1932

Abstract

The lack of preclinical models of spontaneous ovarian cancer (OVCA), a fatal gynecological malignancy, is a significant barrier to generating information on early changes indicative of OVCA. In contrast to rodents, laying hens develop OVCA spontaneously, with remarkable similarities to OVCA in women regarding tumor histology, OVCA dissemination, immune responses, and risk factors. These important features of OVCA will be useful to develop an early detection test for OVCA, which would significantly reduce mortality rates; preventive strategies; immunotherapeutics; prevention of resistance to chemotherapeutics; and exploration of gene therapies. A transvaginal ultrasound (TVUS) imaging method for imaging of hen ovarian tumors has been developed. Hens can be monitored prospectively by using serum markers, together with TVUS imaging, to detect early-stage OVCA, provided that a panel of serum markers can be established and imaging agents developed. Recent sequencing of the chicken genome will further facilitate the hen model to explore gene therapies against OVCA.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-021419-084001
2022-02-15
2024-04-22
Loading full text...

Full text loading...

/deliver/fulltext/animal/10/1/annurev-animal-021419-084001.html?itemId=/content/journals/10.1146/annurev-animal-021419-084001&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Siegel RL, Miller KD, Jemal A. 2020. Cancer statistics, 2020. CA Cancer J. Clin. 70:17–30
    [Google Scholar]
  2. 2. 
    Cancer Discov 2014. On the rise globally, cancer mortality declines in U.S. Cancer Discov 4:3OF7
    [Google Scholar]
  3. 3. 
    Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A 2018. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68:6394–424
    [Google Scholar]
  4. 4. 
    World Ovarian Cancer Coalit 2018. The World Ovarian Cancer Coalition Atlas: global trends in incidence, mortality and survival Rep., World Ovarian Cancer Coalit. Toronto, Can: https://worldovariancancercoalition.org/wp-content/uploads/2018/10/THE-WORLD-OVARIAN-CANCER-COALITION-ATLAS-2018.pdf
    [Google Scholar]
  5. 5. 
    Maloney SM, Hoover CA, Morejon-Lasso LV, Prosperi JR. 2020. Mechanisms of taxane resistance. Cancers 12:113323
    [Google Scholar]
  6. 6. 
    Alkema NG, Wisman GBA, van der Zee AG, van Vugt MATM, de Jong S. 2016. Studying platinum sensitivity and resistance in high-grade serous ovarian cancer: different models for different questions. Drug Resist. Updates 24:55–69
    [Google Scholar]
  7. 7. 
    Andreotti RF, Timmerman D, Strachowski LM, Froyman W, Benacerraf BR et al. 2020. O-RADS US risk stratification and management system: a consensus guideline from the ACR Ovarian-Adnexal Reporting and Data System Committee. Radiology 294:1168–85
    [Google Scholar]
  8. 8. 
    Torre LA, Trabert B, DeSantis CE, Miller KD, Samimi G et al. 2018. Ovarian cancer statistics. CA Cancer J. Clin. 68:4284–96
    [Google Scholar]
  9. 9. 
    Mohaghegh P, Rockall AG. 2012. Imaging strategy for early ovarian cancer: characterization of adnexal masses with conventional and advanced imaging techniques. Radiographics 32:61751–73
    [Google Scholar]
  10. 10. 
    Abramowicz JS. 2005. Ultrasonographic contrast media: Has the time come in obstetrics and gynecology?. J. Ultrasound. Med. 24:4517–31
    [Google Scholar]
  11. 11. 
    Phinyo P, Patumanond J, Saenrungmuaeng P, Chirdchim W, Pipanmekaporn T et al. 2020. Early-stage ovarian malignancy score versus risk of malignancy indices: accuracy and clinical utility for preoperative diagnosis of women with adnexal masses. Medicina 56:12702
    [Google Scholar]
  12. 12. 
    Buamah P. 2000. Benign conditions associated with raised serum CA-125 concentration. J. Surg. Oncol. 75:4264–65
    [Google Scholar]
  13. 13. 
    Jeong YY, Outwater EK, Kang HK. 2000. Imaging evaluation of ovarian masses. Radiographics 20:51445–70
    [Google Scholar]
  14. 14. 
