    Uchański T, Pardon E, Steyaert J 2020. Nanobodies to study protein conformational states. Curr. Opin. Struct. Biol. 60:117–23
    [Google Scholar]
  89. 89. 
    Steyaert J, Kobilka BK. 2011. Nanobody stabilization of G protein-coupled receptor conformational states. Curr. Opin. Struct. Biol. 21:4567–72
    [Google Scholar]
  90. 90. 
    Mitchell LS, Colwell LJ. 2018. Analysis of nanobody paratopes reveals greater diversity than classical antibodies. Protein Eng. Des. Sel. 31:7–8267–75
    [Google Scholar]
  91. 91. 
    Rasmussen SGF, DeVree BT, Zou Y, Kruse AC, Chung KY et al. 2011. Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature 477:549–55
    [Google Scholar]
  92. 92. 
    Ring AM, Manglik A, Kruse AC, Enos MD, Weis WI et al. 2013. Adrenaline-activated structure of the β2-adrenoceptor stabilized by an engineered nanobody. Nature 502:575–79
    [Google Scholar]
  93. 93. 
    Wingler LM, McMahon C, Staus DP, Lefkowitz RJ, Kruse AC 2019. Distinctive activation mechanism for angiotensin receptor revealed by a synthetic nanobody. Cell 176:3479–90
    [Google Scholar]
  94. 94. 
    Kromann-Hansen T, Lange EL, Sørensen HP, Hassanzadeh-Ghassabeh G, Huang M et al. 2017. Discovery of a novel conformational equilibrium in urokinase-type plasminogen activator. Sci. Rep. 7:3385
    [Google Scholar]
  95. 95. 
    Drews A, Flint J, Shivji N, Jönsson P, Wirthensohn D et al. 2016. Individual aggregates of amyloid beta induce temporary calcium influx through the cell membrane of neuronal cells. Sci. Rep. 6:31910
    [Google Scholar]
  96. 96. 
    Flagmeier P, De S, Wirthensohn DC, Lee SF, Vincke C et al. 2017. Ultrasensitive measurement of Ca2+ influx into lipid vesicles induced by protein aggregates. Angew. Chem. 129:277858–62
    [Google Scholar]
  97. 97. 
    Huang Y, Nokhrin S, Hassanzadeh-Ghassabeh G, Yu CH, Yang H et al. 2014. Interactions between metal-binding domains modulate intracellular targeting of Cu(I)-ATPase ATP7B, as revealed by nanobody binding. J. Biol. Chem. 289:4732682–93
    [Google Scholar]
  98. 98. 
    Masiulis S, Desai R, Uchański T, Martin IS, Laverty D et al. 2019. GABAA receptor signalling mechanisms revealed by structural pharmacology. Nature 565:454–59
    [Google Scholar]
  99. 99. 
    Traenkle B, Rothbauer U. 2017. Under the microscope: single-domain antibodies for live-cell imaging and super-resolution microscopy. Front. Immunol. 8:1030
    [Google Scholar]
  100. 100. 
    Virant D, Traenkle B, Maier J, Kaiser PD, Bodenhöfer M et al. 2018. A peptide tag-specific nanobody enables high-quality labeling for dSTORM imaging. Nat. Commun. 9:930
    [Google Scholar]
  101. 101. 
    Mikhaylova M, Cloin BMC, Finan K, van den Berg R, Teeuw J et al. 2015. Resolving bundled microtubules using anti-tubulin nanobodies. Nat. Commun. 6:7933–39
    [Google Scholar]
  102. 102. 
    Beghein E, Gettemans J. 2017. Nanobody technology: a versatile toolkit for microscopic imaging, protein-protein interaction analysis, and protein function exploration. Front. Immunol. 8:771
    [Google Scholar]
  103. 103. 
    Cai R, Pan C, Ghasemigharagoz A, Todorov MI, Förstera B et al. 2019. Panoptic imaging of transparent mice reveals whole-body neuronal projections and skull-meninges connections. Nat. Neurosci. 22:2317–27
    [Google Scholar]
  104. 104. 
    Klooster R, Eman MR, le Duc Q, Verheesen P, Verrips CT et al. 2009. Selection and characterization of KDEL-specific VHH antibody fragments and their application in the study of ER resident protein expression. J. Immunol. Methods 342:1–21–12
    [Google Scholar]
  105. 105. 
    Harmansa S, Hamaratoglu F, Affolter M, Caussinus E 2015. Dpp spreading is required for medial but not for lateral wing disc growth. Nature 527:317–22
    [Google Scholar]
  106. 106. 
    Harmansa S, Alborelli I, Bieli D, Caussinus E, Affolter M 2017. A nanobody-based toolset to investigate the role of protein localization and dispersal in Drosophila. eLife 6:e22549
    [Google Scholar]
  107. 107. 
    Tang JCY, Szikra T, Kozorovitskiy Y, Teixiera M, Sabatini BL et al. 2013. A nanobody-based system using fluorescent proteins as scaffolds for cell-specific gene manipulation. Cell 154:4928–39
    [Google Scholar]
  108. 108. 
    Herce HD, Deng W, Helma J, Leonhardt H, Cardoso MC 2013. Visualization and targeted disruption of protein interactions in living cells. Nat. Commun. 4:2660
    [Google Scholar]
  109. 109. 
    Yu D, Lee H, Hong J, Jung H, Jo YJ et al. 2019. Optogenetic activation of intracellular antibodies for direct modulation of endogenous proteins. Nat. Methods 16:111095–100
    [Google Scholar]
  110. 110. 
    Jedlitzke B, Yilmaz Z, Dörner W, Mootz HD 2020. Photobodies: light-activatable single-domain antibody fragments. Angew. Chem. 59:41506–10
    [Google Scholar]
  111. 111. 
    Huang L, Reekmans G, Saerens D, Friedt J-M, Frederix F et al. 2005. Prostate-specific antigen immunosensing based on mixed self-assembled monolayers, camel antibodies and colloidal gold enhanced sandwich assays. Biosens. Bioelectron. 21:483–90
    [Google Scholar]
  112. 112. 
    Gelkop S, Sobarzo A, Brangel P, Vincke C, Romão E et al. 2018. The development and validation of a novel Nanobody-based competitive ELISA for the detection of foot and mouth disease 3ABC antibodies in cattle. Front. Vet. Sci. 5:250
    [Google Scholar]
  113. 113. 
    Yang S, Shang Y, Yin S, Tian H, Chen Y et al. 2014. Selection and identification of single-domain antibody fragment against capsid protein of porcine circovirus type 2 (PCV2) from C. bactrianus. Vet. Immunol. Immunopathol. 160:1–212–19
    [Google Scholar]
  114. 114. 
    Morales-Yanez FJ, Sariego I, Vincke C, Hassanzadeh-Ghassabeh G, Polman K, Muyldermans S 2019. An innovative approach in the detection of Toxocara canis excretory/secretory antigens using specific nanobodies. Int. J. Parasitol. 49:8635–45
    [Google Scholar]
  115. 115. 
    Bever CS, Dong J-X, Vasylieva N, Barnych B, Cui Y et al. 2016. VHH antibodies: emerging reagents for the analysis of environmental chemicals. Anal. Bioanal. Chem. 408:225985–6002
    [Google Scholar]
  116. 116. 
    Wang K, Vasylieva N, Wan D, Eads DA, Yang J et al. 2019. Quantitative detection of fipronil and fipronil-sulfone in sera of black-tailed prairie dogs and rats after oral exposure to fipronil by camel single-domain antibody-based immunoassays. Anal. Chem. 91:21532–40
    [Google Scholar]
  117. 117. 