    Kilk K. 2019. Metabolomics for animal models of rare human diseases: an expert review and lessons learned. OMICS 23:6300–7
    [Google Scholar]
  15. 15. 
    Lengyel E, Burdette JE, Kenny HA, Matei D, Pilrose J et al. 2014. Epithelial ovarian cancer experimental models. Oncogene 33:283619–33
    [Google Scholar]
  16. 16. 
    Karnezis AN, Cho KR. 2017. Preclinical models of ovarian cancer: pathogenesis, problems, and implications for prevention. Clin. Obstet. Gynecol. 60:4789–800
    [Google Scholar]
  17. 17. 
    Rodriguez-Burford C, Barnes MN, Berry W, Partridge EE, Grizzle WE. 2001. Immunohistochemical expression of molecular markers in an avian model: a potential model for preclinical evaluation of agents for ovarian cancer chemoprevention. Gynecol. Oncol. 81:3373–79
    [Google Scholar]
  18. 18. 
    Johnson PA, Giles JR. 2013. The hen as a model of ovarian cancer. Nat. Rev. Cancer 13:6432–36
    [Google Scholar]
  19. 19. 
    Schmutz J, Grimwood J. 2004. Genomes: fowl sequence. Nature 432:7018679–80
    [Google Scholar]
  20. 20. 
    Fredrickson TN. 1987. Ovarian tumors of the hen. Environ. Health Perspect. 73:35–51
    [Google Scholar]
  21. 21. 
    Barua A, Bitterman P, Abramowicz JS, Dirks AL, Bahr JM et al. 2009. Histopathology of ovarian tumors in laying hens: a preclinical model of human ovarian cancer. Int. J. Gynecol. Cancer 19:4531–39
    [Google Scholar]
  22. 22. 
    Hawkridge AM. 2014. The chicken model of spontaneous ovarian cancer. Proteom. Clin. Appl. 8:9–10689–99
    [Google Scholar]
  23. 23. 
    Barua A, Abramowicz JS, Bahr JM, Bitterman P, Dirks AL et al. 2007. Detection of ovarian tumors in chicken by sonography: A step toward early diagnosis in humans?. J. Ultrasound Med. 26:7909–19
    [Google Scholar]
  24. 24. 
    Jackson E, Anderson K, Ashwell C, Petitte J, Mozdziak PE 2007. CA125 expression in spontaneous ovarian adenocarcinomas from laying hens. Gynecol. Oncol. 104:1192–98
    [Google Scholar]
  25. 25. 
    Stammer K, Edassery SL, Barua A, Bitterman P, Bahr JM et al. 2008. Selenium-binding protein 1 expression in ovaries and ovarian tumors in the laying hen, a spontaneous model of human ovarian cancer. Gynecol. Oncol. 109:1115–21
    [Google Scholar]
  26. 26. 
    Hales DB, Zhuge Y, Lagman JA, Ansenberger K, Mahon C et al. 2008. Cyclooxygenases expression and distribution in the normal ovary and their role in ovarian cancer in the domestic hen (Gallus domesticus). Endocrine 33:3235–44
    [Google Scholar]
  27. 27. 
    Urick ME, Johnson PA. 2006. Cyclooxygenase 1 and 2 mRNA and protein expression in the Gallus domesticus model of ovarian cancer. Gynecol. Oncol. 103:2673–78
    [Google Scholar]
  28. 28. 
    Ansenberger K, Zhuge Y, Lagman JA, Richards C, Barua A. 2009. E-cadherin expression in ovarian cancer in the laying hen, Gallus domesticus, compared to human ovarian cancer. Gynecol. Oncol. 113:3362–69
    [Google Scholar]
  29. 29. 
    Urick ME, Giles JR, Johnson PA 2008. VEGF expression and the effect of NSAIDs on ascites cell proliferation in the hen model of ovarian cancer. Gynecol. Oncol. 110:3418–24
    [Google Scholar]
  30. 30. 
    Barua A, Bitterman P, Bahr JM, Bradaric MJ, Hales DB et al. 2010. Detection of tumor-associated neoangiogenesis by Doppler ultrasonography during early-stage ovarian cancer in laying hens: a preclinical model of human spontaneous ovarian cancer. J. Ultrasound Med. 29:2173–82
    [Google Scholar]
  31. 31. 
    Zhuge Y, Lagman JA, Ansenberger K, Mahon CJ, Daikoku T et al. 2009. CYP1B1 expression in ovarian cancer in the laying hen Gallus domesticus. . Gynecol. Oncol. 112:1171–78
    [Google Scholar]
  32. 32. 
    Chang K, Pastan I 1996. Molecular cloning of mesothelin, a differentiation antigen present on mesothelium, mesotheliomas, and ovarian cancers. PNAS 93:1136–40
    [Google Scholar]
  33. 33. 
    Ahn SE, Choi JW, Rengaraj D, Seo HW, Lim W et al. 2010. Increased expression of cysteine cathepsins in ovarian tissue from chickens with ovarian cancer. Reprod. Biol. Endocrinol. 8:100
    [Google Scholar]
  34. 34. 
    Seo HW, Rengaraj D, Choi JW, Ahn SE, Song YS, Seo HW et al. 2010. Claudin 10 is a glandular epithelial marker in the chicken model as human epithelial ovarian cancer. Int. J. Gynecol. Cancer 20:91465–73
    [Google Scholar]
  35. 35. 
    Lim W, Jeong W, Kim J, Yoshimura Y, Bazer FW, Lim W et al. 2013. Expression and regulation of beta-defensin 11 in the oviduct in response to estrogen and in ovarian tumors of chickens. Mol. Cell. Endocrinol. 366:11–8
    [Google Scholar]
  36. 36. 
    Tiwari A, Ocon-Grove OM, Hadley JA, Giles JR, Johnson PA, Ramachandran R 2015. Expression of adiponectin and its receptors is altered in epithelial ovarian tumors and ascites-derived ovarian cancer cell lines. Int. J. Gynecol. Cancer 25:3399–406
    [Google Scholar]
  37. 37. 
    Barua A, Edassery SL, Bitterman P, Abramowicz JS, Dirks AL et al. 2009. Prevalence of antitumor antibodies in laying hen model of human ovarian cancer. Int. J. Gynecol. Cancer 19:4500–7
    [Google Scholar]
  38. 38. 
    Barua A, Bradaric MJ, Kebede T, Espionosa S, Edassery SL et al. 2007. Anti-tumor and anti-ovarian autoantibodies in women with ovarian cancer. Am. J. Reprod. Immunol. 57:4243–49
    [Google Scholar]
  39. 39. 
    Nepomuceno AI, Shao H, Jing K, Ma Y, Petitte JN et al. 2015. In-depth LC-MS/MS analysis of the chicken ovarian cancer proteome reveals conserved and novel differentially regulated proteins in humans. Anal. Bioanal. Chem. 407:226851–63
    [Google Scholar]
  40. 40. 
    Int. Chick. Genome Seq. Consort 2004. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432:7018695–716
    [Google Scholar]
  41. 41. 
    Wong GK, Liu B, Wang J, Zhang Y, Yang X et al. 2004. A genetic variation map for chicken with 2.8 million single-nucleotide polymorphisms. Nature 432:7018717–22
    [Google Scholar]
  42. 42. 
    Wallis JW, Aerts J, Groenen MA, Crooijmans RP, Layman D et al. 2004. A physical map of the chicken genome. Nature 432:7018761–64
    [Google Scholar]
  43. 43. 
    Burt DW. 2005. Chicken genome: current status and future opportunities. Genome Res 15:121692–98
    [Google Scholar]
  44. 44. 
    Hakim AA, Barry CP, Barnes HJ, Anderson KE, Petitte J et al. 2009. Ovarian adenocarcinomas in the laying hen and women share similar alterations in p53, ras, and HER-2/neu. Cancer Prev. Res. 2:2114–21
    [Google Scholar]
  45. 45. 
    Am. Cancer Soc 2020. Key statistics for ovarian cancer Accessed Jan. 5, 2021. https://www.cancer.org/cancer/ovarian-cancer/about/key-statistics.html
  46. 46. 
    Abildgaard J, Tingstedt J, Zhao Y, Hartling HJ, Pedersen AT et al. 2020. Increased systemic inflammation and altered distribution of T-cell subsets in postmenopausal women. PLOS ONE 15:6e0235174
    [Google Scholar]
  47. 47. 