    Morales-Yánez F, Trashin S, Hermy M, Sariego I, Polman K et al. 2019. Fast one-step ultrasensitive detection of Toxocara canis antigens by a nanobody-based electrochemical magnetosensor. Anal. Chem. 91:1811582–88
    [Google Scholar]
  118. 118. 
    Li D, Morisseau C, McReynolds CB, Duflot T, Bellien J et al. 2020. Development of improved double-nanobody sandwich ELISAs for human soluble epoxide hydrolase detection in peripheral blood mononuclear cells of diabetic patients and the prefrontal cortex of multiple sclerosis patients. Anal. Chem. 92:107334–42
    [Google Scholar]
  119. 119. 
    Ren W, Li Z, Xu Y, Wan D, Barnych B et al. 2019. One-step ultrasensitive bioluminescent enzyme immunoassay based on nanobody/nanoluciferase fusion for detection of aflatoxin B1 in cereal. J. Agric. Food Chem. 67:185221–29
    [Google Scholar]
  120. 120. 
    Yamagata M, Sanes JR. 2018. Reporter-nanobody fusions (RANbodies) as versatile, small, sensitive immunohistochemical reagents. PNAS 115:92126–31
    [Google Scholar]
  121. 121. 
    Li H, Sun Y, Elseviers J, Muyldermans S, Liu S, Wan Y 2014. A nanobody-based electrochemiluminescent immunosensor for sensitive detection of human procalcitonin. Analyst 139:153718–21
    [Google Scholar]
  122. 122. 
    Wang H, Li G, Zhang Y, Zhu M, Ma H et al. 2015. Nanobody-based electrochemical immunoassay for ultrasensitive determination of apolipoprotein-A1 using silver nanoparticles loaded nanohydroxyapatite as label. Anal. Chem. 87:2211209–14
    [Google Scholar]
  123. 123. 
    Zhang J-r, Wang Y, Dong J-x, Yang J-y, Zhang Y-q et al. 2019. Development of a simple pretreatment immunoassay based on an organic solvent-tolerant nanobody for the detection of carbofuran in vegetable and fruit samples. Biomolecules 9:10576
    [Google Scholar]
  124. 124. 
    Torres JEP, Goossens J, Ding J, Zeng L, Lu S et al. 2018. Development of a Nanobody-based lateral flow assay to detect active Trypanosoma congolense infections. Sci. Rep. 8:9019
    [Google Scholar]
  125. 125. 
    Van Eeckhaut A, Lanckmans K, Sarre S, Smolders I, Michotte Y 2009. Validation of bioanalytical LC-MS/MS assays: evaluation of matrix effects. J. Chromatogr. B 877:232198–207
    [Google Scholar]
  126. 126. 
    Vaneycken I, D'Hhuyvetter M, Hernot S, De Vos J, Xavier C et al. 2011. Immuno-imaging using nanobodies. Curr. Opin. Biotechnol. 22:6877–81
    [Google Scholar]
  127. 127. 
    Oliveira S, Heukers R, Sornkom J, Kok RJ, van Bergen En Henegouwen PMP 2013. Targeting tumors with nanobodies for cancer imaging and therapy. J. Control. Release 172:3607–17
    [Google Scholar]
  128. 128. 
    Rashidian M, Keliher EJ, Bilate AM, Duarte JN, Wojtkiewicz GR et al. 2015. Noninvasive imaging of immune responses. PNAS 112:196146–51
    [Google Scholar]
  129. 129. 
    Gainkam LOT, Huang L, Caveliers V, Keyaerts M, Hernot S et al. 2008. Comparison of the biodistribution and tumor targeting of two 99mTc-labeled anti-EGFR nanobodies in mice, using pinhole SPECT/micro-CT. J. Nucl. Med. 49:5788–95
    [Google Scholar]
  130. 130. 
    Xavier C, Blykers A, Vaneycken I, D'Huyvetter M, Heemskerk J et al. 2016. 18F-nanobody for PET imaging of HER2 overexpressing tumors. Nucl. Med. Biol. 43:4247–52
    [Google Scholar]
  131. 131. 