    Bourgonje AR, Abdulle AE, Al-Rawas AM, Al-Maqbali M, Al-Saleh M et al. 2020. Systemic oxidative stress is increased in postmenopausal women and independently associates with homocysteine levels. Int. J. Mol. Sci. 21:1314
    [Google Scholar]
  48. 48. 
    Cubillos-Ruiz JR, Bettigole SE, Glimcher LH 2017. Tumorigenic and immunosuppressive effects of endoplasmic reticulum stress in cancer. Cell 168:4692–706
    [Google Scholar]
  49. 49. 
    Eilati E, Pan L, Bahr JM, Hales DB. 2012. Age dependent increase in prostaglandin pathway coincides with onset of ovarian cancer in laying hens. Prostaglandins Leukot. Essent. Fatty Acids 87:6177–84
    [Google Scholar]
  50. 50. 
    Jaworek J, Leja-Szpak A, Nawrot-Porąbka K, Szklarczyk J, Kot M et al. 2017. Effects of melatonin and its analogues on pancreatic inflammation, enzyme secretion, and tumorigenesis. Int. J. Mol. Sci. 18:51014
    [Google Scholar]
  51. 51. 
    Luborsky J, Llanes B, Davies S, Binor Z, Radwanska E, Pong R 1999. Ovarian autoimmunity: greater frequency of autoantibodies in premature menopause and unexplained infertility than in the general population. Clin. Immunol. 90:3368–74
    [Google Scholar]
  52. 52. 
    Barua A, Yoshimura Y. 2001. Ovarian autoimmunity in relation to egg production in laying hens. Reproduction 121:1117–22
    [Google Scholar]
  53. 53. 
    Rojansky N, Roll D, Meirow D. 1997. Polycystic ovary syndrome: An autoimmune disease?. J. Reprod. Med. 42:6325–28
    [Google Scholar]
  54. 54. 
    Schildkraut JM, Schwingl PJ, Bastos E, Evanoff A, Hughes C, Schildkraut JM. 1996. Epithelial ovarian cancer risk among women with polycystic ovary syndrome. Obstet. Gynecol. 88:4554–59
    [Google Scholar]
  55. 55. 
    Gadducci A, Gargini A, Palla E, Fanucchi A, Genazzani AR et al. 2005. Polycystic ovary syndrome and gynecological cancers: Is there a link?. Gynecol. Endocrinol. 20:4200–8
    [Google Scholar]
  56. 56. 
    Barry JA, Azizia MM, Hardiman PJ. 2014. Risk of endometrial, ovarian and breast cancer in women with polycystic ovary syndrome: a systematic review and meta-analysis. Hum. Reprod. Update 20:5748–58
    [Google Scholar]
  57. 57. 
    Lee HJ, Bahr JM, Bitterman P, Basu S, Sharma S et al. 2018. Polycystic ovarian condition may be a risk factor for ovarian tumor development in the laying hen model of spontaneous ovarian cancer. J. Immunol. Res. 2018 2590910
    [Google Scholar]
  58. 58. 
    Cruikshank WW, Kornfeld H, Center DM. 2000. Interleukin-16. J. Leukoc. Biol. 67:6757–66
    [Google Scholar]
  59. 59. 
    Lim KG, Wan HC, Bozza PT, Resnick MB, Wong DT et al. 1996. Human eosinophils elaborate the lymphocyte chemoattractants. IL-16 (lymphocyte chemoattractant factor) and RANTES. J. Immunol. 156:72566–70
    [Google Scholar]
  60. 60. 
    Am. Coll. Obstet. Gynecol. Comm. Pract. Bull 2016. Practice Bulletin No. 174: evaluation and management of adnexal masses. Obstet. Gynecol. 128:5e210–e26
    [Google Scholar]
  61. 61. 
    Natl. Collab. Cent. Cancer 2011. The recognition and initial management of ovarian cancer Clin. Guidel. 122 Natl. Inst. Health Clin. Excel. Lond.:
  62. 62. 
    Auekitrungrueng R, Tinnangwattana D, Tantipalakorn C, Charoenratana C, Lerthiranwong T et al. 2019. Comparison of the diagnostic accuracy of International Ovarian Tumor Analysis simple rules and the risk of malignancy index to discriminate between benign and malignant adnexal masses. Int. J. Gynaecol. Obstet. 146:3364–69
    [Google Scholar]
  63. 63. 
    Shetty J, Saradha A, Pandey D, Bhat R, Pratap K et al. 2019. IOTA simple ultrasound rules for triage of adnexal mass: experience from South India. J. Obstet. Gynaecol. India 69:4356–62
    [Google Scholar]
  64. 64. 
    Kaijser J, Sayasneh A, Van Hoorde K, Ghaem-Maghami S, Bourne T et al. 2014. Presurgical diagnosis of adnexal tumours using mathematical models and scoring systems: a systematic review and meta-analysis. Hum. Reprod. Update 20:3449–62
    [Google Scholar]
  65. 65. 
    Barua A, Edassery SL, McNeal S, Bahr JM, Bitterman P et al. 2014. Enhancement of ovarian tumor detection with αvβ3 integrin-targeted ultrasound molecular imaging agent in laying hens: a preclinical model of spontaneous ovarian cancer. Int. J. Gynecol. Cancer 24:119–28
    [Google Scholar]
  66. 66. 
    Barua A, Yellapa A, Bahr JM, Machado SA, Bitterman P et al. 2015. VEGFR2-targeted ultrasound imaging agent enhances the detection of ovarian tumors at early stage in laying hens, a preclinical model of spontaneous ovarian cancer. Ultrason. Imaging 37:3224–37
    [Google Scholar]
  67. 67. 
    Barua A, Yellapa A, Bahr JM, Adur MK, Utterback CW et al. 2015. Interleukin 16- (IL-16-) targeted ultrasound imaging agent improves detection of ovarian tumors in laying hens, a preclinical model of spontaneous ovarian cancer. Biomed. Res. Int. 2015 567459
    [Google Scholar]
  68. 68. 
    Barua A, Yellapa A, Bahr JM, Machado SA, Bitterman P et al. 2016. Enhancement of ovarian tumor detection by DR6-targeted ultrasound imaging agents in laying hen model of spontaneous ovarian cancer. Int. J. Gynecol. Cancer 26:81375–85
    [Google Scholar]
  69. 69. 
    Li X, Chiang H-I, Zhu J, Dowd SE, Zhou H 2008. Characterization of a newly developed chicken 44K Agilent microarray. BMC Genom 9:60
    [Google Scholar]
  70. 70. 
    Crowley TM, Haring V, Burggraaf S, Moore R 2009. Application of chicken microarrays for gene expression analysis in other avian species. BMC Genom 10:Suppl 2S3
    [Google Scholar]
  71. 71. 
    Cogburn LA, Porter TE, Duclos MJ, Simon J, Burgess SC et al. 2007. Functional genomics of the chicken—a model organism. Poult. Sci. 86:102059–94
    [Google Scholar]
  72. 72. 
    Gheyas AA, Burt DW. 2013. Microarray resources for genetic and genomic studies in chicken: a review. Genesis 51:5337–56
    [Google Scholar]
  73. 73. 
    Shalon D, Smith SJ, Brown PO 1996. A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. Genome Res. 6:7639–45
    [Google Scholar]
  74. 74. 
    Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K et al. 1998. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9:123273–97
    [Google Scholar]
  75. 75. 
    Hurd PJ, Nelson CJ. 2009. Advantages of next-generation sequencing versus the microarray in epigenetic research. Brief. Funct. Genom. Proteom. 8:3174–83
    [Google Scholar]
  76. 76. 
    Zhang ZH, Jhaveri DJ, Marshall VM, Bauer DC, Edson J et al. 2014. A comparative study of techniques for differential expression analysis on RNA-Seq data. PLOS ONE 9:8e103207
    [Google Scholar]
  77. 77. 
    Zhang Q, Wang P, Cong G, Liu M, Shi S et al. 2021. Comparative transcriptomic analysis of ovaries from high and low egg-laying Lingyun black-bone chickens. Vet. Med. Sci. 7:1867–80
    [Google Scholar]
  78. 78. 
    Kadarmideen HN. 2014. Genomics to systems biology in animal and veterinary sciences: progress, lessons and opportunities. Livest. Sci. 166:232–48
    [Google Scholar]
  79. 79. 
    Suravajhala P, Kogelman LJA, Kadarmideen HN. 2016. Multi-omic data integration and analysis using systems genomics approaches: methods and applications in animal production, health and welfare. Genet. Sel. Evol. 48:38
    [Google Scholar]
  80. 80. 