    Xavier C, Vaneycken I, D'huyvetter M, Heemskerk J, Keyaerts M et al. 2013. Synthesis, preclinical validation, dosimetry, and toxicity of 68Ga-NOTA-anti-HER2 Nanobodies for iPET imaging of HER2 receptor expression in cancer. J. Nucl. Med. 54:5776–84
    [Google Scholar]
  132. 132. 
    Keyaerts M, Xavier C, Heemskerk J, Devoogdt N, Everaert H et al. 2016. Phase I study of 68Ga-HER2-Nanobody for PET/CT assessment of HER2-expression in breast carcinoma. J. Nucl. Med. 57:127–33
    [Google Scholar]
  133. 133. 
    Broisat A, Hernot S, Toczek J, De Vos J, Riou LM et al. 2012. Nanobodies targeting mouse/human VCAM1 for the nuclear imaging of atherosclerotic lesions. Circ. Res. 110:927–37
    [Google Scholar]
  134. 134. 
    Broisat A, Toczek J, Dumas LS, Ahmadi M, Bacot S et al. 2014. 99mTc-cAbVCAM1–5 imaging is a sensitive and reproducible tool for the detection of inflamed atherosclerotic lesions in mice. J. Nucl. Med. 55:101678–84
    [Google Scholar]
  135. 135. 
    Zheng F, Perlman H, Matthys P, Wen Y, Lahoutte T et al. 2016. Specificity evaluation and disease monitoring in arthritis imaging with complement receptor of the Ig superfamily targeting Nanobodies. Sci. Rep. 6:e35966
    [Google Scholar]
  136. 136. 
    Zheng F, Luo S, Ouyang Z, Zhou J, Mo H et al. 2019. NIRF-molecular imaging with synovial macrophages-targeting Vsig4 nanobody for disease monitoring in a mouse model of arthritis. Int. J. Mol. Sci. 20:133347
    [Google Scholar]
  137. 137. 
    Li T, Vandesquille M, Koukouli F, Dudeffant C, Youssef I et al. 2016. Camelid single-domain antibodies: a versatile tool for in vivo imaging of extracellular and intracellular brain targets. J. Control. Release 243:1–10
    [Google Scholar]
  138. 138. 
    Li T, Bourgeois JP, Celli S, Glacial F, Le Sourd AM et al. 2012. Cell-penetrating anti-GFAP VHH and corresponding fluorescent fusion protein VHH-GFP spontaneously cross the blood-brain barrier and specifically recognize astrocytes: application to brain imaging. FASEB J 26:103969–79
    [Google Scholar]
  139. 139. 
    Caljon G, Caveliers V, Lahoutte T, Stijlemans B, Ghassabeh GH et al. 2012. Using microdialysis to analyse the passage of monovalent nanobodies through the blood-brain barrier. Br. J. Pharmacol. 165:72341–53
    [Google Scholar]
  140. 140. 
    Huang C, Ren J, Ji F, Muyldermans S, Jia L 2020. Nanobody-based high-performance immunosorbent for selective beta 2-microglobulin purification from blood. Acta Biomater 107:232–41
    [Google Scholar]
  141. 141. 
    Hmila I, Saerens D, Ben Abderrazek R, Vincke C, Abidi N et al. 2010. A bispecific nanobody to provide full protection against lethal scorpion envenoming. FASEB J 24:93479–89
    [Google Scholar]
  142. 142. 
    Anderson GP, Liu JH, Zabetakis D, Liu JL, Goldman ER 2017. Thermal stabilization of anti-α-cobratoxin single domain antibodies. Toxicon 129:68–73
    [Google Scholar]
  143. 143. 
    Goldman ER, Liu JL, Bernstein RD, Swain MD, Mitchell SQ, Anderson GP 2009. Ricin detection using phage displayed single domain antibodies. Sensors 9:1542–55
    [Google Scholar]
  144. 144. 