    Reuter JA, Spacek DV, Snyder MP. 2015. High-throughput sequencing technologies. Mol. Cell 58:4586–97
    [Google Scholar]
  81. 81. 
    Vidotto M, Grapputo A, Boscari E, Barbisan F, Coppe A et al. 2013. Transcriptome sequencing and de novo annotation of the critically endangered Adriatic sturgeon. BMC Genom 14:407
    [Google Scholar]
  82. 82. 
    Gao G, Li Q, Zhao X, Ding N, Han Q et al. 2015. Transcriptome profiling of the hypothalamus during prelaying and laying periods in Sichuan white geese (Anser cygnoides). Anim. Sci. J. 86:8800–5
    [Google Scholar]
  83. 83. 
    Shen X, Bai X, Xu J, Zhou M, Xu H et al. 2016. Transcriptome sequencing reveals genetic mechanisms underlying the transition between the laying and brooding phases and gene expression changes associated with divergent reproductive phenotypes in chickens. Mol. Biol. Rep. 43:9977–89
    [Google Scholar]
  84. 84. 
    Yin Z, Lian L, Zhu F, Zhang Z-H, Hincke M et al. 2020. The transcriptome landscapes of ovary and three oviduct segments during chicken (Gallus gallus) egg formation. Genomics 112:1243–51
    [Google Scholar]
  85. 85. 
    Zhu Z, Miao Z, Chen H, Xin Q, Li L et al. 2017. Ovarian transcriptomic analysis of Shan Ma ducks at peak and late stages of egg production. Asian-Australas. J. Anim. Sci. 30:91215–24
    [Google Scholar]
  86. 86. 
    Mishra SK, Chen B, Zhu Q, Xu Z, Ning C et al. 2020. Transcriptome analysis reveals differentially expressed genes associated with high rates of egg production in chicken hypothalamic-pituitary-ovarian axis. Sci. Rep. 10:5976
    [Google Scholar]
  87. 87. 
    Chen X, Sun X, Chimbaka IM, Qin N, Xu X et al. 2021. Transcriptome analysis of ovarian follicles reveals potential pivotal genes associated with increased and decreased rates of chicken egg production. Front. Genet. 12:622751
    [Google Scholar]
  88. 88. 
    Zhang T, Chen L, Han K, Zhang X, Zhang G et al. 2019. Transcriptome analysis of ovary in relatively greater and lesser egg producing Jinghai Yellow Chicken. Anim. Reprod. Sci. 208:106114
    [Google Scholar]
  89. 89. 
    Bradaric MJ, Penumatsa K, Barua A, Edassery SL, Yu Y et al. 2013. Immune cells in the normal ovary and spontaneous ovarian tumors in the laying hen (Gallus domesticus) model of human ovarian cancer. PLOS ONE 8:9e74147
    [Google Scholar]
  90. 90. 
    Khan MF, Bahr JM, Yellapa A, Bitterman P, Abramowicz JS et al. 2012. Expression of leukocyte inhibitory immunoglobulin-like transcript 3 receptors by ovarian tumors in laying hen model of spontaneous ovarian cancer. Transl. Oncol. 5:285–91
    [Google Scholar]
  91. 91. 
    Salih HR, Rammensee HG, Steinle A. 2002. Cutting edge: down-regulation of MICA on human tumors by proteolytic shedding. J. Immunol. 169:84098–102
    [Google Scholar]
  92. 92. 
    Barua A, Bradaric MJ, Bitterman P, Abramowicz JS, Sharma S et al. 2013. Dietary supplementation of Ashwagandha (Withania somnifera, Dunal) enhances NK cell function in ovarian tumors in the laying hen model of spontaneous ovarian cancer. Am. J. Reprod. Immunol. 70:6538–50
    [Google Scholar]
  93. 93. 
    Xiao L, Tang J, Li W, Xu X, Zhang H, Xiao L. 2020. Improved prognosis for recurrent epithelial ovarian cancer by early diagnosis and 125I seeds implantation during suboptimal secondary cytoreductive surgery: a case report and literature review. J. Ovarian Res. 13:141
    [Google Scholar]
  94. 94. 
    Hamanishi J, Mandai M, Iwasaki M, Okazaki T, Tanaka Y et al. 2007. Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. PNAS 104:93360–65
    [Google Scholar]
  95. 95. 
    Webb JR, Milne K, Kroeger DR, Nelson BH. 2016. PD-L1 expression is associated with tumor-infiltrating T cells and favorable prognosis in high-grade serous ovarian cancer. Gynecol. Oncol. 141:2293–302
    [Google Scholar]
  96. 96. 
    Izar B, Tirosh I, Stover EH, Wakiro I, Cuoco MS et al. 2020. A single-cell landscape of high-grade serous ovarian cancer. Nat. Med. 26:81271–79
    [Google Scholar]
  97. 97. 
    Kim K, Park S, Park SY, Kim G, Park SM et al. 2020. Single-cell transcriptome analysis reveals TOX as a promoting factor for T cell exhaustion and a predictor for anti-PD-1 responses in human cancer. Genome Med 12:22
    [Google Scholar]
  98. 98. 
    Overbey EG, Ng TT, Catini P, Griggs LM, Stewart P et al. 2021. Transcriptomes of an array of chicken ovary, intestinal, and immune cells and tissues. Front. Genet. 12:664424
    [Google Scholar]
  99. 99. 
    Guo LX, Nie F-r, Huang A-q, Wang R-n, Li M-y et al. 2021. Transcriptomic analysis of chicken immune response to infection of different doses of Newcastle disease vaccine. Gene 766:145077
    [Google Scholar]
  100. 100. 
    Ramakrishnan S, Subramanian IV, Yokoyama Y, Geller M 2005. Angiogenesis in normal and neoplastic ovaries. Angiogenesis 8:2169–82
    [Google Scholar]
  101. 101. 
    Brown MR, Blanchette JO, Kohn EC. 2000. Angiogenesis in ovarian cancer. Best Pract. Res. Clin. Obstet. Gynaecol. 14:6901–18
    [Google Scholar]
  102. 102. 
    Vu BT, Shahin SA, Croissant J, Fatieiev Y, Matsumoto K et al. 2018. Chick chorioallantoic membrane assay as an in vivo model to study the effect of nanoparticle-based anticancer drugs in ovarian cancer. Sci. Rep. 8:8524
    [Google Scholar]
  103. 103. 
    Trevino LS, Buckles EL, Johnson PA. 2012. Oral contraceptives decrease the prevalence of ovarian cancer in the hen. Cancer Prev. Res. 5:2343–49
    [Google Scholar]
  104. 104. 
    Barnes MN, Berry WD, Straughn JM, Kirby TO, Leath CA et al. 2002. A pilot study of ovarian cancer chemoprevention using medroxyprogesterone acetate in an avian model of spontaneous ovarian carcinogenesis. Gynecol. Oncol. 87:157–63
    [Google Scholar]
  105. 105. 
    Koshiyama M. 2019. The effects of the dietary and nutrient intake on gynecologic cancers. Healthcare 7:388
    [Google Scholar]
  106. 106. 
    Urick ME, Giles JR, Johnson PA 2009. Dietary aspirin decreases the stage of ovarian cancer in the hen. Gynecol. Oncol. 112:1166–70
    [Google Scholar]
  107. 107. 
    Eilati E, Bahr JM, Hales DB. 2013. Long term consumption of flaxseed enriched diet decreased ovarian cancer incidence and prostaglandin E2 in hens. Gynecol. Oncol. 130:3620–28
    [Google Scholar]
  108. 108. 
    Eilati E, Hales K, Zhuge Y, Ansenberger-Fricano K, Yu R et al. 2013. Flaxseed enriched diet-mediated reduction in ovarian cancer severity is correlated to the reduction of prostaglandin E2 in laying hen ovaries. Prostaglandins Leukot. Essent. Fatty Acids 89:4179–87
    [Google Scholar]
  109. 109. 
    Ansenberger K, Richards C, Zhuge Y, Barua A, Bahr JM et al. 2010. Decreased severity of ovarian cancer and increased survival in hens fed a flaxseed-enriched diet for 1 year. Gynecol. Oncol. 117:2341–47
    [Google Scholar]
/content/journals/10.1146/annurev-animal-021419-084001
Loading
/content/journals/10.1146/annurev-animal-021419-084001
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error