    Laustsen AH, Gutiérrez JM, Knudsen C, Johansen KH, Bermúdez-Méndez E et al. 2018. Pros and cons of different therapeutic antibody formats for recombinant antivenom development. Toxicon 146:151–75
    [Google Scholar]
  145. 145. 
    Harmsen MM, Fijten HPD, Engel B, Dekker A, Eble PL 2009. Passive immunization with llama single-domain antibody fragments reduces foot-and-mouth disease transmission between pigs. Vaccine 27:131904–11
    [Google Scholar]
  146. 146. 
    Laursen N, Friesen RHE, Zhu X, Jongeneelen M, Blokland S et al. 2018. Universal protection against influenza infection by a multidomain antibody to influenza. Science 362:6414598–602
    [Google Scholar]
  147. 147. 
    Wichgers Schreur PJ, van de Water S, Harmsen M, Bermúdez-Méndez E, Drabek D et al. 2020. Multimeric single-domain antibody complexes protect against bunyavirus infections. eLife 9:e52716
    [Google Scholar]
  148. 148. 
    Baral TN, Magez S, Stijlemans B, Conrath K, Vanhollebeke B et al. 2006. Experimental therapy of African trypanosomiasis with a nanobody-conjugated human trypanolytic factor. Nat. Med. 12:5580–84
    [Google Scholar]
  149. 149. 
    Hernot S, Unnikrishnan S, Du Z, Shevchenko T, Cosyns B et al. 2012. Nanobody-coupled microbubbles as novel molecular tracer. J. Control. Release 158:2346–53
    [Google Scholar]
  150. 150. 
    Papadopoulos KP, Isaacs R, Bilic S, Kentsch K, Huet HA et al. 2015. Unexpected hepatotoxicity in a phase I study of TAS266, a novel tetravalent agonistic Nanobody® targeting the DR5 receptor. Cancer Chemother. Pharmacol. 75:887–95
    [Google Scholar]
  151. 151. 
    Holland MC, Wurthner JU, Morley PJ, Birchler MA, Lambert J et al. 2013. Autoantibodies to variable heavy (VH) chain Ig sequences in humans impact the safety and clinical pharmacology of a VH domain antibody antagonist of TNF-α receptor 1. J. Clin. Immunol. 33:1192–203
    [Google Scholar]
  152. 152. 
    Peyvandi F, Scully M, Kremer Hovinga JA, Cataland S, Knöbl P et al. 2016. Caplacizumab for acquired thrombotic thrombocytopenic purpura. N. Engl. J. Med. 374:511–22
    [Google Scholar]
  153. 153. 
    Scully M, Cataland SR, Peyvandi F, Coppo P, Knöbl P et al. 2019. Caplacizumab treatment for acquired thrombotic thrombocytopenic purpura. N. Engl. J. Med. 380:4335–46
    [Google Scholar]
  154. 154. 
    D'Huyvetter M, De Vos J, Xavier C, Pruszynski M, Sterckx YGJ et al. 2017. 131I-labeled anti-HER2 camelid sdAb as a theranostic tool in cancer treatment. Clin. Cancer Res. 23:216616–28
    [Google Scholar]
  155. 155. 
    Xie YJ, Dougan M, Jailkhani N, Ingram J, Fang T et al. 2019. Nanobody-based CAR T cells that target the tumor microenvironment inhibit the growth of solid tumors in immunocompetent mice. PNAS 116:167624–31
    [Google Scholar]
  156. 156. 
    Ming L, Wang Z, Yi L, Batmunkh M, Liu T et al. 2020. Chromosome-level assembly of wild Bactrian camel genome reveals organization of immune gene loci. Mol. Ecol. Resour. 20:3770–80
    [Google Scholar]
/content/journals/10.1146/annurev-animal-021419-083831
Loading
/content/journals/10.1146/annurev-animal-021419-083831
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error